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Inference for Full
and Fractional
Factorial Studies

Chapter 7 began this book’s exposition of inference methods for multisample
studies. The methods there neither require nor make use of any special structure
relating the samples. They are both widely applicable and practically informative
tools. But Chapter 4 illustrated on an informal or descriptive level the engineering
importance of discovering, interpreting, and ultimately exploiting structure relating
a response to one or more other variables. This chapter begins to provide inference
methods to support these activities.

This chapter builds on the descriptive statistics material of Section 4.3 and
the tools of Chapter 7 to provide methods for full and fractional factorial studies. It
begins with a discussion of some inference methods for complete two-way factorials.
Then complete p-way factorial inference is considered with special attention to the
2p case. Then two successive sections describe what is possible in the way of
factorial inference from well-chosen fractions of a 2p factorial. First, half fractions
are considered, and then 1/2q fractions for q > 1.
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8.1 Basic Inference in Two-Way Factorials
with Some Replication

This section considers inference from complete two-way factorial data in cases
where there is some replication—i.e., at least one of the sample sizes is larger than
1. It begins by pointing out that the material in Sections 7.1 through 7.4 can often
be useful in sharpening the preliminary graphical analyses suggested in Section 4.3.
Then there is a discussion of inference based on the fitted two-way factorial effects
defined in Chapter 4. These are used to develop both individual and simultaneous
confidence interval methods.

546
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8.1.1 One-Way Methods in Two-Way Factorials

Example 1 revives a case used extensively in Section 4.3.

Example 1
(Example 7, Chapter 4,

revisited—page 163 )

Joint Strengths for Three Different Joint Types in Three Different Woods

Consider again the wood joint strength study of Kotlers, MacFarland, and Tom-
linson. Table 8.1 reorganizes the data given earlier in Table 4.11 into a 3× 3 table
showing the nine different samples of one or two joint strengths for all combina-
tions of three woods and three joint types. The data in Table 8.1 have complete
two-way factorial structure, and seven of the nine combinations represented in
the table provide some replication.

Table 8.1
Joint Strengths for 32 Combinations of Joint Type and Wood

Wood

1 (Pine) 2 (Oak) 3 (Walnut)

1 (Butt) 829, 596 1169 1263, 1029
Joint 2 (Beveled) 1348, 1207 1518, 1927 2571, 2443

3 (Lap) 1000, 859 1295, 1561 1489

The data in Table 8.1 constitute r = 9 samples of sizes 1 or 2. Provided the
graphical and numerical checks of Section 7.1 reveal no obvious problems with the
one-way model for joint strengths, all of the methods of Sections 7.2 through 7.4
can be brought to bear.

One way in which this is particularly helpful is in indicating the precision of
estimated means on interaction plots. Section 4.3 discussed how near-parallelism
on such plots leads to simple interpretations of two-way factorials. By marking
either individual or simultaneous confidence limits as error bars around the sampleError bars

on interaction
plots

means on an interaction plot, it is possible to get a rough idea of the detectability or
statistical significance of any apparent lack of parallelism.

Example 1
(continued )

The place to begin a formal analysis of the wood joint strength data is with
consideration of the appropriateness of the one-way (normal distributions with
a common variance) model for joint strength. Table 8.2 gives some summary
statistics for the data of Table 8.1.

Residuals for the joint strength data are obtained by subtracting the sample
means in Table 8.2 from the corresponding observations in Table 8.1. In this
data set, the sample sizes are so small that the residuals will obviously be highly
dependent. Those from samples of size 2 will be plus-and-minus a single number
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Example 1
(continued )

Table 8.2
Sample Means and Standard Deviations for Nine Joint/Wood Combinations

Wood

1 (Pine) 2 (Oak) 3 (Walnut)

1 (Butt) ȳ11 = 712.5 ȳ12 = 1,169 ȳ13 = 1,146
s11 = 164.8 s13 = 165.5

Joint 2 (Beveled) ȳ21 = 1,277.5 ȳ22 = 1,722.5 ȳ23 = 2,507
s21 = 99.7 s22 = 289.2 s23 = 90.5

3 (Lap) ȳ31 = 929.5 ȳ32 = 1,428 ȳ33 = 1489
s31 = 99.7 s32 = 188.1

corresponding to that sample. Those from samples of size 1 will be zero. So there
is reason to expect residual plots to show some effects of this dependence. Figure
8.1 is a normal plot of the 16 residuals, and its complete symmetry (with respect
to the positive and negative residuals) is caused by this dependence.

Of course, the sample standard deviations in Table 8.2 vary somewhat, but
the ratio between the largest and smallest (a factor of about 3) is in no way
surprising based on these sample sizes of 2. (Even if only 2 rather than 7 sample
variances were involved, since 9(= 32) is between the .75 and .9 quantiles of the
F1,1 distribution, the observed level of significance for testing the equality of the
two underlying variances would exceed .2 = 2(1− .9).) And Figure 8.2, which
is a plot of residuals versus sample means, suggests no trend in σ as a function
of mean response, µ.

In sum, the very small sample sizes represented in Table 8.1 make definitive
investigation of the appropriateness of the one-way normal model assumptions
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Figure 8.1 Normal plot of 16 residuals for the wood joint
strength study
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Figure 8.2 Plot of residuals versus sample means for
the joint strength study

impossible. But the limited checks that are possible provide no indication of
serious problems with operating under those restrictions.

Notice that for these data,

s2
P =

(2− 1)s2
11 + (2− 1)s2

13 + (2− 1)s2
21 + · · · + (2− 1)s2

32

(2− 1)+ (2− 1)+ (2− 1)+ · · · + (2− 1)

= 1

7

(
(164.8)2 + (165.5)2 + · · · + (188.1)2

)
= 28,805 (psi)2I

So

sP =
√

28,805 = 169.7 psi

where sP has 7 associated degrees of freedom.
Then, for example, from formula (7.14) of Section 7.2, individual two-

sided 99% confidence intervals for the combination mean strengths would have
endpoints

ȳi j ± 3.499(169.7)
1√
ni j

For the samples of size 1, this is

ȳi j ± 593.9 (8.1)I
while for the samples of size 2, appropriate endpoints are

ȳi j ± 419.9 (8.2)I
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Example 1
(continued )

Figure 8.3 is an interaction plot (like Figure 4.22) enhanced with error bars made
using limits (8.1) and (8.2). Notice, by the way, that the Bonferroni inequality puts
the simultaneous confidence associated with all nine of the indicated intervals at
a minimum of 91% (.91 = 1− 9(1− .99)).

The important message carried by Figure 8.3, not already present in Figure
4.22, is the relatively large imprecision associated with the sample means as esti-
mates of long-run mean strengths. And that imprecision has implications regard-
ing the statistical detectability of factorial effects. For example, by moving near
the extremes on some error bars in Figure 8.3, one might find nine means within
the indicated intervals such that their connecting line segments would exhibit par-
allelism. That is, the plot already suggests that the empirical interactions between
Wood Type and Joint Type seen in these data may not be large enough to distin-
guish from background noise. Or if they are detectable, they may be only barely so.

The issues of whether the empirical differences between woods and between
joint types are distinguishable from experimental variation are perhaps somewhat
easier to call. There is consistency in the patterns “Walnut is stronger than oak is
stronger than pine” and “Beveled is stronger than lap is stronger than butt.” This,
combined with differences at least approaching the size of indicated imprecisions,
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Figure 8.3 Interaction plot of mean joint strength with
error bars based on individual 99% confidence intervals
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suggests that firm statements about the main effects of Wood Type and Joint Type
are likely possible.

The kind of analysis made thus far on the joint strength data is extremely impor-
tant and illuminating. Our discussion will proceed to more complicated statistical
methods for such problems. But these often amount primarily to a further refinement
and quantification of the two-way factorial story already told graphically by a plot
like Figure 8.3.

8.1.2 Two-Way Factorial Notation and Definitions of Effects

In order to discuss inference in two-way factorial studies, it is useful to modify the
generic multisample notation used in Chapter 7. Consider combinations of factor A
having I levels and factor B having J levels and use the triple subscript notation:

Two-way
(triple subscript)

notation

yi jk = the kth observation in the sample from the i th level of A
and j th plevel of B

Then for I · J different samples corresponding to the possible combinations of a
level of A with a level of B, let

ni j = the number of observations in the sample from the i th level of A
and j th level of B

Use the notations ȳi j , ȳi., and ȳ
. j introduced in Section 4.3, and in the obvious way

(actually already used in Example 1), let

si j = the sample standard deviation of the ni j observations in the sample
from the i th level of A and the j th level of B

This amounts to adding another subscript to the notation introduced in Chapter 7
in order to acknowledge the two-way structure. In Chapter 7, it was most natural
to think of r samples as numbered i = 1 to r and laid out in a single row. Here it
is appropriate to think of r = I · J samples laid out in the cells of a two-way table
like Table 8.1 and named by their row number i and column number j .

In addition to using this notation for empirical quantities, it is also useful to
modify the notation used in Chapter 7 for model parameters. That is, let

µi j = the underlying mean response corresponding to the i th level of A
and j th level of B

The model assumptions that the I · J samples are roughly describable as independent
samples from normal distributions with a common variance σ 2 can be written as

Two-way model
statement

yi jk = µi j + εi jk (8.3)
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where the quantities ε111, . . . , ε11n11
, ε121, . . . , ε12n12

, . . . , εI J1, . . . , εI JnI J
are in-

dependent normal (0, σ 2) random variables. Equation (8.3) is sometimes called the
two-way (normal) model equation. It is nothing but a rewrite of the basic one-way
model equation of Chapter 7 in a notation that recognizes the special organization
of r = I · J samples into rows and columns, as in Table 8.1.

The descriptive analysis of two-way factorials in Section 4.3 relied on computing
row averages ȳi. and column averages ȳ

. j from the sample means ȳi j . These were
then used to define fitted factorial effects. Analogous operations performed on the
underlying or theoretical means µi j lead to appropriate definitions for theoretical
factorial effects. That is, let

µi. =
1

J

J∑
j=1

µi j

= the average underlying mean when factor A is at level i

µ
. j =

1

I

I∑
i=1

µi j

= the average underlying mean when factor B is at level j

µ
..
= 1

I J

∑
i, j

µi j

= the grand average underlying mean

Figure 8.4 shows these as row, column, and grand averages of the µi j . (This is the
theoretical counterpart of Figure 4.21.)

Then, following the pattern established in Definitions 5 and 6 in Chapter 4 for
sample quantities, there are the following two definitions for theoretical quantities.

Definition 1 In a two-way complete factorial study with factors A and B, the main effect
of factor A at its ith level is

αi = µi. − µ..
Similarly, the main effect of factor B at its jth level is

βj = µ. j − µ..

These main effects are measures of how (theoretical) mean responses change
from row to row or from column to column in Figure 8.4. The fitted main effects
of Section 4.3 can be thought of as empirical approximations to them. It is a
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Figure 8.4 Underlying cell mean responses and their row,
column, and grand averages

consequence of the form of Definition 1 that (like their empirical counterparts) main
effects of a given factor sum to 0 over levels of that factor. That is, simple algebra
shows that

I∑
i=1

αi = 0 and
J∑

j=1

βj = 0

Next is a definition of theoretical interactions.

Definition 2 In a two-way complete factorial study with factors A and B, the interaction
of factor A at its ith level and factor B at its jth level is

αβi j = µi j − (µ.. + αi + βj )

The interactions in a two-way set of underlying means µi j measure lack of
parallelism on an interaction plot of the parameters µi j . They measure how much
pattern there is in the theoretical means µi j that is not explainable in terms of
the factors A and B acting individually. The fitted interactions of Section 4.3 are
empirical approximations of these theoretical quantities. Small fitted interactions
abi j indicate small underlying interactions αβi j and thus make it justifiable to think
of the two factors A and B as operating separately on the response variable.
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Definition 2 has several simple algebraic consequences that are occasionally
useful to know. One is that (like fitted interactions) interactions αβi j sum to 0 over
levels of either factor. That is, as defined,

I∑
i=1

αβi j =
J∑

j=1

αβi j = 0

Another simple consequence is that upon adding (µ
..
+ αi + βj ) to both sides of the

equation defining αβi j , one obtains a decomposition of each µi j into a grand mean
plus an A main effect plus a B main effect plus an AB interaction:

µi j = µ.. + αi + βj + αβi j (8.4)

The identity (8.4) is sometimes combined with the two-way model equation (8.3)
to obtain the equivalent model equation

A second statement
of the two-way model

yi jk = µ.. + αi + βj + αβi j + εi jk (8.5)

Here the factorial effects appear explicitly as going into the makeup of the observa-
tions. Although there are circumstances where representation (8.5) is essential, in
most cases it is best to think of the two-way model assumptions in form (8.3) and
just remember that the αi , βj , and αβi j are simple functions of the I · J means µi j .

8.1.3 Individual Confidence Intervals for Factorial Effects

The primary new wrinkles in two-way factorial inference are

1. the drawing of inferences concerning the interactions and main effects, with

2. the possibility of finding A, B, or A and B “main effects only” models
adequate to describe responses, and subsequently using such simplified de-
scriptions in making predictions about system behavior.

The basis of inference for the αi , βj , and αβi j is that they are linear combinations
of the means µi j . (That is, for properly chosen “c’s,” the factorial effects are “L’s”Factorial effects

are L’s, fitted
effects are

corresponding L̂’s

from Section 7.2.) And the fitted effects defined in Chapter 4’s Definitions 5 and
6 are the corresponding linear combinations of the sample means ȳi j . (That is, the
fitted factorial effects are the corresponding “L̂’s.”)

Example 1
(continued )

To illustrate that the effects defined in Definitions 1 and 2 are linear combinations
of the underlying means µi j , consider α1 and αβ23 in the wood joint strength
study. First,

α1 = µ1. − µ..
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= 1

3
(µ11 + µ12 + µ13)−

1

9
(µ11 + µ12 + · · · + µ32 + µ33)

= 2

9
µ11 +

2

9
µ12 +

2

9
µ13 −

1

9
µ21 −

1

9
µ22 −

1

9
µ23 −

1

9
µ31 −

1

9
µ32 −

1

9
µ33

and a1 is the corresponding linear combination of the ȳi j . Similarly,

αβ23 = µ23 − (µ.. + α2 + β3)

= µ23 −
(
µ
..
+ (µ2. − µ..)+ (µ.3 − µ..)

)
= µ23 − µ2. − µ.3 + µ..
= µ23 −

1

3
(µ21 + µ22 + µ23)−

1

3
(µ13 + µ23 + µ33)

+ 1

9
(µ11 + µ12 + · · · + µ33)

= 4

9
µ23 −

2

9
µ21 −

2

9
µ22 −

2

9
µ13 −

2

9
µ33 +

1

9
µ11 +

1

9
µ12

+ 1

9
µ31 +

1

9
µ32

and ab23 is the corresponding linear combination of the ȳi j .

Once one realizes that the factorial effects are simple linear combinations of
the µi j , it is a small step to recognize that formula (7.20) of Section 7.2 can be
applied to make confidence intervals for them. For example, the question of whether
the lack of parallelism evident in Figure 8.3 is large enough to be statistically
detectable can be approached by looking at confidence intervals for the αβi j . And
quantitative comparisons between joint types can be based on confidence intervals
for differences between the A main effects, αi − αi ′ = µi. − µi ′.. And quantitative
comparisons between woods can be based on differences between the B main effects,
βj − βj ′ = µ. j − µ. j ′ .

The only obstacle to applying formula (7.20) of Section 7.2 to do inference for
factorial effects is determining how the “

∑
c2

i /ni ” term appearing in the formula
should look for quantities of interest. In the preceding example, a number of rather
odd-looking coefficients ci j appeared when writing out expressions for α1 and αβ23
in terms of the basic means µi j . However, it is possible to discover and write
down general formulas for the sum

∑
c2

i j/ni j for some important functions of the
factorial effects. Table 8.3 gives the relatively simple formulas for the balanced data
case where all ni j = m. The less pleasant general versions of the formulas are given
in Table 8.4.
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Table 8.3
Balanced Data Formulas to Use
with Limits (8.6)

L L̂
∑

i, j

c2
i j

ni j

αβi j abi j

(I − 1)(J − 1)

mIJ

αi ai

I − 1

mIJ

αi − αi ′ ai − ai ′
2

m J

βj bj

J − 1

mIJ

βj − βj ′ bj − bj ′
2

m I

Armed with Tables 8.3 and 8.4, the form of individual confidence intervals for
any of the quantities L = αβi j , αi , βj , αi − αi ′ , or βj − βj ′ is obvious. In the formula
for confidence interval endpoints

Confidence limits
for a linear

combination of
two-way factorial

means

L̂ ± tsP

√√√√∑
i, j

c2
i j

ni j

(8.6)

1. sP is computed by pooling the I · J sample variances in the usual way
(arriving at an estimate with n − r = n − IJ associated degrees of freedom),

2. the fitted effects from Section 4.3 are used to find L̂ ,

3. an appropriate formula from Table 8.3 or 8.4 is chosen to give the quantity
under the radical, and

4. t from Table B.4 is chosen according to a desired confidence and degrees of
freedom ν = n − IJ.
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Table 8.4
General Formulas to use with Limits (8.6)

L L̂
∑

i, j

c2
i j

ni j

αβi j abi j

(
1

IJ

)2
 (I − 1)2(J − 1)2

ni j

+ (I − 1)2
∑
j ′ 6= j

1

ni j ′
+ (J − 1)2

∑
i ′ 6=i

1

ni ′ j
+

∑
i ′ 6=i, j ′ 6= j

1

ni ′ j ′



αi ai

(
1

IJ

)2
(I − 1)2

∑
j

1

ni j

+
∑

i ′ 6=i, j

1

ni ′ j



αi − αi ′ ai − ai ′
1

J 2

∑
j

1

ni j

+
∑

j

1

ni ′ j



βj bj

(
1

IJ

)2
(J − 1)2

∑
i

1

ni j

+
∑

i, j ′ 6= j

1

ni j ′



βj − βj ′ bj − bj ′
1

I 2

(∑
i

1

ni j

+
∑

i

1

ni j ′

)

Example 2 A Synthetic 3× 3 Balanced Data Example

To illustrate how easy it is to do inference for factorial effects when complete
two-way factorial data are balanced, consider a 3× 3 factorial with m = 2 obser-
vations per cell. (This is the way that the wood joint strength study of Example
1 was planned. It was only circumstances beyond the control of the students
that conspired to produce the unbalanced data of Table 8.1 through the loss
of two specimens.) In this hypothetical situation, sP has degrees of freedom
ν = n − IJ = mIJ− IJ = 2 · 3 · 3− 3 · 3 = 9. Definitions 5 and 6 in Chapter 4
show how to compute fitted main effects ai and bj and fitted interactions abi j .

To, for example, make a confidence interval for an interaction αβi j , consult
the first row of Table 8.3 and compute

∑
i, j

c2
i j

ni j

= (I − 1)(J − 1)

mIJ
= 2 · 2

2 · 3 · 3 =
2

9
and

√√√√∑
i, j

c2
i j

ni j

= .4714
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Example 2
(continued )

Then choosing t (as a quantile of the t9 distribution) to produce the desired
confidence level, equation (8.6) shows appropriate confidence limits to be

abi j ± tsP(.4714)I
As a second example of this methodology, consider the estimation of the

difference in two factor B main effects, L = βj − βj ′ = µ. j − µ. j ′ . Consulting
the last row of Table 8.3,

∑
i, j

c2
i j

ni j

= 2

m I
= 2

2 · 3 =
1

3
and

√√√√∑
i, j

c2
i j

ni j

= .5774

Then again choosing t to produce the desired confidence level, equation (8.6)
shows appropriate confidence limits to be

bj − bj ′ ± tsP(.5774)

that is,

ȳ
. j − ȳ

. j ′ ± tsP(.5774)I

Example 1
(continued )

Consider making formal inferences for the factorial effects in the (unbalanced)
wood joint strength. Suppose that inferences are to be phrased in terms of two-
sided 99% individual confidence intervals and begin by considering the interac-
tions αβi j .

Despite the students’ best efforts to the contrary, the sample sizes in Table
8.1 are not all the same. So one is forced to use formulas in Table 8.4 instead of
the simpler ones in Table 8.3. Table 8.5 collects the sums of reciprocal sample
sizes appearing in the first row of Table 8.4 for each of the nine combinations of
i = 1, 2, 3 and j = 1, 2, 3.

For example, for the combination i = 1 and j = 1,

1

n11

= 1

2
= .5

1

n12

+ 1

n13

= 1

1
+ 1

2
= 1.5

1

n21

+ 1

n31

= 1

2
+ 1

2
= 1.0

1

n22

+ 1

n23

+ 1

n32

+ 1

n33

= 1

2
+ 1

2
+ 1

2
+ 1

1
= 2.5
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Table 8.5
Sums of Reciprocal Sample Sizes Needed in Making
Confidence Intervals for Joint/Wood Interactions

i j
1

ni j

∑
j ′ 6= j

1

ni j ′

∑
i ′ 6=i

1

ni ′ j

∑
i ′ 6=i, j ′ 6= j

1

ni ′ j ′

1 1 .5 1.5 1.0 2.5
1 2 1.0 1.0 1.0 2.5
1 3 .5 1.5 1.5 2.0
2 1 .5 1.0 1.0 3.0
2 2 .5 1.0 1.5 2.5
2 3 .5 1.0 1.5 2.5
3 1 .5 1.5 1.0 2.5
3 2 .5 1.5 1.5 2.0
3 3 1.0 1.0 1.0 2.5

The entries in Table 8.5 lead to values for
∑

c2
i j/ni j via the formula on the

first row of Table 8.4. Then, since (from before) sP = 169.7 psi with 7 associated
degrees of freedom, and since the .995 quantile of the t7 distribution is 3.499,
it is possible to calculate the plus-or-minus part of formula (8.6) in order to get
two-sided 99% confidence intervals for the αβi j . In addition, remember that all
nine fitted interactions were calculated in Section 4.3 and collected in Table 4.14
(page 170). Table 8.6 gives the

√∑
c2

i j/ni j values, the fitted interactions abi j ,
and the plus-or-minus part of two-sided 99% individual confidence intervals for
the interactions αβi j .

To illustrate the calculations summarized in the third column of Table 8.6,
consider the combination with i = 1 (butt joints) and j = 1 (pine wood). Since
I = 3 and J = 3, the first row of Table 8.4 shows that for L = αβ11

∑ c2
i j

ni j

=
(

1

3 · 3
)2
(

22 · 22

2
+ 22(1.5)+ 22(1.0)+ 2.5

)
= .2531

from which √√√√∑ c2
i j

ni j

=
√
.2531 = .5031

Consider the practical implications of the calculations summarized in Table
8.6. All but one of the intervals centered at an abi j with a half width given in
the last column of the table would cover 0. Only for i = 2 (beveled joints) and
j = 3 (walnut wood) is the magnitude of the fitted interaction big enough to put its
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Example 1
(continued )

Table 8.6
99% Individual Two-Sided Confidence Intervals for Joint
Type/Wood Type Interactions

i j

√√√√∑ c2
i j

ni j

abi j (psi) tsP

√√√√∑ c2
i j

ni j

(psi)

1 1 .5031 105.83 298.7
1 2 .5720 95.67 339.6
1 3 .5212 −201.5 309.5
2 1 .4843 −155.67 287.6
2 2 .5031 −177.33 298.7
2 3 .5031 333.0 298.7
3 1 .5031 49.83 298.7
3 2 .5212 81.67 309.5
3 3 .5720 −131.5 339.6

associated confidence interval entirely to one side of 0. That is, most of the lack of
parallelism seen in Figure 8.3 is potentially attributable to experimental variation.
But that associated with beveled joints and walnut wood can be differentiated
from background noise. This suggests that if mean joint strength differences on
the order of 333± 299 psi are of engineering importance, it is not adequate to
think of the factors Joint Type and Wood Type as operating separately on joint
strength across all three levels of each factor. On the other hand, if attention was
restricted to either butt and lap joints or to pine and oak woods, a “no detectable
interactions” description of joint strength would perhaps be tenable.

To illustrate the use of formula (8.6) in making inferences about main effects
on joint strength, consider comparing joint strengths for pine and oak woods.
The rather extended analysis of interactions here and the character of Figure 8.3
suggest that the strength profiles of pine and oak across the three joint types are
comparable. If this is so, estimation of β1 − β2 = µ.1 − µ.2 amounts to more than
the estimation of the difference in average (across joint types) mean strengths
of pine and oak joints (pine minus oak). β1 − β2 is also the difference in mean
strengths of pine and oak joints for any of the three joint types individually. It is
thus a quantity of real interest.

Once again, since the data in Table 8.1 are not balanced, it is necessary to
use the more complicated formula in Table 8.4 rather than the formula in Table
8.3 in making a confidence interval for β1 − β2. For L = β1 − β2, the last row
of Table 8.4 gives

∑
i, j

c2
i j

ni j

= 1

32

[(
1

2
+ 1

2
+ 1

2

)
+
(

1

1
+ 1

2
+ 1

2

)]
= .3889
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So, since from the fitted effects in Section 4.3

b1 = −402.5 psi and b2 = 64.17 psi

formula (8.6) shows that endpoints of a two-sided 99% confidence interval for
L = β1 − β2 are

(−402.5− 64.17)± 3.499(169.7)
√
.3889

that is,

−466.67± 370.29

that is,

−836.96 psi and − 96.38 psiI
This analysis establishes that the oak joints are on average from 96 psi to 837 psi
stronger than comparable pine joints. This may seem a rather weak conclusion,
given the apparent strong increase in sample mean strengths as one moves from
pine to oak in Figure 8.3. But it is as strong a statement as is justified in the light of
the large confidence requirement (99%) and the substantial imprecision in the stu-
dents’ data (related to the small sample sizes and a large pooled standard deviation,
sP = 169.7 psi). If±370 psi precision for comparing pine and oak joint strength is
not adequate for engineering purposes and large confidence is still desired, these
calculations point to the need for more data in order to sharpen that comparison.

The computational unpleasantness of the previous discussion results from the
fact that the data of Kotlers, MacFarland, and Tomlinson are unbalanced. Example 2
illustrated that with balanced data, “by hand” calculation is simple. Most statistical
packages have routines that will eliminate the need for a user to grind through the
most tedious of the computations just illustrated. Printout 1 is a MINITAB General
Linear Model output for the wood strength study (which is part of Printout 6 of
Chapter 4). The “Coef” values in that printout are (again) the fitted effects of
Definitions 5 and 6 in Chapter 4. The “StDev” values are the quantities

sP

√√√√∑
i, j

c2
i j

ni j

from formula (8.6) needed to make confidence limits for main effects and inter-
actions. (The MINITAB printout lists this information for only (I − 1) factor A
main effects, (J − 1) factor B main effects, and (I − 1)(J − 1) A×B interactions.
Renaming levels of the factors to change their alphabetical order will produce
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a different printout giving this information for the remaining main effects and
interactions.)

Printout 1 Estimated Standard Deviations
of Joint Strength Fitted Effects (Example 1 )WWW

General Linear Model

Factor Type Levels Values
joint fixed 3 beveled butt lap
wood fixed 3 oak pine walnut

Analysis of Variance for strength, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
joint 2 2153879 1881650 940825 32.67 0.000
wood 2 1641095 1481377 740689 25.72 0.001
joint*wood 4 468408 468408 117102 4.07 0.052
Error 7 201614 201614 28802
Total 15 4464996

Term Coef StDev T P
Constant 1375.67 44.22 31.11 0.000
joint

beveled 460.00 59.63 7.71 0.000
butt -366.50 63.95 -5.73 0.001
wood

oak 64.17 63.95 1.00 0.349
pine -402.50 59.63 -6.75 0.000
joint* wood

beveled oak -177.33 85.38 -2.08 0.076
beveled pine -155.67 82.20 -1.89 0.100
butt oak 95.67 97.07 0.99 0.357
butt pine 105.83 85.38 1.24 0.255

8.1.4 Tukey’s Method for Comparing Main Effects (Optional )

Formula (8.6) is meant to guarantee individual confidence levels for intervals made
using it. When interactions in a two-way factorial study are negligible, questions of
practical engineering importance can usually be phrased in terms of comparing the
various A or B main effects. It is then useful to have a method designed specifically
to produce a simultaneous confidence level for the comparison of all pairs of A
or B main effects. Tukey’s method (discussed in Section 7.3) can be modified to
produce simultaneous confidence intervals for all differences in αi ’s or in βj ’s. That
is, two-sided simultaneous confidence intervals for all possible differences in A
main effects αi − αi ′ = µi. − µi ′. can be made using endpoints

Tukey simultaneous
confidence limits for

all differences in A
main effects

ȳi. − ȳi ′. ±
q∗√

2
sP

1

J

√√√√∑
j

1

ni j

+
∑

j

1

ni ′ j
(8.7)
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where q∗ is taken from Tables B.9 using ν = n − IJ degrees of freedom, number
of means to be compared I , and the .95 or .99 quantile figure (depending whether
95% or 99% simultaneous confidence is desired). Expression (8.7) amounts to the
specialization of formula (8.6) to L = αi − αi ′ with t replaced by q∗/

√
2. When all

ni j = m, formula (8.7) simplifies to

Balanced data Tukey
simultaneous confidence

limits for all differences
in A main effects

ȳi. − ȳi ′. ±
q∗sP√

Jm
(8.8)

Corresponding to formulas (8.7) and (8.8) are formulas for simultaneous two-
sided confidence limits for all possible differences in B main effects βj − βj ′ =
µ
. j − µ. j ′—namely,

Tukey simultaneous
confidence limits for

all differences in B
main effects

ȳ
. j − ȳ

. j ′ ±
q∗√

2
sP

1

I

√∑
i

1

ni j

+
∑

i

1

ni j ′
(8.9)

and

Balanced data Tukey
simultaneous confidence

limits for all differences
in B main effects

ȳ
. j − ȳ

. j ′ ±
q∗sP√

I m
(8.10)

where q∗ is taken from Tables B.9 using ν = n − IJ degrees of freedom and number
of means to be compared J .

Example 3 A 3× 2 Factorial Study of Ultimate Tensile
Strength for Drilled Aluminum Strips

Clubb and Goedken studied the effects on tensile strength of holes drilled in
6 in.-by-2 in. 2024–T3 aluminum strips .0525 in. thick. A hole of diameter
.149 in., .185 in., or .221 in. was centered either .5 in. or 1.0 in. from the edge
(and 3.0 in. from each end) of 18 strips. Ultimate axial stress was then measured
for each on an MTS machine. m = 3 tests were made for each of the 3× 2
combinations of hole size and placement. Mean tensile strengths (in pounds)
obtained in the study are given in Table 8.7. Some plotting with the original data
(not given here) shows that (except for some hint that hole size 3 strengths were
less variable than the others) the one-way normal model assumptions provide a
plausible description of tensile strength. We will proceed to use the assumptions
(8.3) in what follows.
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Example 3
(continued )

Table 8.7
Sample Means for 3× 2 Size/Placement Combinations

B Placement

1 (.5 in. from Edge) 2 (1.0 in. from Edge)

1 (.149 in.) ȳ11 = 5635.3 lb ȳ12 = 5730.3 lb
A Size 2 (.185 in.) ȳ21 = 5501.0 lb ȳ22 = 5638.0 lb

3 (.221 in.) ȳ31 = 5456.3 lb ȳ32 = 5602.7 lb

Pooling the 3 · 2 = 6 sample variances in the usual way produced

sP = 106.7 lbI

with ν = mIJ− IJ = 3 · 3 · 2− 3 · 2 = 12 associated degrees of freedom. Then
consider summarizing the experimental results graphically. Notice that the P-R
method for making simultaneous two-sided 95% confidence intervals for r = 6
means based on ν = 12 degrees of freedom is (from formula (7.28) of Section
7.3) to use endpoints

ȳi j ± 3.095
106.7√

3

for estimating each µi j . (k∗2 = 3.095 was obtained from Table B.8A.) This is
approximately

ȳi j ± 191

Figure 8.5 is an interaction plot of the 3× 2 = 6 sample mean tensile strengths
enhanced with ±191 lb error bars.

The lack of parallelism in Figure 8.5 is fairly small, both compared to the
absolute size of the strengths being measured and also relative to the kind of
uncertainty about the individual mean strengths indicated by the error bars.
Letting factor A be size and factor B be placement, it is straightforward to
use the methods of Section 4.3 to calculate

a1 = 88.9
a2 = −24.4
a3 = −64.4

ab11 = 15.6
ab21 = −5.4
ab31 = −10.1

b1 = −63.1
b2 = 63.1

ab12 = −15.6
ab22 = 5.4
ab32 = 10.1
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Figure 8.5 Interaction plot of aluminum strip
sample means, enhanced with error bars based
on 95% simultaneous confidence intervals

Then, since the data are balanced, one may use the formulas of Table 8.3 together
with formula (8.6). So individual confidence intervals for the interactions αβi j
are of the form

abi j ± t (106.7)

√
(3− 1)(2− 1)

3 · 3 · 2

that is,

abi j ± t (35.6)

Clearly, for any sensible confidence level (producing t of at least 1), such intervals
all cover 0. This confirms the lack of statistical detectability of the interactions
already represented in Figure 8.5.

It thus seems sensible to proceed to consideration of the main effects in this
tensile strength study. To illustrate the application of Tukey’s method to factorial
main effects, consider first simultaneous 95% two-sided confidence intervals
for the three differences α1 − α2, α1 − α3, and α2 − α3. Applying formula (8.8)
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Example 3
(continued )

with ν = 12 degrees of freedom and I = 3 means to be compared, Table B.9A
indicates that intervals with endpoints

ȳi. − ȳi ′. ±
(3.77)(106.7)√

2 · 3
that is,

ȳi. − ȳi ′. ± 164 lbI
are in order. No difference between the ai ’s exceeds 164 lb. That is, if simultaneous
95% confidence is desired in the comparison of the hole size main effects, one
must judge the students’ data to be interesting—perhaps even suggestive of
a decrease in strength with increased diameter—but nevertheless statistically
inconclusive. To really pin down the impact of hole size on tensile strength,
larger samples are needed.

To see that the Clubb and Goedken data do tell at least some story in a
reasonably conclusive manner, finally consider the use of the last row of Table
8.3 with formula (8.6) to make a two-sided 95% confidence interval for β2 − β1,
the difference in mean strengths for strips with centered holes as compared to
ones with holes .5 in. from the strip edge. The desired interval has endpoints

b2 − b1 ± tsP

√
2

m I

that is,

63.1− (−63.1)± 2.179(106.7)

√
2

3(3)

that is,

126.2± 109.6

that is,

16.6 lb and 235.8 lb

Thus, although the students’ data don’t provide much precision, they are adequate
to establish clearly the existence of some decrease in tensile strength as a hole is
moved from the center of the strip towards its edge.

Formulas (8.7) through (8.10) are, mathematically speaking, perfectly valid
providing only that the basic “equal variances, underlying normal distributions”
model is a reasonable description of an engineering application. (Under the basic
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model (8.3), formulas (8.7) and (8.9) provide an actual simultaneous confidence at
least as big as the nominal one, and when all ni j = m, formulas (8.8) and (8.10)
provide actual simultaneous confidence equal to the nominal one.) But in practical
terms, the inferences they provide (and indeed the ones provided by formula (8.6) for
individual differences in main effects) are not of much interest unless the interactions
αβi j have been judged to be negligible.

Nonnegligible interactions constitute a warning that the patterns of change in
mean response, as one moves between levels of one factor, (say, B) are different
for various levels of the other factor (say, A). That is, the pattern in the µi j is not
a simple one generally describable in terms of the two factors acting separately.
Rather than trying to understand the pattern in terms of main effects, something else
must be done.

As discussed in Section 4.4, sometimes a transformation can produce a responseWhat if interactions
are not negligible? variable describable in terms of main effects only. At other times, restriction of

attention to part of a factorial produces a study (of reduced scope) where it makes
sense to think in terms of main effects. (In Example 1, consideration of only butt
and lap joints gives an arena where “negligible interactions” may be a sensible
description of joint strength.) Or it may be most natural to mentally separate an
I × J factorial into I (J ) different J (I ) level studies on the effects of factor B(A) at
different levels of A(B). (The 3× 3 wood joint strength study in Example 1 might
be thought of as three different studies, one for each joint type, of the effects of wood
type on strength.) Or if none of these approaches to analyzing two-way factorial data
with important interactions is attractive, it is always possible to ignore the two-way
structure completely and treat the I · J samples as arising from simply r = I · J
unstructured different conditions.

Section 1 Exercises ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1. The accompanying table shows part of the data of
Dimond and Dix, referred to in Examples 6 (Chap-
ter 1) and 9 (Chapter 3). The values are the shear
strengths (in lb) for m = 3 tests on joints of various
combinations of Wood Type and Glue Type.

Wood Glue Joint Shear Strengths

pine white 130, 127, 138

pine carpenter’s 195, 194, 189

pine cascamite 195, 202, 207

fir white 95, 119, 62

fir carpenter’s 137, 157, 145

fir cascamite 152, 163, 155

(a) Make an interaction plot of the six combination
means and enhance it with error bars derived

using the P-R method of making 95% simul-
taneous two-sided confidence intervals. (Plot
mean strength versus glue type.)

(b) Compute the fitted main effects and interac-
tions from the six combination sample means.
Use these to make individual 95% confidence
intervals for all of the main effects and inter-
actions in this 2× 3 factorial study. What do
these indicate about the detectability of the var-
ious effects?

(c) Use Tukey’s method for simultaneous com-
parison of main effects and give simultaneous
95% confidence intervals for all differences in
Glue Type main effects.

2. B. Choi conducted a replicated full factorial study
of the stopping properties of various types of bi-
cycle tires on various riding surfaces. Three dif-
ferent Types of Tires were used on the bike, and
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three different Pavement Conditions were used. For
each Tire Type/Pavement Condition combination,
m = 6 skid mark lengths were measured. The ac-
companying table shows some summary statistics
for the study. (The units are cm.)

Dry Wet
Concrete Concrete Dirt

Smooth ȳ11 = 359.8 ȳ12 = 366.5 ȳ13 = 393.0
Tires s11 = 19.2 s12 = 26.4 s13 = 25.4

Reverse ȳ21 = 343.0 ȳ22 = 356.7 ȳ23 = 375.7
Tread s21 = 15.5 s22 = 37.4 s23 = 39.9

Treaded ȳ31 = 384.8 ȳ32 = 400.8 ȳ33 = 402.5
Tires s31 = 15.4 s32 = 60.8 s33 = 32.8

(a) Compute sP for Choi’s data set. What is this
supposed to be measuring?

(b) Make an interaction plot of the sample means
similar to Figure 8.3. Use error bars for the
means calculated from individual 95% two-
sided confidence limits for the means. (Make
use of your value of sP from (a).)

(c) Based on your plot from (b), which factorial
effects appear to be distinguishable from back-
ground noise? (Tire Type main effects? Pave-
ment Condition main effects? Tire× Pavement
interactions?)

(d) Compute all of the fitted factorial effects for
Choi’s data. (Find the ai ’s, bj ’s, and abi j ’s de-
fined in Section 4.3.)

(e) If one wishes to make individual 95% two-
sided confidence intervals for the interactions
αβi j , intervals of the form abi j ±1 are appro-
priate. Find 1. Based on this value, are there
statistically detectable interactions here? How
does this conclusion compare with your more
qualitative answer to part (c)?

(f) If one wishes to compare Tire Type main ef-
fects, confidence intervals for the differences
αi − αi ′ are in order. Find individual 95% two-
sided confidence intervals for α1 − α2, α1 −
α3, and α2 − α3. Based on these, are there sta-
tistically detectable differences in Tire Type
main effects here? How does this conclusion
compare with your answer to part (c)?

(g) Redo part (f), this time using (Tukey) simulta-
neous 95% two-sided confidence intervals.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

8.2 p-Factor Studies with Two Levels
for Each Factor

The previous section looked at inference for two-way factorial studies. This sec-
tion presents methods of inference for complete p-way factorials, paying primary
attention to those cases where each of p factors is represented at only two levels.

The discussion begins by again pointing out the relevance of the one-way
methods of Chapter 7 to structured (in this case, p-way factorial) situations. Next,
the p-way factorial normal model, definitions of effects in that model, and basic
confidence interval methods for the effects are considered, paying particular attention
to the 2p case. Then attention is completely restricted to 2p studies, and a further
method for identifying detectable (2p factorial) effects is presented. For balanced 2p

studies, there follows a review of the fitting of reduced models via the reverse Yates
algorithm and the role of residuals in checking their efficacy. Finally, confidence
interval methods based on simplified models in balanced 2p studies are discussed.
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8.2.1 One-Way Methods in p-Way Factorials

The place to begin the analysis of p-way factorial data is to recognize that funda-
mentally one is just working with several samples. Subject to the relevance of the
model assumptions of Chapter 7, the inference methods of that chapter are available
for use in analyzing the data.

Example 4 A 23 Factorial Study of Power Requirements in Metal Cutting

In Fundamental Concepts in the Design of Experiments, C. R. Hicks describes a
study conducted by Purdue University engineering graduate student L. D. Miller
on power requirements for cutting malleable iron using ceramic tooling. Miller
studied the effects of the three factors

Factor A Tool Type (type 1 or type 2)

Factor B Tool Bevel Angle (15◦ or 30◦)

Factor C Type of Cut (continuous or interrupted)

on the power required to make a cut on a lathe at a particular depth of cut, feed
rate, and spindle speed. The response variable was the vertical deflection (in
mm) of the indicator needle on a dynamometer (a measurement proportional to
the horsepower required to make the particular cut). Miller’s data are given in
Table 8.8.

The most elementary view possible of the power requirement data in Table
8.8 is as r = 8 samples of size m = 4. Simple summary statistics for these 23 = 8
samples are given in Table 8.9.

To the extent that the one-way normal model is an adequate description of
this study, the methods of Chapter 7 are available for use in analyzing the data of
Table 8.8. The reader is encouraged to verify that plotting of residuals (obtained
by subtracting the ȳ values in Table 8.9 from the corresponding raw data values of

Table 8.8
Dynamometer Readings for 23 Treatment Combinations in a Metal Cutting Study

Tool Type Bevel Angle Type of Cut y, Dynamometer Reading (mm)

1 15◦ continuous 29.0, 26.5, 30.5, 27.0
2 15◦ continuous 28.0, 28.5, 28.0, 25.0
1 30◦ continuous 28.5, 28.5, 30.0, 32.5
2 30◦ continuous 29.5, 32.0, 29.0, 28.0
1 15◦ interrupted 28.0, 25.0, 26.5, 26.5
2 15◦ interrupted 24.5, 25.0, 28.0, 26.0
1 30◦ interrupted 27.0, 29.0, 27.5, 27.5
2 30◦ interrupted 27.5, 28.0, 27.0, 26.0
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Example 4
(continued )

Table 8.9
Summary Statistics for 23 Samples of Dynamometer Readings in a
Metal Cutting Study

Tool Type Bevel Angle Type of Cut ȳ s

1 15◦ continuous 28.250 1.848
2 15◦ continuous 27.375 1.601
1 30◦ continuous 29.875 1.887
2 30◦ continuous 29.625 1.702
1 15◦ interrupted 26.500 1.225
2 15◦ interrupted 25.875 1.548
1 30◦ interrupted 27.750 0.866
2 30◦ interrupted 27.125 0.854

Table 8.8) reveals only one slightly unpleasant feature of the power requirement
data relative to the potential use of standard methods of inference. When plotted
against levels of the Type of Cut variable, the residuals for interrupted cuts are
shown to be on the whole somewhat smaller than those for continuous cuts. (This
phenomenon is also obvious in retrospect from the sample standard deviations in
Table 8.9. These are smaller for the second four samples than for the first four.)
But the disparity in the sizes of the residuals is not huge. So although there may
be some basis for suspecting improvement in power requirement consistency for
interrupted cuts as opposed to continuous ones, the tractability of the one-way
model and the kind of robustness arguments put forth at the end of Section 6.3
once again suggest that the standard model and methods be used. This is sensible,
provided the resulting inferences are then treated as approximate and real-world
“close calls” are not based on them.

The pooled sample variance here is

s2
P =

(4− 1)(1.848)2 + (4− 1)(1.601)2 + · · · + (4− 1)(.854)2

(4− 1)+ (4− 1)+ · · · + (4− 1)
= 2.226

so

sP = 1.492 mmI

with ν = n − r = 32− 8 = 24 associated degrees of freedom. Then, for exam-
ple, the P-R method of simultaneous inference from Section 7.3 produces two-
sided simultaneous 95% confidence intervals for mean dynamometer readings
with endpoints

ȳi jk ± 2.969
1.492√

4
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that is,

ȳi jk ± 2.21 mmI

(There is enough precision provided by the data to think of the sample means in
Table 8.9 as roughly “all good to within 2.21 mm.”) And the other methods of
Sections 7.1 through 7.4 based on sP might be used as well.

8.2.2 p-Way Factorial Notation, Definitions of Effects,
and Related Confidence Interval Methods

Section 8.1 illustrated that standard notation in two-way factorials requires triple sub-
scripts for naming observations. In a general p-way factorial, “(p + 1)-subscript”
notation is required. As p grows, such notation quickly gets out of hand. As in
Section 4.3 (on a descriptive level) the exposition here will explicitly develop only
the general factorial notation for p = 3, leaving the reader to infer by analogy how
things would have to go for p = 4, 5, etc. (When specializing to the 2p situation
later in this section, the special notation introduced in Section 4.3 makes it possible
to treat even large-p situations fairly explicitly.)

Then for p = 3 factors A, B, and C having (respectively) I , J , and K levels, letThree factor
(quadruple subscript)

notation yi jkl = the lth observation in the sample from the i th level of A,
j th level of B, and kth level of C

For the I · J · K different samples corresponding to the possible combinations of a
level of A with one of B and one of C, let

ni jk = the number of observations in the sample from the i th level of A,
j th level of B, and kth level of C

ȳi jk = the sample mean of the ni jk observations in the sample from the
i th level of A, j th level of B, and kth level of C

si jk = the sample standard deviation of the ni jk observations in the sample
from the i th level of A, j th level of B, and kth level of C

and further continue the dot notations used in Section 4.3 for unweighted averages
of the ȳi jk . In comparison to the notation of Chapter 7, this amounts to adding two
subscripts in order to acknowledge the three-way structure in the samples.

The use of additional subscripts is helpful not only for naming empirical quan-
tities but also for naming theoretical quantities. That is, with

µi jk = the underlying mean response corresponding to the
i th level of A, j th level of B, and kth level of C
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the standard one-way normal model assumptions can be rewritten as

Three-way model
statement yi jkl = µi jk + εi jkl (8.11)

where the εi jkl terms are iid normal random variables with mean 0 and variance σ 2.
Formula (8.11) could be called the three-way (normal) model equation because it
recognizes the special organization of the I · J · K samples according to combina-
tions of levels of the three factors. But beyond this, it says no more or less than the
one-way model equation from Section 7.1.

The initial objects of inference in three-way factorial analyses are linear com-
binations of theoretical means µi jk , analogous to the fitted effects of Section 4.3.
Thus, it is necessary to carefully define the theoretical or underlying main effects,
2-factor interactions, and 3-factor interactions for a three-way factorial study. In the
definitions that follow, a dot appearing as a subscript will (as usual) be understood to
indicate that an average has been taken over all levels of the factor corresponding to
the dotted subscript. Consider first main effects. Parallel to Definition 7 in Chapter 4
(page 182) for fitted main effects is a definition of theoretical main effects.

Definition 3 In a three-way complete factorial study with factors A, B, and C, the main
effect of factor A at its ith level is

αi = µi.. − µ...

the main effect of factor B at its jth level is

βj = µ. j. − µ...

and the main effect of factor C at its kth level is

γk = µ..k − µ...

These main effects measure how (when averaged over all combinations of levels
of the other factors) underlying mean responses change from level to level of the
factor in question. Definition 3 has the algebraic consequences that

I∑
i=1

αi = 0,
J∑

j=1

βj = 0, and
K∑

k=1

γk = 0

The theoretical counterpart of Definition 8 in Chapter 4 is a definition of theo-
retical 2-factor interactions.
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Definition 4 In a three-way complete factorial study with factors A, B, and C, the 2-factor
interaction of factor A at its ith level and factor B at its jth level is

αβi j = µi j. − (µ... + αi + βj )

the 2-factor interaction of A at its ith level and C at its kth level is

αγik = µi.k − (µ... + αi + γk)

and the 2-factor interaction of B at its jth level and C at its kth level is

βγjk = µ. jk − (µ... + βj + γk)

Like their empirical counterparts defined in Section 4.3, the 2-factor interactions
in a three-way study are measures of lack of parallelism on two-way plots of means
obtained by averaging out over levels of the “other” factor. And it is an algebraic
consequence of the form of Definition 4 that

I∑
i=1

αβi j =
J∑

j=1

αβi j = 0,
I∑

i=1

αγik =
K∑

k=1

αγik = 0

and

J∑
j=1

βγjk =
K∑

k=1

βγjk = 0

Finally, there is the matter of three-way interactions in a three-way factorial
study. Direct analogy with the meaning of fitted three-way interactions given as
Definition 9 in Chapter 4 (page 183) gives the following:

Definition 5 In a three-way complete factorial study with factors A, B, and C, the 3-factor
interaction of factor A at its ith level, factor B at its jth level, and factor C
at its kth level is

αβγi jk = µi jk − (µ... + αi + βj + γk + αβi j + αγik + βγjk)

Like their fitted counterparts, the (theoretical) 3-factor interactions are measures of
patterns in theµi jk not describable in terms of the factors acting separately or in pairs.
Or differently put, they measure how much what one would call the AB interactions
at a single level of C change from level to level of C. And, like the fitted 3-factor
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interactions defined in Section 4.3, the theoretical 3-factor interactions defined here
sum to 0 over levels of any one of the factors. That is,

I∑
i=1

αβγi jk =
J∑

j=1

αβγi jk =
K∑

k=1

αβγi jk = 0

The fundamental fact that makes inference for the factorial effects defined inFactorial effects
are L’s, fitted

effects are
corresponding L̂’s

Definitions 3, 4, and 5 possible is that they are particular linear combinations of the
means µi jk (L’s from Section 7.2). And the fitted effects from Section 4.3 are the
corresponding linear combinations of the sample means ȳi jk (L̂’s from Section 7.2).
So at least in theory, to make confidence intervals for the factorial effects, one needs
only to figure out exactly what coefficients are applied to each of the means and use
formula (7.20) of Section 7.2.

Example 5 Finding Coefficients on Means for a Factorial
Effect in a Three-Way Factorial

Consider a hypothetical example in which A appears at I = 2 levels, B at J = 2
levels, and C at K = 3 levels. For the sake of illustration, consider how you
would make a confidence interval for αγ23. By Definitions 3 and 4,

αγ23 = µ2.3 − (µ... + α2 + γ3)

= µ2.3 − (µ2.. + µ..3 − µ...)

= 1

2
(µ213 + µ223)−

1

6
(µ211 + µ221 + µ212 + µ222 + µ213 + µ223)

− 1

4
(µ113 + µ213 + µ123 + µ223)+

1

12
(µ111 + µ211 + · · · + µ223)

= 1

6
µ213 +

1

6
µ223 −

1

12
µ211 −

1

12
µ221 −

1

12
µ212 −

1

12
µ222

− 1

6
µ113 −

1

6
µ123 +

1

12
µ111 +

1

12
µ121 +

1

12
µ112 +

1

12
µ122

so the “
∑

c2
i /ni ” applicable to estimatingαγ23 via formula (7.20) of Section 7.2 is

∑ c2
i jk

ni jk

=
(

1

6

)2( 1

n213

+ 1

n223

+ 1

n113

+ 1

n123

)

+
(

1

12

)2( 1

n211

+ 1

n221

+ 1

n212

+ 1

n222

+ 1

n111

+ 1

n121

+ 1

n112

+ 1

n122

)
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and using this expression, endpoints for a confidence interval for αγ23 are

ac23 ± tsP

√√√√∑ c2
i jk

ni jk

It is possible to work out (unpleasant) general formulas for the “
∑

c2
i /ni ” terms

for factorial effects in arbitrary p-way factorials and implement them in computer
software. It is not consistent with the purposes of this book to lay those out here.
However, in the special case of 2p factorials, there is no difficulty in describing
how to make confidence intervals for the effects or in carrying out a fairly complete
analysis of all of these “by hand” for p as large as even 4 or 5. This is because the 2p

case of the general p-way factorial structure allows three important simplifications.
First, for any factorial effect in a 2p factorial, the coefficients “ci ” applied to theCoefficients applied

to means to produce
2p factorial effects

are all ± 1
2p

means to produce the effect are all ± 1
2p . So the “

∑
c2

i /ni ” term needed to make a
confidence interval for any effect in a 2p factorial is(

± 1

2p

)2
(

1

n
(1)

+ 1

na

+ 1

nb

+ 1

nab

+ · · ·
)

where the subscripts (1), a, b, ab, etc. refer to the combination-naming convention
for 2p factorials introduced in Section 4.3.

So let E stand for a generic effect in a 2p factorial (a particular kind of L from
Section 7.2) and Ê be the corresponding fitted effect (the corresponding L̂ from
Section 7.2). Then endpoints of an individual two-sided confidence interval for E
are

Individual confidence
limits for an effect

in a 2p factorial
Ê ± tsP

1

2p

√
1

n
(1)

+ 1

na

+ 1

nb

+ 1

nab

+ · · · (8.12)

where the associated confidence is the probability that the t distribution with
ν = n − r = n − 2p degrees of freedom assigns to the interval between −t and
t . The usual device of using only one endpoint from formula (8.12) and halving
the unconfidence produces a one-sided confidence interval for the effect. And in
balanced-data situations where all sample sizes are equal to m, formula (8.12) can
be written even more simply as

Balanced data confidence
limits for an effect

in a 2p factorial
Ê ± t

sP√
m2p

(8.13)

There is a second simplification of the general p-way factorial situation affordedEstimating one 2p effect
of a given type is enough in the 2p case. Because of the way factorial effects sum to 0 over levels of any factor
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involved, estimating one effect of each type is sufficient to completely describe a 2p

factorial. For example, since in a 2p factorial,

αβ11 = −αβ21 = −αβ12 = αβ22

it is necessary to estimate only one AB interaction to have detailed what is known
about 2-factor interactions of A and B. There is no need to labor in finding separate
estimates of αβ11, αβ12, αβ21, and αβ22. Appropriate sign changes on an estimate of
αβ22 suffice to cover the matter.

The third important fact making analysis of 2p factorial effects so tractable is
the existence of the Yates algorithm. As demonstrated in Example 9 of Chapter 4, it
is really quite simple to use the algorithm to mechanically generate one fitted effect
of each type for a given 2p data set: those effects corresponding to the high levels
of all factors.

Example 4
(continued )

Consider again the metal working power requirement study. Agreeing to (arbi-
trarily) name tool type 2, the 30◦ tool bevel angle, and the interrupted cut type as
the “high” levels of (respectively) factors A, B, and C, the eight combinations of
the three factors are listed in Table 8.9 in Yates standard order. Taking the sample
means from that table in the order listed, the Yates algorithm can be applied to
produce the fitted effects for the high levels of all factors, as in Table 8.10.

Recall that for the data of Table 8.8, m = 4 and sP = 1.492 mm with 24(=
32− 23) associated degrees of freedom. So one has (from formula (8.13)) that
for (say) individual 90% confidence, the factorial effects in this example can be
estimated with two-sided intervals having endpoints

Ê ± 1.711
1.492√
4 · 23

Table 8.10
The Yates Algorithm Applied to the Means in Table 8.9

Combination ȳ Cycle 1 Cycle 2 Cycle 3 Cycle 3÷ 8

(1) 28.250 55.625 115.125 222.375 27.7969 = ȳ
...

a 27.375 59.500 107.250 −2.375 −.2969 = a2
b 29.875 52.375 −1.125 6.375 .7969 = b2
ab 29.625 54.875 −1.250 .625 .0781 = ab22
c 26.500 −.875 3.875 −7.875 −.9844 = c2
ac 25.875 −.250 2.500 −.125 −.0156 = ac22
bc 27.750 −.625 .625 −1.375 −.1719 = bc22
abc 27.125 −.625 0.000 −.625 −.0781 = abc222
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that is,

Ê ± .45I

Then, comparing the fitted effects in the last column of Table 8.10 to the ±.45
value, note that only the main effects of Tool Bevel Angle (factor B) and Type
of Cut (factor C) are statistically detectable. And for example, it appears that
running the machining process at the high level of factor B (the 30◦ bevel angle)
produces a dynamometer reading that is on average between approximately

2(.80− .45) = .7 mm and 2(.80+ .45) = 2.5 mm

higher than when the process is run at the low level of factor B (the 15◦ bevel
angle). (The difference between B main effects at the high and low levels of B is

The difference
between main
effects at high
and low levels

of a factor is
twice the effect

β2 − β1 = β2 − (−β2) = 2β2, hence the multiplication by 2 of the endpoints of
the confidence interval for β2.)

8.2.3 2p Studies Without Replication
and the Normal-Plotting of Fitted Effects

The use of formula (8.12) or (8.13) in judging the detectability of 2p factorial effects
is an extremely practical and effective method. But it depends for its applicability on
there being replication somewhere in the data set. One must have a pooled sample
standard deviation sP. Unfortunately, it is not uncommon that poorly informed
people do unreplicated 2p factorial studies. Although such studies should be avoided
whenever possible, various methods of analysis have been suggested for them. The
most popular one follows from a very clever line of reasoning due originally to
Cuthbert Daniel.

Daniel’s idea was to invoke a principle of effect sparsity. He reasoned that in
many real engineering systems, the effects of only a relatively few factors are the
primary determiners of system mean response. Thus, in terms of the 2p factorial
effects used here, a relatively few of α2, β2, αβ22, γ2, αγ22, . . . , etc., often dominate
the rest (are much larger in absolute value than the majority). In turn, this would im-
ply that often among the fitted effects a2, b2, ab22, c2, ac22, . . . , etc., there are a few
with sizable means, and the others have means that are (relatively speaking) near 0.
Daniel’s idea for identifying those cases where a few effects dominate the rest was to
normal-plot the fitted effects for the “all high treatment” combination (obtained, for
example, by use of the Yates algorithm). When a few plot in positions much more ex-
treme than would be predicted from putting a line through the majority of the points,
they are identified as the likely principal determiners of system behavior. (Actually,
Daniel originally proposed making a half normal plot of the absolute values of
the fitted effects. This was to eliminate any visual effect of the somewhat arbitrary
naming of one level of each factor as the high level. For several reasons, among them
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simplicity, this presentation will use the full normal plot modification of Daniel’s
method. The idea of half normal plotting is considered further in Chapter Exercise 9.)

Example 6
(Example 12, Chapter 4,

revisited—page 195 )

Identifying Detectable Effects in an Unreplicated 24 Factorial Drill
Advance Rate Study

Section 4.4 discussed an example of an unreplicated 24 factorial experiment taken
from Daniel’s Applications of Statistics to Industrial Experimentation. There the
effects of the four factors

Factor A Load

Factor B Flow Rate

Factor C Rotational Speed

Factor D Type of Mud

on the logarithm of an advance rate of a small stone drill were considered. (The
raw data are in Table 4.24.) The Yates algorithm applied to the 16 = 24 observed
log advance rates produced the following fitted effects:

ȳ
...
= 1.5977

a2 = .0650 b2 = .2900 c2 = .5772 d2 = .1633
ab22 = −.0172 ac22 = .0052 ad22 = .0334
bc22 = −.0251 bd22 = −.0075 cd22 = .0491

abc222 = .0052 abd222 = .0261 acd222 = .0266
bcd222 = −.0173 abcd2222 = .0193

Figure 8.6 is a normal plot of the 15 fitted effects a2 through abcd2222.
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Figure 8.6 Normal plot of the fitted effects for Daniel’s drill
advance rate study
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Applying Daniel’s reasoning, it is obvious that the points corresponding to
the C, B, and D main effects plot off any sensible line established through the
bulk of the plotted points. So it becomes natural to think that these main effects
are detectably larger than the other effects, and therefore distinguishable from
experimental error even if the others are not. Thus, it seems that drill behavior is
potentially describable in terms of the (separate) action of the factors Rotational
Speed, Flow Rate, and Mud Type.

The plotted fitted effects concern the natural logarithm of advance rate. So
the fact that c2 = .5772 says that changing from the low level of rotational speed
to the high level produces roughly an increase of 2(.5772) ≈ 1.15 in the natural
log of the advance rate—i.e., increases the advance rate by a factor of e1.15 ≈ 3.2.

Example 6 is one in which the normal plotting clearly identifies a few effectsInterpreting a
normal plot of

fitted effects
as larger than the others. However, a normal plot of fitted effects sometimes has
a fairly straight-line appearance. When this happens, the message is that the fitted
effects are potentially explainable as resulting from background variation. And it is
risky to make real-world engineering decisions based on fitted effects that haven’t
been definitively established as representing consistent system reactions to changes
in level of the corresponding factors. A linear normal plot of fitted effects from an
unreplicated 2p study says that more data are needed.

This normal-plotting device has been introduced primarily as a tool for analyzing
data lacking any replication. However, the method is useful even in cases where there
is some replication and sP can therefore be calculated and formula (8.12) or (8.13)
used to judge the detectability of the various factorial effects. Some practice making
and using such plots will show that the process often amounts to a helpful kind of
“data fondling.” Many times, a bit of thought makes it possible to trace an unusual
pattern on such a plot back to a previously unnoticed peculiarity in the data.

As an example, consider what a normal plot of fitted effects would point out
about the following eight hypothetical sample means.

ȳ
(1) = 95
ȳa = 101
ȳb = 106

ȳab = 106

ȳc = 145
ȳac = 103
ȳbc = 107

ȳabc = 97

This is an exaggerated example of a phenomenon that sometimes occurs less bla-
tantly in practice. 2p − 1 of the sample means are more or less comparable, while
one of the means is clearly different. When this occurs (unless the unusual mean
corresponds to the “all high treatment” combination), a normal plot of fitted effects
roughly like the one in Figure 8.7 will follow. About half the fitted effects will be
large positively and the other half large negatively. (When the unusual mean is the
one corresponding to the “all high” combination, the fitted effects will all have the
same sign.)
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Figure 8.7 Normal plot of fitted effects for eight
hypothetical means

8.2.4 Fitting and Checking Simplified Models in Balanced 2p

Factorial Studies and a Corresponding Variance Estimate
(Optional )

When beginning the analysis of a 2p factorial, one hopes that a simplified p-way
model involving only a few main effects and/or low-order interactions will be ade-
quate to describe it. Analyses based on formulas (8.12) or (8.13) or normal-plotting
are ways of identifying such potential descriptions of special p-way structure. Once
a potential simplification of the 2p analog of model (8.11) has been identified, it is
often of interest to go beyond that identification to

1. the fitting and checking (residual analysis) of the simplified model, and
even to

2. the making of formal inferences under the restricted/simplified model as-
sumptions.

When a 2p factorial data set is balanced, the model fitting, checking, and subsequent
interval-oriented inference is straightforward.

With balanced 2p factorial data, producing least squares fitted values is no
more difficult than adding together (with appropriate signs) desired fitted effects
and the grand sample mean. Or equivalently and more efficiently, the reverse Yates
algorithm can be used.

Example 4
(continued )

In the power requirement study and the data of Table 8.8, only the B and C main
effects seem detectably nonzero. So it is reasonable to think of the simplified
version of model (8.11),

yi jkl = µ... + βj + γk + εi jkl (8.14)
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for possible use in describing dynamometer readings. From Table 8.10, the fitted
version of µ

...
is ȳ

...
= 27.7969, the fitted version of β2 is b2 = .7969, and the

fitted version of γ2 is c2 = −.9844. Then, simply adding together appropriate
signed versions of the fitted effects, for the four possible combinations of j and
k, produces the corresponding fitted responses in Table 8.11. So for example, as
long as the 15◦ bevel angle (low level of B) and a continuous cut (low level of C)
are being considered, a fitted dynamometer reading of about 27.98 is appropriate
under the simplified model (8.14).

Table 8.11
Fitted Responses for a “B and C Main Effects Only”
Description of Power Requirement

j k bj ck ŷ = ȳ··· + bj + ck

1 1 −.7969 .9844 27.9844
2 1 .7969 .9844 29.5782
1 2 −.7969 −.9844 26.0156
2 2 .7969 −.9844 27.6094

Example 6
(continued )

Having identified the C, B, and D main effects as detectably larger than the A
main effect or any of the interactions in the drill advance rate study, it is natural
to consider fitting the model

yi jkl = µ... + βj + γk + δl + εi jkl (8.15)

to the logarithms of the unreplicated 24 factorial data of Table 4.24. (Note that
even though p = 4 factors are involved here, five subscripts are not required,
since a subscript is not needed to differentiate between multiple members of the
24 different samples in this unreplicated context. yi jkl is the single observation
at the i th level of A, j th level of B, kth level of C, and lth level of D.) Since
the drill advance rate data are balanced (all sample sizes are m = 1), the fitted
effects given earlier (calculated without reference to the simplified model) serve
as fitted effects under model (8.15). And fitted responses under model (8.15) are
obtainable by simple addition and subtraction using those.

Since there are eight different combinations of j , k, and l, eight different
linear combinations of ȳ

...
, b2, c2, and d2 are required. While these could be

treated one at time, it is more efficient to generate them all at once using the
reverse Yates algorithm (from Section 4.3) as in Table 8.12. From Table 8.12 it
is evident, for example, that the fitted mean responses for combinations bcd and
abcd (ŷbcd and ŷabcd) are both 2.6282.
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Example 6
(continued )

Table 8.12
The Reverse Yates Algorithm Used to Fit the “B, C, and D Main Effects”
Model to Daniel’s Data

Fitted Effect Value Cycle 1 Cycle 2 Cycle 3 Cycle 4 ( ŷ)

abcd2222 0 0 0 .1633 2.6282
bcd222 0 0 .1633 2.4649 2.6282
acd222 0 0 .5772 .1633 2.0482
cd22 0 .1633 1.8877 2.4649 2.0482
abd222 0 0 0 .1633 1.4738
bd22 0 .5772 .1633 1.8849 1.4738
ad22 0 .2900 .5772 .1633 .8938
d2 .1633 1.5977 1.8877 1.8849 .8938
abc222 0 0 0 .1633 2.3016
bc22 0 0 .1633 1.3105 2.3016
ac22 0 0 .5772 .1633 1.7216
c2 .5772 .1633 1.3077 1.3105 1.7216
ab22 0 0 0 .1633 1.1472
b2 .2900 .5772 .1633 .7305 1.1472
a2 0 .2900 .5772 .1633 .5672
ȳ
...

1.5977 1.5977 1.3077 .7305 .5672

Fitted means derived as in these examples lead in the usual way to residuals,
R2 values, and plots for checking on the reasonableness of simplified versions of
the general 2p version of model (8.11). In addition, corresponding to simplified or
reduced models like (8.14) or (8.15), there are what will here be called few-effects s2

values. When m > 1, these can be compared to s2
P as another means of investigating

the reasonableness of the corresponding models.

Definition 6 In a balanced complete 2p factorial study, if a reduced or simplified model
involving u different effects (including the grand mean) has corresponding
fitted values ŷ and thus residuals y − ŷ, the quantity

s2
FE =

1

m2p − u

∑
(y − ŷ)2 (8.16)

will be called a few-effects sample variance. Associated with it are ν =
m2p − u degrees of freedom.
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The quantity (8.16) represents an estimator of the basic background variance
whenever the corresponding simplified/reduced/few-effects model is an adequate
description of the study. When it is not, sFE will tend to overestimate σ. So comparing
sFE to sP is a way of investigating the appropriateness of that description.

It is not obvious at this point, but there is a helpful alternative way to calculate
the value of s2

FE given in formula (8.16). It turns out that

An alternative
formula for a

few effects
sample variance

s2
FE =

1

m2p − u

[
SSTot− m2p

∑
Ê

2
]

(8.17)

where the sum is over the squares of the u − 1 fitted effects corresponding to those
main effects and interactions appearing in the reduced model equation, and (as
always) SSTot =∑(y − ȳ)2 = (n − 1)s2.

Example 4
(continued )

Residuals for the power requirement data based on the full model (8.11) are
obtained by subtracting sample means in Table 8.9 from observations in Table
8.8. Under the reduced model (8.14), however, the fitted values in Table 8.11 are
appropriate for producing residuals. The fitted means and residuals for a “B and
C main effects only” description of this 23 data set are given in Table 8.13. Figure
8.8 is a normal plot of these residuals, and Figure 8.9 is a plot of the residuals
against the fitted values.

If there is anything remarkable in these plots, it is that Figure 8.9 contains a
hint that smaller mean response has associated with it smaller response variability.
In fact, looking back at Table 8.13, it is easy to see that the two smallest fitted
means correspond to the high level of C (i.e., interrupted cuts). That is, the hint of
change in response variation shown in Figure 8.9 is the same phenomenon related

Table 8.13
Residuals for the “B and C Main Effects Only” Model of Power
Requirement

Combination ŷ Residuals (y − ŷ)

(1) 27.9844 1.0156, −1.4844, 2.5156, −.9844
a 27.9844 .0156, .5156, .0156, −2.9844
b 29.5782 −1.0782, −1.0782, .4218, 2.9218
ab 29.5782 −.0782, 2.4218, −.5782, −1.5782
c 26.0156 1.9844, −1.0156, .4844, .4844
ac 26.0156 −1.5156, −1.0156, 1.9844, −.0156
bc 27.6094 −.6094, 1.3906, −.1094, −.1094
abc 27.6094 −.1094, .3906, −.6094, −1.6094
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Example 4
(continued )

–1.5

0.0

–2.4 –1.2 0.0 1.2
Residual quantile

2.4

1.5
St

an
da

rd
 n

or
m

al
 q

ua
nt

ile

2

3.0

3
3

3
2

3

2

Figure 8.8 Normal plot of residuals for the power
requirement study (B and C main effects only)
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Figure 8.9 Plot of residuals versus fitted power
requirements (B and C main effects only)

to cut type that was discussed when these data were first introduced. It appears
that power requirements for interrupted cuts may be slightly more consistent than
for continuous cuts. But on the whole, there is little in the two figures to invalidate
model (8.14) as at least a rough-and-ready description of the mechanism behind
the data of Table 8.8.

For the power requirement data,

SSTot = (n − 1)s2 = 108.93

Then, since s2
P = 2.226, the one-way ANOVA identity (7.49, 7.50, or 7.51) of

Section 7.4 says that

SSTr = SSTot− SSE = 108.93− 24(2.226) = 55.51
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so R2 corresponding to the general or “full” model (8.11) is (as in equations
(7.52) or (7.53))

R2 = SStr

SStot
= 55.51

108.93
= .51I

On the other hand, it is possible to verify that for the simplified model (8.14),
squaring and summing the residuals in Table 8.13 gives

SSE =
∑

(y − ŷ)2 = 57.60

(Recall Definition 6 in Chapter 7 for SSE .) So for the “B and C main effects
only” description of dynamometer readings,

R2 = SStot− SSE

SStot
= 108.93− 57.60

108.93
= .47I

Thus, although at best only about 51% of the raw variation in dynamometer
readings will be accounted for, fitting the simple model (8.14) will account for
nearly all of that potentially assignable variation. So from this point of view as
well, model (8.14) seems attractive as a description of power requirement.

Note that formulas (8.16) and (8.17) imply that for balanced 2p factorial
data, fitting reduced models gives∑

(y − ŷ)2 = SSTot− m2p
∑

Ê
2

So it is not surprising that using the b2 = .7969 and c2 = −.9844 figures from
before,

SSTot− m2p
∑

Ê
2 = 108.93− 4 · 23 · ((.7969)2 + (−.9844)2

)
= 108.93− 51.33

= 57.60

which is the value of
∑
(y − ŷ)2 just used in finding R2 for the reduced model.

From formula (8.16) or (8.17), it is then clear that (corresponding to reduced
model (8.14))

s2
FE =

1

4 · 23 − 3
(57.60) = 1.986

so

sFE =
√

1.986 = 1.409 mmI
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Example 4
(continued )

which agrees closely with sP = 1.492. Once again on this account, description
(8.14) seems quite workable.

Example 6
(continued )

Table 8.14 contains the log advance rates, fitted values, and residuals for Daniel’s
unreplicated 24 example. (The raw data were given in Table 4.24, and it is the
few-effects model (8.15) that is under consideration.)

The reader can verify by plotting that the residuals in Table 8.14 are not in
any way remarkable. Further, it is possible to check that

SSTot =
∑

(y − ȳ)2 = 7.2774

and

SSE =
∑

(y − ŷ)2 = .1736

So (as indicated earlier in Example 12 in Chapter 4) for the use of model (8.15),

R2 = SStot− SSE

SStot
= 7.2774− .1736

7.2774
= .976

Table 8.14
Responses, Fitted Values, and Residuals for the “B, C, and D
Main Effects” Model and Daniel’s Drill Advance Rate Data

Combination y, ln(advance rate) ŷ e = y − ŷ

(1) .5188 .5672 −.0484
a .6831 .5672 .1159
b 1.1878 1.1472 .0406
ab 1.2355 1.1472 .0883
c 1.6054 1.7216 −.1162
ac 1.7405 1.7216 .0189
bc 2.2996 2.3016 −.0020
abc 2.2050 2.3016 −.0966
d .7275 .8938 −.1663
ad .8920 .8938 −.0018
bd 1.4085 1.4738 −.0653
abd 1.5107 1.4738 .0369
cd 2.0503 2.0482 .0021
acd 2.2439 2.0482 .1957
bcd 2.4639 2.6282 −.1643
abcd 2.7912 2.6282 .1630
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Since there is no replication in this data set, fitting the 4-factor version of the
general model (8.11) would give a perfect fit, R2 equal to 1.000, all residuals
equal to 0, and no value of s2

P. Thus, there is really nothing to judge R2 = .976
against in relative terms. But even in absolute terms it appears that the “B, C, and
D main effects only” model for log advance rate fits the data well.

An estimate of the variability of log advance rates for a fixed combina-
tion of factor levels derived under the assumptions of model (8.15), is (from
formula (8.16))

sFE =
√

1

1 · 24 − 4
(.1736) = .120I

As noted, there’s no sP to compare this to, but it is at least consistent with the kind
of variation in y seen in Table 8.14 when responses are compared for pairs of
combinations that (like combinations b and ab) differ only in level of the factor A.

8.2.5 Confidence Intervals for Balanced 2p Studies
under Few-Effects Models (Optional )

Since the basic p-way factorial model is just a rewritten version of the one-way
normal model from Chapter 7, the confidence interval methods of that chapter can
all see application in p-way factorial studies. But when a simplified/few-effects
model is appropriate, sharper real-world engineering conclusions can usually be
had by using methods based on the simplified model than by applying the general
methods of Chapter 7. And for balanced 2p studies, it is possible to write down
simple, explicit formulas for several useful forms of interval-oriented inference.

As a first example of what is possible under a few-effects model in a balanced 2p

factorial study, consider the estimation of a particular mean response. For balanced
data, the 2p fitted effects (including the grand mean) that come out of the Yates
algorithm are independent normal variables with means equal to the corresponding
underlying effects and variances σ 2/m2p . So, if a simplified version of model (8.11)
involving u effects (including the overall mean) is appropriate, a fitted response ŷ
has mean equal to the corresponding underlying mean, and

Var ŷ = u
σ 2

m2p

It should then be plausible that under a few-effects model in a balanced 2p factorial
study, a two-sided interval with endpoints

Balanced data
individual confidence

limits for a mean
repsonse under

a simplified model

ŷ ± tsFE

√
u

m2p (8.18)
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may be used as an individual confidence interval for the corresponding mean re-
sponse. The associated confidence is the probability that the t distribution with
ν = m2p − u degrees of freedom assigns to the interval between −t and t . And a
one-sided confidence interval for the mean response can be obtained in the usual
way, by employing only one of the endpoints indicated in formula (8.18) and appro-
priately adjusting the confidence level.

Example 4
(continued )

Consider estimating the mean dynamometer reading corresponding to a 15◦ bevel
angle and interrupted cut using the “B and C main effects only” description of
Miller’s power requirement study. (These are the conditions that appear to produce
the smallest mean power requirement.) Using (for example) 95% confidence, a
fitted value of 26.02 from Table 8.11, and sFE = 1.409 mm possessing ν =
4 · 23 − 3 = 29 associated degrees of freedom in formula (8.18), leads to a two-
sided interval with endpoints

26.02± 2.045(1.409)

√
3

4 · 23

that is, endpoints

26.02 mm ± .88 mm (8.19)

that is,

25.14 mm and 26.90 mm

In contrast to this interval, consider what the method of Section 7.2 provides
for a 95% confidence interval for the mean reading for tool type 1, a 15◦ bevel
angle, and interrupted cuts. Since sP = 1.492 with ν = 24 associated degrees of
freedom, and (from Table 8.9) ȳc = 26.50, formula (7.14) of Section 7.2 produces
a two-sided confidence interval for µc with endpoints

26.50± 2.064(1.492)
1√
4

that is,

26.50 mm ± 1.54 mm (8.20)I
A major practical difference between intervals (8.19) and (8.20) is the apparent
increase in precision provided by interval (8.19), due in numerical terms primarily
to the “extra”

√
3/8 factor present in the first plus-or-minus calculation but not

in the second. However, it must be remembered that the extra precision is bought
at the price of the use of model (8.14) and the consequent use of all observations
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in the generation of ŷc (rather than only the observations from the single sample
corresponding to combination c).

A second balanced-data confidence interval method based on a few-effects
simplification of the general 2p model is that for estimating the effects included in the
model. It comes about by replacing sP in formula (8.13) with sFE and appropriately
adjusting the degrees of freedom associated with the t quantile. That is, under a few-
effects model in a 2p study with balanced data, a two-sided individual confidence
interval for an effect included in the model is

Balanced data
individual confidence

limits for a 2p

effect under a
simplified model

Ê ± t
sFE√
m2p

(8.21)

where Ê is the corresponding fitted effect and the confidence associated with the
interval is the probability that the t distribution with ν = m2p − u degrees of free-
dom assigns to the interval between −t and t . One-sided intervals are made from
formula (8.21) in the usual way.

Unlike formula (8.13), formula (8.21) can be used in studies where m = 1. This
makes it possible to attach precision figures to estimated effects in unreplicated
factorial studies, provided one is willing to base them on a reduced or simplified
model.

Example 6
(continued )

Consider again Daniel’s drill advance rate study and, for example, the effect of
the high level of rotational speed on the natural logarithm of advance rate. Under
the “B, C, and D main effects only” description of log advance rate, sFE = .120
with ν = 1 · 24 − 4 = 12 associated degrees of freedom. Also, c2 = .5772. Then
(for example) using a 95% confidence level, from formula (8.21), a two-sided
interval for γ2 under the simplified model has endpoints

.5772± 2.179
.120√
1 · 24

that is,

.5772± .0654

that is,

.5118 and .6426
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Example 6
(continued )

This in turn translates (via multiplication by 2, since γ2 − γ1 = 2γ2) to an
increase of between

1.0236 and 1.2852

in average log advance rate as one moves from the low level of rotational speed
to the high level. And upon exponentiation, a multiplication of median advance
rate by a factor between

2.78 and 3.62I
is indicated as one moves between levels of rotational speed. (A normal mean
is also the distribution’s median, and under a transformation the median of the
transformed values is the transformation applied to the median. So the infer-
ence about the mean logged rate can be translated to one about the median rate.
However, since the mean of transformed values is not in general the transformed
mean, the interval obtained by exponentiation unfortunately does not apply to
the mean advance rate.)

There are other ways to use the reduced model ideas discussed here. For exam-
ple, a simplified model for responses can be used to produce prediction and tolerance
intervals for individuals. Section 8.3 of Vardeman’s Statistics for Engineering Prob-
lem Solving is one place to find an exposition of these additional methods.

Section 2 Exercises ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1. Consider again the situation of Exercise 2 of Sec-
tion 4.3.
(a) For the logged responses, make individual 95%

confidence intervals for the effects correspond-
ing to the high levels of all three factors. Which
effects are statistically detectable?

(b) Fit an appropriate few-effects model suggested
by your work in (a) to these data. Compare the
corresponding value of sFE to the value of sP.

(c) Compare a two-sided individual 95% confi-
dence interval for the mean (logged) response
for combination (1) made using the fitted few-
effects model to one based on the methods of
Section 7.2.

2. Chapter Exercise 9 in Chapter 4 concerns the mak-
ing of Dual In-line Packages and the number of
pullouts produced on such devices under 24 dif-
ferent combinations of manufacturing conditions.
Return to that exercise, and if you have not already

done so, use the Yates algorithm and compute fitted
24 factorial effects for the data set.
(a) Use normal-plotting to identify statistically de-

tectable effects here.
(b) Based on your analysis from (a), postulate a

possible few-effects model for this situation.
Use the reverse Yates algorithm to fit such a
model to these data. Use the fitted values to
compute residuals. Normal-plot these and plot
them against levels of each of the four factors,
looking for obvious problems with the model.

(c) Based on your few-effects model, make a rec-
ommendation for the future making of these
devices. Give a 95% two-sided confidence in-
terval (based on the few-effects model) for the
mean pullouts you expect to experience if your
advice is followed.

3. A classic unreplicated 24 factorial study, used as an
example in Experimental Statistics (NBS Handbook
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# 91) by M. G. Natrella, concerns flame tests of
fire-retardant treatments for cloth. The factors and
levels used in the study were

A Fabric Tested sateen (−) vs. monk’s cloth (+)

B Treatment X (−) vs. Y (+)

C Laundering before (−) vs. after (+)

Condition

D Direction of Test warp (−) vs. fill (+)

The response variable, y, is the inches burned on
a standard-size sample in the flame test. The data
reported by Natrella follow:

Combination y Combination y

(1) 4.2 d 4.0

a 3.1 ad 3.0

b 4.5 bd 5.0

ab 2.9 abd 2.5

c 3.9 cd 4.0

ac 2.8 acd 2.5

bc 4.6 bcd 5.0

abc 3.2 abcd 2.3

(a) Use the (four-cycle) Yates algorithm and com-
pute the fitted 24 factorial effects for the study.

(b) Make either a normal plot or a half normal
plot using the fitted effects from part (a). What
subject-matter interpretation of the data is sug-
gested by the plot? (See Chapter Exercise 9
regarding half normal-plotting.)

(c) Natrella’s original analysis of these data pro-
duced the conclusion that both the A main ef-
fects and the AB two-factor interactions are
statistically detectable and of practical impor-
tance. We (based on a plot like the one asked for
in (b)) are inclined to doubt that the data are re-
ally adequate to detect the AB interaction. But
for the sake of example, temporarily accept the
conclusion of Natrella’s analysis. What does it
say in practical terms about the fire-retardant
treating of cloth? (How would you explain the
results to a clothing manufacturer?)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

8.3 Standard Fractions of Two-Level
Factorials, Part I: 1

2 Fractions

The notion of a fractional factorial data structure was first introduced in Section
1.2. But as yet, this text has done little to indicate either how such a structure
might be chosen or how analysis of fractional factorial data might proceed. The
delay is a reflection of the subtle nature of these topics rather than any lack of
importance. Indeed, fractional factorial experimentation and analysis is one of the
most important tools in the modern engineer’s kit. This is especially true where many
factors potentially affect a response and there is little a priori knowledge about the
relative impacts of these factors.

This section and the next treat the (standard) 2p−q fractional factorials—the
class of fractional factorials for which advantageous methods of data collection and
analysis can be presented most easily and completely. These structures, involving
1

2q of all possible combinations of levels of p two-level factors, are among the most
useful fractional factorial designs for application in engineering experimentation.
In addition, they clearly illustrate the general issues that arise any time only a frac-
tion of a complete factorial set of factor-level combinations can be included in a
multifactor study.
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This section begins with some general qualitative remarks about fractional
factorial experimentation. The standard 1

2 fractions of 2p studies (the 2p−1 fractional
factorials) are then discussed in detail. The section covers in turn (1) the proper
choice of such fractions, (2) the resultant aliasing or confounding patterns, and (3)
corresponding methods of data analysis. The section closes with a few remarks
about qualitative issues, addressed to the practical use of 2p−1 designs.

8.3.1 General Observations about Fractional Factorial Studies

In many of the physical systems engineers work on, there are many factors potentially
affecting a response y. In such cases, even when the number of levels considered
for each factor is only two, there are a huge number of different combinations of
levels of the factors to consider. For instance, if p = 10 factors are considered,
even when limiting attention to only two levels of each factor, at least 210 = 1,024
data points must be collected in order to complete a full factorial study. In most
engineering contexts, restrictions on time and other resources would make a study
of that size infeasible. One could try to guess which few factors are most important
in determining the response and do a smaller complete factorial study on those
factors (holding the levels of the remaining factors fixed). But there is obviously
a risk of guessing wrong and therefore failing to discover the real pattern of how
factors affect the response.

A superior alternative is to conduct the investigation in at least two stages.
A relatively small screening study (or several of them), intended to identify those
factors most likely influencing the response, can be done first. This can be followed
up with a more detailed study (or studies) in those variables. It is in the initial
screening phase of such a program that fractions of 2p studies are most appropriate.
Tools such as full factorials are appropriate for the later stage (or stages) of study.

Once the reality of resource limitations leads to consideration of fractional
factorial experimentation, several qualitative points become clear. For one, there is
no way to learn as much from a fraction of a full factorial study as from the full
factorial itself. (There is no Santa Claus who for the price of eight observations
will give as much information as can be obtained from 16.) Fractional factorial
experiments inevitably leave some ambiguity in the interpretation of their results.
Through careful planning of exactly which fraction of a full factorial to use, the
object is to hold the ambiguity to a minimum and to make sure it is of a type that is
most tolerable. Not all fractions of a given size from a particular full factorial study
have the same potential for producing useful information.

Example 7 Choosing Half of a 22 Factorial Study

As a completely artificial but instructive example of the preceding points, sup-
pose that two factors A and B each have two levels (low and high) and that
instead of conducting a full 22 factorial study, data at only 1

2 of the four possible
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combinations will be collected

(1), a, b, and ab

If (1) is chosen as one of the two combinations to be studied, two of the
three possible choices of the other combination can easily be eliminated from
consideration. The possibility of studying the combinations

(1) and a

is no good, since in both cases the factor B is held at its low level. Therefore, no
information at all would be obtained on B’s impact on the response. Similarly,
the possibility of studying the combinations

(1) and b

can be eliminated, since no information would be obtained on factor A’s impact
on the response. So that leaves only the set of combinations

(1) and ab

as a 1
2 fraction of the full 22 factorial that is at all sensible (if combination (1)

is to be included). Similar reasoning eliminates all other pairs of combinations
from potential use except the pair

a and b

But now notice that any experiment that includes only combinations

(1) and ab

or combinations

a and b

must inevitably produce somewhat ambiguous results. Since one moves from
combination (1) to combination ab (or from a to b) by changing levels of both
factors, if a large difference in response is observed, it will not be clear whether
the difference is due to A or due to B.

At least in qualitative terms, such is the nature of all fractional factorial stud-
ies. Although very poor choices of experimental combinations may be avoided,
some level of ambiguity must be accepted as the price for not conducting a full
factorial.
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Example 8 Half of a Hypothetical 23 Factorial

As a second hypothetical but instructive example of the issues that must be dealt
with in fractional factorial experimentation, consider a system whose behavior is
governed principally by the levels of three factors: A, B, and C. (For the sake of
concreteness, suppose that A is a temperature, B is a pressure, and C is a catalyst
type, and that the effects of these on the yield y of a chemical process are under
consideration.) Suppose further that in a 23 study of this system, the factorial
effects on an underlying mean response µ are given by

µ
...
= 10,

αβ22 = 2,
α2 = 3,

αγ22 = 0,
β2 = 1,

βγ22 = 0,
γ2 = 2,

αβγ222 = 0

Either through the use of the reverse Yates algorithm or otherwise, it is possible
to verify that corresponding to these effects are then the eight combination means

µ
(1) = 6,
µc = 10,

µa = 8,
µac = 12,

µb = 4,
µbc = 8,

µab = 14,
µabc = 18

Now imagine that for some reason, only four of the eight combinations of
levels of A, B, and C will be included in a study of this system, namely the
combinations

a, b, c, and abc

Suppose further that the background noise is negligible, so that observations
for a given treatment combination are essentially equal to the corresponding
underlying mean. Then one essentially knows the values of

µa = 8, µb = 4, µc = 10, µabc = 18

Figure 8.10 shows the complete set of eight combination means laid out on a
cube plot, with the four observed means circled.

As a sidelight, note the admirable symmetry possessed by the four circled
corners on Figure 8.10. Each face of the cube has two circled corners (both levels
of all factors appear twice in the choice of treatment combinations). Each edge
has one circled corner (each combination of all pairs of factors appears once).
And collapsing the cube in any one of the three possible directions (left to right,
top to bottom, or front to back) gives a full factorial set of four combinations.
(Ignoring the level of any one of A, B, or C in the four combinations a, b, c, and
abc gives a full factorial in the other two factors.)
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bc = 8   abc = 18

   ab = 14   b = 4

   ac = 12

   (1) = 6

   c = 10

   a = 8

Factor B

(+)

(−)

Factor A (+)(−)

Fac
tor

 C
(+)

(−)

µ µ

µ µ

µµ

µµ

Figure 8.10 23 hypothetical means, with four
known means circled

Now consider what an engineer possessing only the values of µa, µb, µc,
and µabc might be led to conclude about the system. In particular, begin with the
matter of evaluating an A main effect. Definition 3 says that

α2 = µ2.. − µ...

=
 the average of all four mean

responses where A is at its
second or high level

− ( the grand average of all
eight mean responses

)

which can be thought of as the right-face average minus the grand average for the
cube in Figure 8.10. Armed only with the four means µa, µb, µc, and µabc (the
four circled corners on Figure 8.10), it is not possible to compute α2. But what
might be done is to make a calculation similar to the one that produces α2 using
only the available means. That is,

α∗2 = a “ 1
2 fraction A main effect”

=
 the average of the available

two means where A is at its
high level

− ( the grand average of the
available four means

)

= 1

2
(µa + µabc)−

1

4
(µa + µb + µc + µabc)

= 1

2
(8+ 18)− 1

4
(8+ 4+ 10+ 18)

= 13− 10

= 3
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Example 8
(continued )

And, amazingly enough, α∗2 = α2 here.
It appears that using only four combinations, as much can be learned about

the A main effect as if all eight combination means were in hand! This is too good
to be true in general, as is illustrated by a parallel calculation for a C main effect.

γ ∗2 = a “ 1
2 fraction C main effect”

=
 the average of the two

available means where
C is at its high level

− ( the grand average of the
four available means

)

= 1

2
(µc + µabc)−

1

4
(µa + µb + µc + µabc)

= 4

while this hypothetical example began with γ2 = 2. Here, the 1
2 fraction calcula-

tion gives something quite different from the full factorial calculation.
The key to understanding how one can apparently get something for nothing

in the case of the A main effects in this example, but cannot do so in the case of
the C main effects, is to know that (in general) for this 1

2 fraction,

α∗2 = α2 + βγ22

and

γ ∗2 = γ2 + αβ22

Since this numerical example began with βγ22 = 0, one is “fortunate”—it turns
out numerically that α∗2 = α2. On the other hand, since αβ22 = 2 6= 0, one is
“unfortunate”—it turns out numerically that γ ∗2 = γ2 + 2 6= γ2.

Relationships like these for α∗2 and γ ∗2 hold for all 1
2 fraction versions of

the full factorial effects. These relationships detail the nature of the ambiguity
inherent in the use of the 1

2 fraction of the full 23 factorial set of combinations.
Essentially, based on data from four out of eight possible combinations, one will
be unable to distinguish between certain pairs of effects, such as the A main effect
and BC 2-factor interaction pair here.

8.3.2 Choice of Standard 1
2 Fractions of 2p Studies

The use of standard 2p−q fractional factorial data structures depends on having
answers for the following three basic questions:Three fundamental

issues in the use
of a fractional

factorial
1. How is 1

2q of 2p possible combinations of factor levels to include in a study
rationally chosen?
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2. How is the pattern of ambiguities implied by a given choice of 2p−q combi-
nations determined?

3. How is data analysis done for a particular choice of 2p−q combinations?

These questions will be answered in this section for the case of 1
2 fractions (2p−1

fractional factorials) and for general q in the next section.
In order to arrive at what is in some sense a best possible choice of 1

2 of 2pPrescription for
a best half fraction

of a 2p factorial
combinations of levels of p factors, do the following. For the first p − 1 factors,
write out all 2p−1 possible combinations of these factors. By multiplying plus and
minus signs (thinking of multiplying plus and minus 1’s) corresponding to levels
of the first factors, then arrive at a set of plus and minus signs that can be used to
prescribe how to choose levels for the last factor (to be used in combination with
the indicated levels of the first p − 1 factors).

Example 9 A 25−1 Chemical Process Experiment

In his article “Experimenting with a Large Number of Variables” (ASQC Techni-
cal Supplement Experiments in Industry, 1985), R. Snee discusses a successful
25−1 experiment on a chemical process, where the response of interest, y, was a
coded color index of the product. The factors studied and their levels are as in
Table 8.15.

The standard recommendation for choosing a 1
2 fraction was followed in

Snee’s study. Table 8.16 shows an appropriate set of 16 lines of plus and minus
signs for generating the 1

2 · 32 = 16 combinations included in Snee’s study. The
first four columns of this table specify levels of factors A, B, C, and D for the
16 = 24 possible combinations of levels of these factors (written in Yates standard
order). (The first line, for example, indicates the low level of all of these first
four factors.) The last column of this table is obtained by multiplying the first
four plus or minus signs (plus or minus 1’s) in a given row. It is this last column
that can be used to determine how to choose a level of factor E for use when the
factors A through D are at the levels indicated in the first four columns.

Table 8.15
Five Chemical Process Variables and Their Experimental Levels

Factor Process Variable Factor Levels

A Solvent/Reactant low (−) vs. high (+)
B Catalyst/Reactant .025 (−) vs. .035 (+)
C Temperature 150◦C (−) vs. 160◦C (+)
D Reactant Purity 92% (−) vs. 96% (+)
E pH of Reactant 8.0 (−) vs. 8.7 (+)
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Example 9
(continued )

Table 8.16
Signs for Specifying a Standard 25−1

Fractional Factorial

A B C D ABCD Product

− − − − +
+ − − − −
− + − − −
+ + − − +
− − + − −
+ − + − +
− + + − +
+ + + − −
− − − + −
+ − − + +
− + − + +
+ + − + −
− − + + +
+ − + + −
− + + + −
+ + + + +

In Snee’s study, the signs in the ABCD Product column were used without
modification to specify levels of E. The corresponding treatment combination
names (written in the same order as in Table 8.16) and the data reported by Snee
are given in Table 8.17. Notice that the 16 combinations listed in Table 8.17 are
1
2 of the 25 = 32 possible combinations of levels of these five factors. (They are
those 16 that have an odd number of factors appearing at their high levels).

Example 10 A 25−1 Agricultural Engineering Study

The article “An Application of Fractional Factorial Experimental Designs” by
Mary Kilgo (Quality Engineering, 1988) provides an interesting complement to
the previous example. In one part of an agricultural engineering study concerned
with the use of carbon dioxide at very high pressures to extract oil from peanuts,
the effects of five factors on a percent yield variable y were studied in a 25−1

fractional factorial experiment. The five factors and their levels (as named in
Kilgo’s article) are given in Table 8.18.

Interestingly enough, rather than studying the 16 combinations obtainable
using the final column of Table 8.16 directly, Kilgo switched all of the signs in
the ABCD product column before assigning levels of E. This leads to the use of
“the other” 16 out of 32 possible combinations (those having an even number of
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Table 8.17
16 Combinations and Observed
Color Indices in Snee’s 25−1 Study
(Example 9 )

Combination Color Index, y

e −.63
a 2.51
b −2.68
abe −1.66
c 2.06
ace 1.22
bce −2.09
abc 1.93
d 6.79
ade 6.47
bde 3.45
abd 5.68
cde 5.22
acd 9.38
bcd 4.30
abcde 4.05

Table 8.18
Five Peanut Processing Variables and Their Experimental Levels

Factor Process Variable Factor Levels

A Pressure 415 bars (−) vs. 550 bars (+)
B Temperature 25◦C (−) vs. 95◦C (+)
C Peanut Moisture 5% (−) vs. 15% (+)
D Flow Rate 40 1/min (−) vs. 60 1/min (+)
E Average Particle Size 1.28 mm (−) vs. 4.05 mm (+)

factors appearing at their high levels). The 16 combinations studied and corre-
sponding responses reported by Kilgo are given in Table 8.19 in the same order
for factors A through D as in Table 8.16.

The difference between the combinations listed in Tables 8.17 and 8.19 deserves
some thought. As Kilgo named the factor levels, the two lists of combinations
are quite different. But verify that if she had made the slightly less natural but
nevertheless permissible choice to call the 4.05 mm level of factor E the low (−) level
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Table 8.19
16 Combinations and Observed
Yields in Kilgo’s 25−1 Study
(Example 10 )

Combination Yield, y (%)

(1) 63
ae 21
be 36
ab 99
ce 24
ac 66
bc 71
abce 54
de 23
ad 74
bd 80
abde 33
cd 63
acde 21
bcde 44
abcd 96

and the 1.28 mm level the high (+) level, the names of the physical combinations
actually studied would be exactly those in Table 8.17 rather than those in Table 8.19.

The point here is that due to the rather arbitrary nature of how one chooses to
name high and low levels of two factors, the names of different physical combinations
are themselves to some extent arbitrary. In choosing fractional factorials, one chooses
some particular naming convention and then has the freedom to choose levels of
the last factor (or factors for q > 1 cases) by either using the product column(s)
directly or after switching signs. The decision whether or not to switch signs does
affect exactly which physical combinations will be run and thus how the data should
be interpreted in the subject-matter context. But generally, the different possible
choices (to switch or not switch signs) are a priori equally attractive. For systemsFractional factorials

fully reveal system
structure only for

simple cases

that happen to have relatively simple structure, all possible results of these arbitrary
choices typically lead to similar engineering conclusions. When systems turn out to
have complicated structures, the whole notion of fractional factorial experimentation
loses its appeal. Different arbitrary choices lead to different perceptions of system
behavior, none of which (usually) correctly portrays the complicated real situation.

8.3.3 Aliasing in the Standard 1
2 Fractions

Once a 1
2 fraction of a 2p study is chosen, the next issue is determining the nature

of the ambiguities that must arise from its use. For 2p−1 data structures of the
type described here, one can begin with a kind of statement of how the fractional
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factorial plan was derived and through a system of formal multiplication arrive at an
understanding of which (full) factorial effects cannot be separated on the basis of the
fractional factorial data. Some terminology is given next, in the form of a definition.

Definition 7 When it is only possible to estimate the sum (or difference) of two or more
(full) factorial effects on the basis of data from a fractional factorial, those
effects are said to be aliased or confounded and are sometimes called aliases.
In this text, the phrase alias structure of a fractional factorial plan will mean
a complete specification of all sets of aliased effects.

As an example of the use of this terminology, return to Example 8. There, it is
possible only to estimate α2 + βγ22, not either of α2 or βγ22 individually. So the A
main effect is confounded with (or aliased with) the BC 2-factor interaction.

The way the system of formal multiplication works for detailing the alias
structure of one of the recommended 2p−1 factorials is as follows. One begins
by writing

Generator for
a standard half
fraction of a 2p

factorial

(
the name of the
last factor

)
↔ ±

(
the product of names of
the first p − 1 factors

)
(8.22)

where the plus or minus sign is determined by whether the signs were left alone
or switched in the specification of levels of the last factor. The double arrow in
expression (8.22) will be read as “is aliased with.” And since expression (8.22)
really says how the fractional factorial under consideration was chosen, expression
(8.22) will be called the plan’s generator. The generator (8.22) for a 2p−1 plan says
that the (high level) main effect of the last factor will be aliased with plus or minus
the (all factors at their high levels) p − 1 factor interaction of the first p − 1 factors.

Example 9
(continued )

In Snee’s 25−1 study, the generator

E↔ ABCD

was used. Therefore the (high level) E main effect is aliased with the (all high
levels) ABCD 4-factor interaction. That is, only ε2 + αβγ δ2222 can be estimated
based on the 1

2 fraction data, not either of its summands individually.

Example 10
(continued )

In Kilgo’s 25−1 study, the generator

E↔ −ABCD
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Example 10
(continued )

was used. The (high level) E main effect is aliased with minus the (all high levels)
ABCD 4-factor interaction. That is, only ε2 − αβγ δ2222 can be estimated based
on the 1

2 fraction data, not either of the terms individually.

The entire alias structure for a 1
2 fraction follows from the generator (8.22) byConventions for

the system of
formal multiplication

multiplying both sides of the expression by various factor names, using two special
conventions. These are that any letter multiplied by itself produces the symbol “I”
and that any letter multiplied by “I” is that letter again. Applying the first of these
conventions to expression (8.22), both sides of the expression may be multiplied by
the name of the last factor to produce the relation

Defining relation for
a standard half fraction

of a 2p factorial

I↔ ± the product of names of all p factors (8.23)

Expression (8.23) means that the grand mean is aliased with plus or minus the (all
factors at their high level) p-factor interaction. There is further special terminology
for an expression like that in display (8.23).

Definition 8 The list of all aliases of the grand mean for a 2p−q fractional factorial is called
the defining relation for the design.

By first translating a generator (or generators in the case of q > 1) into a defining
relation and then multiplying through the defining relation by a product of letters
corresponding to an effect of interest, one can identify all aliases of that effect.

Example 9
(continued )

In Snee’s 25−1 experiment, the generator was

E↔ ABCD

When multiplied through by E, this gives the experiment’s defining relation

I↔ ABCDE (8.24)I
which indicates that the grand mean µ

.....
is aliased with the 5-factor interaction

αβγ δε22222. Then, for example, multiplying through defining relation (8.24) by
the product AC produces the relationship

AC↔ BDE

Thus, the AC 2-factor interaction is aliased with the BDE 3-factor interaction.
In fact, the entire alias structure for the Snee study can be summarized in terms
of the aliasing of 16 different pairs of effects. These are indicated in Table 8.20,
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which was developed by using the defining relation (8.24) to find successively
(in Yates order) the aliases of all effects involving only factors A, B, C, and D.
Table 8.20 shows that main effects are confounded with 4-factor interactions and
2-factor interactions with 3-factor interactions. This degree of ambiguity is as
mild as is possible in a 25−1 study.

Table 8.20
The Complete Alias Structure for
Snee’s 25−1 Study

I↔ ABCDE D↔ ABCE
A↔ BCDE AD↔ BCE
B↔ ACDE BD↔ ACE
AB↔ CDE ABD↔ CE
C↔ ABDE CD↔ ABE
AC↔ BDE ACD↔ BE
BC↔ ADE BCD↔ AE
ABC↔ DE ABCD↔ E

Example 10
(continued )

In Kilgo’s peanut oil extraction study, since the generator is E↔ −ABCD, the
defining relation is I↔ −ABCDE, and the alias structure is that given in Table
8.20, except that a minus sign should be inserted on one side or the other of
every row of the table. So, for example, αβ22 − γ δε222 may be estimated based
on Kilgo’s data, but neither αβ22 nor γ δε222 separately.

8.3.4 Data Analysis for 2p−1 Fractional Factorials

Once the alias structure of a 2p−1 fractional factorial is understood, the question of
how to analyze data from such a study has a simple answer.

1. Temporarily ignore the last factor and compute the estimated or fitted “ef-
fects.”

2. Somehow judge the statistical significance and apparent real importance of
the “effects” computed for the complete factorial in p − 1 two-level factors.
(Where some replication is available, the judging of statistical significance
can be done through the use of confidence intervals. Where all 2p−1 samples
are of size 1, the device of normal-plotting fitted “effects” is standard.)

3. Finally, seek a plausible simple interpretation of the important fitted “ef-
fects,” recognizing that they are estimates not of the effects in the first p − 1
factors alone, but of those effects plus their aliases.
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Example 9
(continued )

Consider the analysis of Snee’s data, listed in Table 8.17 in Yates standard order
for factors A, B, C, and D (ignoring the existence of factor E). Then, according to
the prescription for analysis just given, the first step is to use the Yates algorithm
(for four factors) on the data. These calculations are summarized in Table 8.21.

Each entry in the final column of Table 8.21 gives the name of the effect
that the corresponding numerical value in the “Cycle 4÷ 16” column would be
estimating if factor E weren’t present, plus the alias of that effect. The numbers
in the next-to-last column must be interpreted in light of the fact that they are
estimating sums of 25 factorial effects.

Since there is no replication indicated in Table 8.17, only normal-plotting
fitted (sums of) effects is available to identify those that are distinguishable from
noise. Figure 8.11 is a normal plot of the last 15 entries of the Cycle 4÷ 16
column of Table 8.21. (Since in most contexts one is a priori willing to grant that
the overall mean response is other than 0, the estimate of it plus its alias(es) is
rarely included in such a plot.)
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Figure 8.11 Normal plot of estimated sums of effects
in Snee’s 25−1 study

Depending upon how the line is drawn through the small estimated (sums of)
effects in Figure 8.11, the estimates corresponding to D+ ABCE, and possibly
B+ ACDE, E+ ABCD, and A+ BCDE as well, are seen to be distinguishable
in magnitude from the others. (The line in Figure 8.11 has been drawn in keeping
with the view that there are four statistically detectable sums of effects, primarily
because a half normal plot of the absolute values of the estimates—not included
here—supports that view.) If one adopts the view that there are indeed four
detectable (sums of) effects indicated by Figure 8.11, it is clear that the simplest
possible interpretation of this outcome is that the four large estimates are each
reflecting primarily the corresponding main effects (and not the aliased 4-factor
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Table 8.21
The Yates Algorithm for a 24 Factorial Applied to Snee’s 25−1 Data

y Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 4 ÷ 16 Sum Estimated

−.63 1.88 −2.46 .66 46.00 2.875 µ
.....
+ αβγ δε22222

2.51 −4.34 3.12 45.34 13.16 .823 α2 + βγ δε2222
−2.68 3.28 22.39 7.34 −20.04 −1.253 β2 + αγ δε2222
−1.66 −.16 22.95 5.82 .88 .055 αβ22 + γ δε222

2.06 13.26 4.16 −9.66 6.14 .384 γ2 + αβδε2222
1.22 9.13 3.18 −10.38 1.02 .064 αγ22 + βδε222
−2.09 14.60 1.91 2.74 .66 .041 βγ22 + αδε222

1.93 8.35 3.91 −1.86 .02 .001 αβγ222 + δε22
6.79 3.14 −6.22 5.58 44.68 2.793 δ2 + αβγ ε2222
6.47 1.02 −3.44 .56 −1.52 −.095 αδ22 + βγ ε222
3.45 −.84 −4.13 −.98 −.72 −.045 βδ22 + αγ ε222
5.68 4.02 −6.25 2.00 −4.60 −.288 αβδ222 + γ ε22
5.22 −.32 −2.12 2.78 −5.02 −.314 γ δ22 + αβε222
9.38 2.23 4.86 −2.12 2.98 .186 αγ δ222 + βε22
4.30 4.16 2.55 6.98 −4.90 −.306 βγ δ222 + αε22
4.05 −.25 −4.41 −6.96 −13.94 −.871 αβγ δ2222 + ε2

interactions). That is, a tentative (because of the incomplete nature of fractional
factorial information) description of the chemical process is that D (reactant
purity), B (catalyst/reactant), A (solvent/reactant), and E (pH of reactant) main
effects are (in that order) the principal determinants of product color. Depending
on the engineering objectives for product color index y, this tentative description
of the system could have several possible interpretations. If large y were desirable,
the high levels of A and D and low levels of B and E appear most attractive. If
small y were desirable, the situation would be reversed. But in fact, Snee’s study
was done not to figure out how to maximize or minimize y, but rather to determine
how to reduce variation in y. The engineering implications of the “D, B, A, and
E main effects only” system description are thus to focus attention on the need to
control variation first in level of factor D (reactant purity), then in level of factor
B (catalyst/reactant), then in level of factor A (solvent/reactant), and finally in
level of factor E (pH of reactant).

Example 10
(continued )

Verify that for Kilgo’s data in Table 8.19, use of the (four-cycle) Yates algorithm
on the data as listed (in standard order for factors A, B, C, and D, ignoring factor
E) produces the estimated (differences of) effects given in Table 8.22.
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Example 10
(continued )

Table 8.22
Estimated Differences of 25 Factorial Effects from Kilgo’s 25−1 Study

Value Difference Estimated Value Difference Estimated

54.3 µ
.....
− αβγ δε22222 0.0 δ2 − αβγ ε2222

3.8 α2 − βγ δε2222 −2.0 αδ22 − βγ ε222
9.9 β2 − αγ δε2222 −.9 βδ22 − αγ ε222
2.6 αβ22 − γ δε222 −3.1 αβδ222 − γ ε22
.6 γ2 − αβδε2222 1.1 γ δ22 − αβε222
.6 αγ22 − βδε222 .1 αγ δ222 − βε22

1.5 βγ22 − αδε222 3.5 βγ δ222 − αε22
1.8 αβγ222 − δε22 22.3 αβγ δ2222 − ε2

The last 15 of these estimated differences are normal-plotted in Figure 8.12.
It is evident from the figure that the two estimated (differences of) effects corre-
sponding to

β2 − αγ δε2222 and αβγ δ2222 − ε2

are significantly larger than the other 13 estimates. The simplest possible interpre-
tation of this outcome is that the two large estimates are each reflecting primarily
the corresponding main effects (not the aliased 4-factor interactions). That is,
a tentative description of the oil extraction process is that average particle size
(factor E) and temperature (factor B), acting more or less separately, are the prin-
ciple determinants of yield. This is an example where the ultimate engineering
objective is to maximize response and the two large estimates are both positive.
So, for best yield one would prefer the high level of B (95◦C temperature) and
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Figure 8.12 Normal plot of estimated differences of
effects in Kilgo’s 25−1 study
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low level of E (1.28 mm particle size). (−ε2 is apparently positive, and since
ε1 = −ε2, the superiority of the low level of E is indicated.)

8.3.5 Some Additional Comments

The next section treats general 1
2q fractions of 2p factorials. But before closing

this discussion of the special case of q = 1, several issues deserve comment. The
first concerns the range of statistical methods that will be provided here for use with
fractional factorials. The data analysis methods presented in this section and the next
are confined to those for the identification of potential “few effects” descriptions of
a p-factor situation. (For example, we do not go on to issues of inference under such
a reduced model.) This stance is consistent with the fact that fractional factorials
are primarily screening devices, useful for gaining some idea about which of many
factors might be important. They are typically not suited (at least without additional
data collection) to serve as the basis for detailed modeling of a response. The insights
they provide must be seen as tentative and as steps along a path of learning about
what factors influence a response.

A second matter regards the sense in which the 1
2 fractions recommended here

are the best ones possible. Other 1
2 fractions could be developed (essentially by

using a product column of signs derived from levels of fewer than all p − 1 of
the first factors to assign levels of the last one). But the alias structures associated
with those alternatives are less attractive than the ones encountered in this section.
That is, here main effects have been aliased with p − 1 factor interactions, 2-
factor interactions with p − 2-factor interactions, and so on. Any other 1

2 fractions
fundamentally different from the ones discussed here would have main effects
aliased with interactions of p − 2 or less factors. They would thus be more likely to
produce data incapable of separating important effects. The “l order effects aliased
with p − l order effects” structure of this section is simply the best one can do with
a 2p−1 fractional factorial.

The last matter for discussion concerns what directions a follow-up investigation
might take in order to resolve ambiguities left after a 2p−1 study is completed.
Sometimes several different simple descriptions of system structure remain equally
plausible after analysis of an initial 1

2 fraction of a full factorial study. One approach
to resolving these is to complete the factorial and “run the other 1

2 fraction.”

Example 11 A 24−1 Fabric Tenacity Study Followed Up by a Second 24−1 Study

Researchers Johnson, Clapp, and Baqai, in “Understanding the Effect of Con-
founding in Design of Experiments: A Case Study in High Speed Weaving”
(Quality Engineering, 1989), discuss a study done to evaluate the effects of four
two-level factors on a measure of woven fabric tenacity. The factors that were
studied are indicated in Table 8.23.
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Example 11
(continued )

Table 8.23
Four Weaving Process Variables and Their Experimental Levels

Factor Weaving Process Variable Factor Levels

A Side of Cloth (l. to r.) nozzle side (−) vs. opposite side (+)
B Yarn Type air spun (−) vs. ring spun (+)
C Pick Density 35 ppi (−) vs. 50 ppi (+)
D Air Pressure 30 psi (−) vs. 45 psi (+)

Factor A reflects the left-to-right location on the fabric width from which a
tested sample is taken. Factor C reflects a count of yarns per inch inserted in the
cloth, top to bottom, during weaving. Factor D reflects the air pressure used to
propel the yarn across the fabric width during weaving.

Initially, a replicated 24−1 study was done using the generator D↔ ABC.
m = 5 pieces of cloth were tested for each of the eight different factor-level
combinations studied. The resulting mean fabric tenacities ȳ, expressed in terms
of strength per unit linear density, are given in Table 8.24. Although it is not
absolutely clear in the article, it also appears that pooling the eight s2 values from
the 1

2 fraction gave sP ≈ 1.16.
Apply the (three-cycle) Yates algorithm to the means listed in Table 8.24 (in

the order given) and verify that the estimated sums of effects corresponding to
the means in Table 8.24 are those given in Table 8.25.

Temporarily ignoring the existence of factor D, confidence intervals based on
these estimates can be made using the m = 5 and p = 3 version of formula (8.13)
from Section 8.2. That is, using 95% two-sided individual confidence intervals,
since ν = 8(5− 1) = 32 degrees of freedom are associated with sP, a precision
of roughly

± (2.04)(1.16)√
5 · 8 = ±.375

should be associated with each of the estimates in Table 8.25. By this standard, the
estimates corresponding to the A+ BCD, AB+ CD, C+ ABD, and BC+ AD

Table 8.24
Eight Sample Means from a 24−1 Fabric Tenacity Experiment

Combination ȳ (g/den.) Combination ȳ (g/den.)

(1) 24.50 cd 25.68
ad 22.05 ac 24.51
bd 24.52 bc 24.68
ab 25.00 abcd 24.23



8.3 Standard Fractions of Two-Level Factorials, Part I: 1
2 Fractions 609

Table 8.25
Estimated Sums of 24 Effects in a 24−1

Fabric Weaving Experiment

Estimate Sum of Effects Estimated

24.396 µ
....
+ αβγ δ2222

−.449 α2 + βγ δ222
.211 β2 + αγ δ222
.456 αβ22 + γ δ22
.379 γ2 + αβδ222
.044 αγ22 + βδ22
−.531 βγ22 + αδ22
−.276 αβγ222 + δ2

sums are statistically significant. Two reasonably plausible and equally simple
tentative interpretations of this outcome are

1. There are detectable A and C main effects and detectable 2-factor inter-
actions of A with B and D.

2. There are detectable A and C main effects and detectable 2-factor inter-
actions of C with B and D.

(For that matter, there are others that you may well find as plausible as these two.)
In any case, the ambiguities left by the collection of the data summarized in

Table 8.24 were unacceptable. To remedy the situation, the authors subsequently
completed the 24 factorial study by collecting data from the other eight combina-
tions defined by the generator D↔ −ABC. The means they obtained are given
in Table 8.26.

One should honestly consider (and hopefully eliminate) the possibility that
there is a systematic difference between the values in Table 8.24 and in Table
8.26 as a result of some unknown factor or factors that changed in the time lapse
between the collection of the first block of observations and the second block. If

Table 8.26
Eight More Sample Means from a Second 24−1

Fabric Tenacity Study

Combination ȳ Combination ȳ

d 23.73 c 24.63
a 23.55 acd 25.78
b 25.98 bcd 24.10
abd 23.64 abc 23.93
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Example 11
(continued )

that possibility can be eliminated, it would make sense to put together the two data
sets, treat them as a single full 24 factorial data set, and employ the methods of
Section 8.2 in their analysis. (Some repetition of a combination or combinations
included in the first study phase—e.g., the center point of the design—would have
been advisable to allow at least a cursory check on the possibility of a systematic
block effect.)

Johnson, Clapp, and Baqai don’t say explicitly what sample sizes were used
to produce the ȳ’s in Table 8.26. (Presumably, m = 5 was used.) Nor do they
give a value for sP based on all 24 samples, so it is not possible to give a complete
analysis of the full factorial data à la Section 8.2. But it is possible to note what
results from the use of the Yates algorithm with the full factorial set of ȳ’s. This
is summarized in Table 8.27.

Table 8.27
Fitted Effects from the Full 24 Factorial Fabric Tenacity Study

Effect Estimate Effect Estimate

µ
....

ȳ
....
= 24.407 δ2 d2 = −.191

α2 a2 = −.321 αδ22 ad22 = .029
β2 b2 = .103 βδ22 bd22 = −.197
αβ22 ab22 = .011 αβδ222 abd222 = .093
γ2 c2 = .286 γ δ22 cd22 = .446
αγ22 ac22 = .241 αγ δ222 acd222 = .108
βγ22 bc22 = −.561 βγ δ222 bcd222 = −.128
αβγ222 abc222 = −.086 αβγ δ2222 abcd2222 = −.011

The statistical significance of the entries of Table 8.27 will not be judged here.
But note that the picture of fabric tenacity given by the fitted effects in this table is
somewhat more complicated than either of the tentative descriptions derived from
the original 24−1 study. The fitted effects, listed in order of decreasing absolute
value, are

BC, CD, A, C, AC, BD, D, . . . , etc.

Although tentative description (2) (page 609) accounts for the first four of these,
the A and C main effects indicated in Table 8.27 are not really as large as
one might have guessed looking only at Table 8.25. Further, the AC 2-factor
interaction appears from Table 8.27 to be nearly as large as the C main effect.
This is obscured in the original 24−1 fractional factorial because the AC 2-factor
interaction is aliased with an apparently fairly large BD 2-factor interaction of
opposite sign.
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Ultimately, this example is one of a fairly complicated system of effects. It
admirably illustrates the difficulties and even errors of interpretation that can arise
when only fractional factorial data are available for use in studying such systems.

In conclusion, it should be said that when a 2p−1 fractional factorial seems to
leave only very mild ambiguities of interpretation, it can be possible to resolve those
with the use of only a few additional data points (rather than requiring the addition
of the entire other 1

2 fraction of combinations). But this is a more advanced topic
than is sensibly discussed here. The interested reader can refer to Chapter 14 of
Daniel’s Applications of Statistics to Industrial Experimentation for an illuminating
discussion of this matter.
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1. In a 25−1 study with defining relation I↔ ABCDE,
it is possible for both the A main effect and the
BCDE 4-factor interaction to be of large magnitude
but for both of them to go undetected. How might
this quite easily happen?

2. The paper “How to Optimize and Control the Wire
Binding Process: Part I” by Scheaffer and Levine
(Solid State Technology, November 1990) contains
the results of a 25−1 fractional factorial experiment
with additional repeated center point, run in an ef-
fort to determine how to improve the operation of a
K&S Model 1484 XQ wire bonder. The generator
E↔ ABCD was used in setting up the 25−1 part
of the experiment involving the factors and levels
indicated in the accompanying table.

Factor A Constant Velocity .6 in./sec (−) vs. 1.2 in./sec (+)
Factor B Temperature 150◦C (−) vs. 200◦C (+)
Factor C Bond Force 80 g (−) vs. 120 g (+)
Factor D Ultrasonic Power 120 mW (−) vs. 200 mW (+)
Factor E Bond Time 10 ms (−) vs. 20 ms (+)

The response variable, y, was a force (in grams) re-
quired to pull wire bonds made on the machine un-
der a particular combination of levels of the factors.
(Each y was actually an average of the pull forces
required on a 30 lead test sample.) The responses
from the 25−1 part of the study were as follows:

Combination y Combination y

e 8.5 d 5.8

a 7.9 ade 8.0

b 7.7 bde 7.8

abe 8.7 abd 8.7

c 9.0 cde 6.9

ace 9.2 acd 8.5

bce 8.6 bcd 8.6

abc 9.5 abcde 8.3

In addition, three runs were made at a constant
velocity of .9 in./sec, a temperature of 175◦C, a
bond force of 100 g, a power of 160 mW, and a
bond time of 15 ms. These produced y values of
8.1, 8.6, and 8.1.
(a) Place the 16 observations from the 25−1 part

of the experiment in Yates standard order as
regards levels of factors A through D. Use the
four-cycle Yates algorithm to compute fitted
sums of 25 effects. Identify what sum of effects
each of these estimates. (For example, the first
estimates µ

.....
+ αβγ δε22222.)

(b) The three center points can be thought of as
providing a pooled sample variance here. You
may verify that sP = .29. If one then wishes to
make confidence intervals for the sums of ef-
fects, it is possible to use the m = 1, p = 4, and
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ν = 2 version of formula (8.13) of Section 8.2.
What is the plus-or-minus value that comes
from this program, for individual 95% two-
sided confidence intervals? Using this value,
which of the fitted sums of effects would you
judge to be statistically detectable? Does this
list suggest to you any particularly simple/
intuitive description of how bond strength de-
pends on the levels of the five factors?

(c) Based on your analysis from (b), if you had
to guess what levels of the factors A, C, and
D should be used for high bond strength, what
would you recommend? If the CE+ ABD fit-
ted sum reflects primarily the CE 2-factor in-
teraction, what level of E then seems best?
Which of the combinations actually observed
had these levels of factors A, C, D, and E? How
does its response compare to the others?

3. Return to the fire retardant flame test study of Ex-
ercise 3 of Section 8.2. The original study, summa-
rized in that exercise, was a full 24 factorial study.
(a) If you have not done so previously, use the

(four-cycle) Yates algorithm and compute the

fitted 24 factorial effects for the study. Normal-
plot these. What subject-matter interpretation
of the data is suggested by the normal plot?

Now suppose that instead of a full factorial study,
only the 1

2 fraction with generator D↔ ABC had
been conducted.
(b) Which 8 of the 16 treatment combinations

would have been run? List these combinations
in Yates standard order as regards factors A,
B, and C and use the (three-cycle) Yates al-
gorithm to compute the 8 estimated sums of
effects that it is possible to derive from these
8 treatment combinations. Verify that each of
these 8 estimates is the sum of two of your
fitted effects from part (a). (For example, you
should find that the first estimated sum here is
ȳ
....
+ abcd2222 from part (a).)

(c) Normal-plot the last 7 of the estimated sums
from (b). Interpret this plot. If you had only the
data from this 24−1 fractional factorial, would
your subject-matter conclusions be the same as
those reached in part (a), based on the full 24

data set?
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8.4 Standard Fractions of Two-Level Factorials
Part II: General 2p−q Studies

Section 8.3 began the study of fractional factorials with the 1
2 fractions of 2p

factorials, considering in turn the issues of (1) choice, (2) determination of the
corresponding alias structure, and (3) data analysis. The approaches used to treat
2p−1 studies extend naturally to the smaller 1

2q fractions of 2p factorials for q > 1.
This section first shows how the ideas of Section 8.3 are generalized to cover

the general 2p−q situation. Then it considers the notion of design resolution and
its implications for comparing alternative possible 2p−q plans. Next an introduction
is given to how the 2p−q ideas can be employed where a blocking variable (or
variables) dictate the use of a number of blocks equal to a power of 2. The section
concludes with some comments regarding wise use of this 2p−q material.

8.4.1 Using 2p−q Fractional Factorials

The recommended method of choosing a 1
2 fraction of a 2p factorial uses a column

of signs developed as products of plus and minus signs for all of the first p − 1
factors. The key to understanding how the ideas of the previous section generalize
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to 1
4 , 1

8 , 1
16 , etc. fractions of 2p studies is to realize that there are several possible

similar columns that could be developed using only some of the first p − 1 factors.
When moving from 1

2 fractions to 1
2q fractions of 2p factorials, one makes use of

such columns in assigning levels of the last q factors and then develops and uses an
alias structure consistent with the choice of columns.

For example, first consider the situation for cases where p − q = 3—that is,
where 23 = 8 different combinations of levels of p two-level factors are going to be
included in a study. A table of signs specifying all eight possible combinations of
levels of the first three factors A, B, and C, with four additional columns made up
as the possible products of the first three columns, is given in Table 8.28.

The final column of Table 8.28 can be used to choose levels of factor D for a
best possible 24−1 fractional factorial study. But it is also true that two or more of
the product columns in Table 8.28 can be used to choose levels of several additionalChoosing a 2p−q

fractional factorial
with p− q = 3

factors (beyond the first three). If this is done, one winds up with a fractional factorial
that can be understood in the same ways it is possible to make sense of the standard
2p−1 data structures discussed in Section 8.3.

Table 8.28
Signs for Specifying all Eight Combinations of Three Two-Level Factors
and Four Sets of Products of Those Signs

A B C AB Product AC Product BC Product ABC Product

− − − + + + −
+ − − − − + +
− + − − + − +
+ + − + − − −
− − + + − − +
+ − + − + − −
− + + − − + −
+ + + + + + +

Example 12 A 26−3 Propellant Slurry Study

The text Probability and Statistics for Engineers and Scientists, by Walpole and
Myers, contains an interesting 26−3 fractional factorial data set taken originally
from the Proceedings of the 10th Conference on the Design of Experiments
in Army Research, Development and Testing (ARO-D Report 65-3). The study
investigated the effects of six two-level factors on X-ray intensity ratios associated
with a particular component of propellant mixtures in X-ray fluorescent analyses
of propellant slurry. Factors A, B, C, and D represent the concentrations (at low
and high levels) of four propellant components. Factors E and F represent the
weights (also at low and high levels) of fine and coarse particles present.
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Example 12
(continued )

Eight different combinations of levels of factors A, B, C, D, E, and F were
each tested twice for X-ray intensity ratio, y. The eight combinations actually
included in the study can be thought of as follows. Using the columns of Table
8.28, levels of factor D were chosen using the signs in the ABC product column
directly; levels of factor E were chosen by reversing the signs in the BC product
column; and levels of factor F were chosen by reversing the signs of the AC prod-
uct column. Verify that such a prescription implies that the eight combinations
included in the study (written down in Yates order for factors A, B, and C) were
as displayed in Table 8.29. The eight combinations indicated in Table 8.29 are,
of course, 1

8 of the 64 different possible combinations of levels of the six factors.

Table 8.29
Combinations Included in the 26−3 Propellant Slurry Study

A B C F E D Combination Name

− − − − − − (1)
+ − − + − + adf
− + − − + + bde
+ + − + + − abef
− − + + + + cdef
+ − + − + − ace
− + + + − − bcf
+ + + − − + abcd

The development of 2p−q fractional factorials has been illustrated with eight-
combination (i.e., p − q = 3) plans. But it should be obvious that there are 16-row,
32-row, 64-row, . . . , etc. versions of Table 8.28. Using any of these, one can assign
levels for the last q factors according to signs in product columns and end up with a
1

2q fraction of a full 2p factorial plan. When this is done, the 2p factorial effects are
aliased in 2p−q groups of 2q effects each. The determination of this alias structure
can be made by using q generators to develop a defining relation for the fractionalDetermining the

alias structure
of a 2p−q factorial

factorial. A general definition of the notion of generators for a 2p−q fractional
factorial is next.

Definition 9 When a 2p−q fractional factorial comes about by assigning levels of each of
the “last” q factors based on a different column of products of signs for the
“first” p − q factors, the q different relationships

(
the name of an
additional factor

)
↔ ±

(
a product of names of some
of the first p − q factors

)
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corresponding to how the combinations are chosen are called generators of
the plan.

Each generator can be translated into a statement with I on the left side and
then taken individually, multiplied in pairs, multiplied in triples, and so on until the
whole defining relation is developed. (See again Definition 8, page 602, for the
meaning of this term.) In doing so, use can be made of the convention that minus
any letter times minus that letter is I.

Example 12
(continued )

In the Army propellant example, the q = 3 generators that led to the combinations
in Table 8.29 were

D↔ ABC

E↔ −BC

F↔ −AC

Multiplying through by the left sides of these, one obtains the three relationships

I↔ ABCD (8.25)

I↔ −BCE (8.26)

I↔ −ACF (8.27)

But in light of the conventions of formal multiplication, if I↔ ABCD and
I↔ −BCE, it should also be the case that

I↔ (ABCD) · (−BCE)

that is,

I↔ −ADE

Similarly, using relationships (8.25) and (8.27), one obtains

I↔ −BDF

using relationships (8.26) and (8.27), one obtains

I↔ ABEF
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Example 12
(continued )

and finally, using all three relationships (8.25), (8.26), and (8.27), one has

I↔ CDEF

Combining all of this, the complete defining relation for this 26−3 study is

I↔ ABCD↔ −BCE↔ −ACF↔
(8.28)I

−ADE↔ −BDF↔ ABEF↔ CDEF

Defining relation (8.28) is rather formidable, but it tells the whole truth about
what can be learned based on the 1

8 of 64 possible combinations of six two-level
factors. Relation (8.28) specifies all effects that will be aliased with the grand
mean. Appropriately multiplying through expression (8.28) gives all aliases of
any effect of interest. For example, multiplying through relation (8.28) by A gives

A↔ BCD↔ −ABCE↔ −CF↔ −DE↔ −ABDF↔ BEF↔ ACDEF

and for example, the (high level) A main effect will be indistinguishable from
minus the (all high levels) CF 2-factor interaction.

With a 2p−q fractional factorial’s defining relation in hand, the analysis of dataData analysis for
a 2p−qstudy proceeds exactly as indicated earlier for 1

2 fractions. It is necessary to

1. compute estimates of (sums and differences of) effects ignoring the last q
factors,

2. judge their statistical detectability using confidence interval or normal plot-
ting methods, and then

3. seek a plausible tentative interpretation of the important estimates in light of
the alias structure.

Example 12
(continued )

In the Army propellant study, m = 2 trials for each of the 26−3 combinations listed
in Table 8.29 gave s2

P = .02005 and the sample averages listed in Table 8.30.
Temporarily ignoring all but the (“first”) three factors A, B, and C (since

the levels of D, E and F were derived or generated from the levels of A, B
and C), the (three-cycle) Yates algorithm can be used on the sample means, as
shown in Table 8.31. Remember that the estimates in the next-to-last column
of Table 8.31 must be interpreted in light of the alias structure for the original
experimental plan. So for example, since (both from the original generators and
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Table 8.30
Eight Sample Means from the 26−3 Propellant Slurry Study

Combination ȳ Combination ȳ

(1) 1.1214 cdef .9285
adf 1.0712 ace 1.1635
bde .9415 bcf .9561
abef 1.1240 abcd .9039

from relation (8.28)) one knows that D↔ ABC, the −.0650 value on the last
line of Table 8.31 is estimating

αβγ222 + δ2 ± (six other effects)

So if one were expecting a large main effect of factor D, one would expect it to
be evident in the −.0650 value.

Since a value of sP is available here, there is no need to resort to normal-
plotting to judge the statistical detectability of the values coming out of the
Yates algorithm. Instead (still temporarily calculating as if only the first three
factors were present) one can make confidence intervals based on the estimates,
by employing the ν = 8 = 16− 8, m = 2, and p = 3 version of formula (8.13)
from Section 8.2. That is, using 95% two-sided individual confidence intervals,
a precision of

±2.306

√
.02005√
2 · 23

= ±.0817

should be attached to each of the estimates in Table 8.31. By this standard,
none of the estimates from the propellant study are clearly different from 0. For

Table 8.31
The Yates Algorithm for a 23 Factorial Applied to the 26−3 Propellant Data

ȳ Cycle 1 Cycle 2 Cycle 3 Cycle 3 ÷ 8 Sum Estimated

1.1214 2.1926 4.2581 8.2101 1.0263 µ
....
+ aliases

1.0712 2.0655 3.9520 .3151 .0394 α2 + aliases
.9415 2.0920 .1323 −.3591 −.0449 β2 + aliases

1.1240 1.8600 .1828 −.0545 −.0068 αβ22 + aliases
.9285 −.0502 −.1271 −.3061 −.0383 γ2 + aliases

1.1635 .1825 −.2320 .0505 .0063 αγ22 + aliases
.9561 .2350 .2327 −.1049 −.0131 βγ22 + aliases
.9039 −.0522 −.2872 −.5199 −.0650 αβγ222 + aliases



618 Chapter 8 Inference for Full and Fractional Factorial Studies

Example 12
(continued )

engineering purposes, the bottom line is that more data are needed before even
the most tentative conclusions about system behavior should be made.

Example 13 A 25−2 Catalyst Development Experiment

Hansen and Best, in their paper “How to Pick a Winner” (presented at the 1986
annual meeting of the American Statistical Association), described several in-
dustrial experiments conducted in a research program aimed at the development
of an effective catalyst for producing ethyleneamines by the amination of mo-
noethanolamine. One of these was a partially replicated 25−2 fractional factorial
study in which the response variable, y, was percent water produced during the
reaction period. The five two-level experimental factors were as in Table 8.32.
(The T-372 support was an alpha-alumina support and the T-869 support was a
silica alumina support.)

The fractional factorial described by Hansen and Best has (q = 2) generators
D↔ ABC and E↔ BC. The resulting defining relation (involving 22 = 4 strings
of letters) is then

I↔ ABCD↔ BCE↔ ADEI
where the fact that the ADE 3-factor interaction is aliased with the grand mean can
be seen by multiplying together ABCD and BCE, which (from the generators)
themselves represent effects aliased with the grand mean. Here one sees that
effects will be aliased together in eight groups of four.

The data reported by Hansen and Best, and some corresponding summary
statistics, are given in Table 8.33. The pooled sample variance derived from the
values in Table 8.33 is

s2
P =

(3− 1)(2.543)+ (2− 1)(2.163)+ (2− 1)(.238)

(3− 1)+ (2− 1)+ (2− 1)

= 1.872

Table 8.32
Five Catalysis Variables and Their Experimental Levels

Factor Process Variable Levels

A Ni/Re Ratio 2/1 (−) vs. 20/1 (+)
B Precipitant (NH4)2CO3 (−) vs. none (+)
C Calcining Temperature 300◦C (−) vs. 500◦C (+)
D Reduction Temperature 300◦C (−) vs. 500◦C (+)
E Support Used T-372 (−) vs. T-869 (+)
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Table 8.33
Data from a 25−2 Catalyst Study and Corresponding Sample
Means and Variances

Combination % Water Produced, y ȳ s2

e 8.70, 11.60, 9.00 9.7670 2.543
ade 26.80 26.800 —
bd 24.88 24.880 —
ab 33.15 33.150 —
cd 28.90, 30.980 29.940 2.163
ac 30.20 30.200 —
bce 8.00, 8.69 8.345 .238
abcde 29.30 29.300 —

with ν = (3− 1)+ (2− 1)+ (2− 1) = 4 associated degrees of freedom. The
corresponding pooled sample standard deviation is√

s2
P =
√

1.872 = 1.368I

So temporarily ignoring the existence of factors D and E, it is possible to use
the p = 3 version of formula (8.12) to derive precisions to attach to the estimates
(of sums of 25 factorial effects) that result from the use of the Yates algorithm on
the sample means in Table 8.33. That is, for 95% two-sided individual confidence
intervals, precisions of

±2.776(1.368)
1

23

√
1

3
+ 1

1
+ 1

1
+ 1

1
+ 1

2
+ 1

1
+ 1

2
+ 1

1

that is,

±1.195% waterI

can be attached to the estimates.
The reader can verify that the (three-cycle) Yates algorithm applied to the

means in Table 8.33 gives the estimates in Table 8.34. Identifying those estimates
in Table 8.34 whose magnitudes make them statistically detectable according to
a criterion of ±1.195, there are (in order of decreasing magnitude)

α2 + βγ δ222 + αβγ ε2222 + δε22 estimated as 5.815

βγ22 + αδ22 + ε2 + αβγ δε22222 estimated as −5.495

αβγ222 + δ2 + αε22 + βγ δε2222 estimated as 3.682

αβ22 + γ δ22 + αγ ε222 + βδε222 estimated as 1.492



620 Chapter 8 Inference for Full and Fractional Factorial Studies

Example 13
(continued )

Table 8.34
Estimates of Sums of Effects
for the Catalyst Study

Sum of Effects Estimated Estimate

grand mean + aliases 24.048
A + aliases 5.815
B + aliases −.129
AB + aliases 1.492
C + aliases .399
AC + aliases −.511
BC + aliases −5.495
ABC + aliases 3.682

The simplest possible tentative interpretation of the first two of these results is that
the A and E main effects are large enough to see above the background variation.
What to make of the third, given the first two, is not so clear. The large 3.682
estimate can equally simply be tentatively attributed to a D main effect or to an
AE 2-factor interaction. (Interestingly, Hansen and Best reported that subsequent
experimentation was done with the purpose of determining the importance of the
D main effect, and indeed, the importance of this factor in determining y was
established.)

Exactly what to make of the fourth statistically significant estimate is even
less clear. It is therefore comforting that, although big enough to be detectable,
it is less than half the size of the third largest estimate. In the particular real
situation, the authors seem to have found an “A, E, and D main effects only”
description of y useful in subsequent work with the chemical system.

The reader may have noticed that the possibilities discussed in the previous
example do not even exhaust the plausible interpretations of the fact that three
estimated sums of effects are especially large. For example, “large DE 2-factor
interactions and large D and E main effects” is yet another alternative possibility.
This ambiguity serves to again emphasize the tentative nature of conclusions that
can be drawn on the basis of small fractions of full factorials. And it also underlines
the absolute necessity of subject-matter expertise and follow-up study in sorting out
the possibilities in a real problem. There is simply no synthetic way to tell which of
various simple alternative explanations suggested by a fractional factorial analysis
is the right one.

8.4.2 Design Resolution

The results of five different real applications of 2p−q plans have been discussed in
Examples 9, 10, 11, 12, and 13. From them, it should be clear how important it is to
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have the simplest alias structure possible when it comes time to interpret the results
of a fractional factorial study. The object is to have low-order effects (like mainGood choice

of a fractional
factorial

effects and 2-factor interactions) aliased not with other low-order effects, but rather
only with high-order effects (many-factor interactions). It is the defining relation
that governs how the 2p factorial effects are divided up into groups of aliases. If
there are only long products of factor names appearing in the defining relation,
low-order effects are aliased only with high-order effects. On the other hand, if there
are short products of factor names appearing, there will be low-order effects aliased
with other low-order effects. As a kind of measure of quality of a 2p−q plan, it is
thus common to adopt the following notion of design resolution.

Definition 10 The resolution of a 2p−q fractional factorial plan is the number of letters in
the shortest product appearing in its defining relation.

In general, when contemplating the use of a 2p−q design, one wants the largest
resolution possible for a given investment in 2p−q combinations. Not all choices of
generators give the same resolution. In Section 8.3, the prescription given for the 1

2
fractions was intended to give 2p−1 fractional factorials of resolution p (the largest
resolution possible). For general 2p−q studies, one must be a bit careful in choosing
generators. What seems like the most obvious choice need not be the best in terms
of resolution.

Example 14 Resolution 4 in a 26−2 Study

Consider planning a 26−2 study—that is, a study including 16 out of 64 possible
combinations of levels of factors A, B, C, D, E, and F. A rather natural choice of
two generators for such a study is

E↔ ABCD

F↔ ABC

The corresponding defining relation is

I↔ ABCDE↔ ABCF↔ DEFI
The resulting design is of resolution 3, and there are some main effects aliased
with (only) 2-factor interactions.

On the other hand, the perhaps slightly less natural choice of generators

E↔ BCD

F↔ ABC
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Example 14
(continued )

has defining relation

I↔ BCDE↔ ABCF↔ ADEFI
and is of resolution 4. No main effect is aliased with any interaction of order less
than 3. This second choice is better than the first in terms of resolution.

Table 8.35 indicates what is possible in terms of resolution for various numbers
of factors and combinations for a 2p−q fractional factorial. The table was derived
from a more detailed one on page 410 of Statistics for Experimenters by Box, Hunter,
and Hunter, which gives not only the best resolutions possible but also generators for
designs achieving those resolutions. The more limited information in Table 8.35 is
sufficient for most purposes. Once one is sure what is possible, it is usually relatively
painless to do the trial-and-error work needed to produce a plan of highest possible
resolution. And it is probably worth doing as an exercise, to help one consider the
pros and cons of various choices of generators for a given set of real factors.

Table 8.35 has no entries in the “8 combinations” row for more than 7 factors.
If the table were extended beyond 11 factors, there would be no entries in the “16
samples” row beyond 15 factors, no entries in the “32 samples” row beyond 31
factors, etc. The reason for this should be obvious. For 8 combinations, there are
only 7 columns total to use in Table 8.28. Corresponding tables for 16 combinations
would have only 15 columns total, for 32 combinations only 31 columns total, etc.

As they have been described here, 2p−q fractional factorials can be used to study
at most 2t − 1 factors in 2t samples. The cases of 7 factors in 8 combinations, 15
factors in 16 combinations, 31 factors in 32 combinations, etc. represent a kind of
extreme situation where a maximum number of factors is studied (at the price of
creating a worst possible alias structure) in a given number of combinations. For the
case of p = 7 factors in 8 combinations, effects are aliased in 27−4 = 8 groups of
24 = 16; for the case of p = 15 factors in 16 combinations, the effects are aliased in
215−11 = 16 groups of 211 = 2,048; etc. These extreme cases of 2t − 1 factors in 2t

combinations are sometimes called saturated fractional factorials. They have very
complicated alias structures and can support only the most tentative of conclusions.

Table 8.35
Best Resolutions Possible for Various Numbers of Combinations in a 2p−q Study

Number of Factors (p)

4 5 6 7 8 9 10 11

8 4 3 3 3 — — — —
Number of 16 5 4 4 4 3 3 3

Combinations (2p−q) 32 6 4 4 4 4 4
64 7 5 4 4 4

128 8 6 5 5



8.4 Standard Fractions of Two-Level Factorials Part II: General 2p−q Studies 623

Example 15 A 16-Run 15-Factor Process Development Study

The article “What Every Technologist Should Know About Experimental Design”
by C. Hendrix (Chemtech, 1979) includes the results from an unreplicated 16-run
(saturated) 15-factor experiment. The response, y, was a measure of cold crack
resistance for an industrial product. Experimental factors and levels were as listed
in Table 8.36.

Table 8.36
15 Process Variables and Their Experimental Levels

Factor Process Variable Levels

A Coating Roll Temperature 115◦ (−) vs. 125◦ (+)
B Solvent Recycled (−) vs. Refined (+)
C Polymer X-12 Preheat No (−) vs. Yes (+)
D Web Type LX-14 (−) vs. LB-17 (+)
E Coating Roll Tension 30 (−) vs. 40 (+)
F Number of Chill Rolls 1 (−) vs. 2 (+)
G Drying Roll Temperature 75◦ (−) vs. 80◦ (+)
H Humidity of Air Feed to Dryer 75% (−) vs. 90% (+)
J Feed Air to Dryer Preheat No (−) vs. Yes (+)
K Dibutylfutile in Formula 12% (−) vs. 15% (+)
L Surfactant in Formula .5% (−) vs. 1% (+)
M Dispersant in Formula .1% (−) vs. 2% (+)
N Wetting Agent in Formula 1.5% (−) vs. 2.5% (+)
O Time Lapse Before Coating Web 10 min (−) vs. 30 min (+)
P Mixer Agitation Speed 100 RPM (−) vs. 250 RPM (+)

The experimental plan used was defined by the q = 11 generators

E↔ ABCD, F↔ BCD, G↔ ACD, H↔ ABC, J↔ ABD, K↔ CD,
L↔ BD, M↔ AD, N↔ BC, O↔ AC, and P↔ AB

The combinations actually run and the cold crack resistances observed are given
in Table 8.37.

Ignoring all factors but A, B, C, and D, the combinations listed in Table 8.37
are in Yates standard order and are therefore ready for use in finding estimates
of sums of effects. Table 8.38 shows the results of using the (four-cycle) Yates
algorithm on the 16 observations listed in Table 8.37. A normal plot of the last
15 of these estimates is shown in Figure 8.13. It is clear from the figure that the
two corresponding to B+ aliases and F+ aliases are detectably larger than
the rest.
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Example 15
(continued )

Table 8.37
16 Experimental Combinations and Measured
Cold Crack Resistances

Combination y Combination y

eklmnop 14.8 dfgjnop 17.8
aghjkln 16.3 adefhmn 18.9
bfhjkmo 23.5 bdeghlo 23.1
abefgkp 23.9 abdjlmp 21.8
cfghlmp 19.6 cdehjkp 16.6
acefjlo 18.6 acdgkmo 16.7
bcegjmn 22.3 bcdfkln 23.5
abchnop 22.2 abcdefghjklmnop 24.9
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Figure 8.13 Normal plot of estimated sums of effects in
the 215−11 process development study

It is not feasible to write out the whole defining relation for this 215−11

study. Effects are aliased in 2p−q = 215−11 = 16 groups of 2q = 211 = 2,048. In
particular (though it would certainly be convenient if the 2.87 estimate in Table
8.38 could be thought of as essentially representing β2), β2 has 2,047 aliases,
some of them as simple as 2-factor interactions. By the same token, it would
certainly be convenient if the small estimates in Table 8.38 were indicating that
all summands of the sums of effects they represent were small. But the possibility
of cancellation in the summation must not be overlooked.

The point is that only the most tentative description of this system should
be drawn from even this very simple “two large estimates” outcome. The data
in Table 8.37 hint at the primary importance of factors B and F in determining
cold crack resistance, but the case is hardly airtight. There is a suggestion of
a direction for further experimentation and discussion with process experts but
certainly no detailed map of the countryside where one is going.
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Table 8.38
Estimates of Sums of Effects for the 215−11

Process Development Study

Sum of Effects Represented Estimate

grand mean + aliases 20.28
A + aliases .13
B + aliases 2.87
P + aliases (including AB) −.08
C + aliases .27
O + aliases (including AC) −.08
N + aliases (including BC) −.19
H + aliases (including ABC) .36
D + aliases .13
M + aliases (including AD) .03
L + aliases (including BD) .04
J + aliases (including ABD) −.06
K + aliases (including CD) −.26
G + aliases (including ACD) .29
F + aliases (including BCD) 1.06
E + aliases (including ABCD) .11

One thing that can be said fairly conclusively on the basis of this study is
that the analysis points out what is in retrospect obvious in Table 8.37. Consistent
with the “B+ aliases and F+ aliases sums are positive and large” story told
in Figure 8.13, the largest four values of y listed in Table 8.37 correspond to
combinations where both B and F are at their high levels.

8.4.3 Two-Level Factorials and Fractional
Factorials in Blocks (Optional )

A somewhat specialized but occasionally useful adaptation of the 2p−q material
presented here has to do with the analysis of full or fractional two-level factorial
studies run in complete or incomplete blocks. When the number of blocks under
consideration is itself a power of 2, clever use of the methods developed in this
chapter can guide the choice of which combinations to place in incomplete blocks,
as well as the analysis of data from both incomplete and complete block studies.

The basic idea used is to formally represent one 2t -level factor “Blocks” as t
“extra” two-level factors. One lets combinations of levels of these extra factors define
the blocks into which combinations of levels of the factors of interest are placed.
In data analysis, effects involving only the extra factors as Block main effects and
effects involving both the extra factors and the factors of interest are recognized
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as Block×Treatment interactions. In carrying out this program, it is fairly common
(though not necessarily safe) to operate as if the Block×Treatment interactions
were all negligible. How choice and analysis of blocked 2p−q studies proceed will
be illustrated with a series of three examples that are variations on Example 11.

Example 16
(Example 11 revisited )

A 24 Fabric Tenacity Study Run in Two Blocks

In the weaving study of Johnson, Clapp, and Baqai, four factors—A, B, C,
and D—were studied. The discussion in Section 8.3 described how the authors
originally ran a replicated 24−1 fractional factorial with defining relation I↔
ABCD. This was followed up later with a second 24−1 fractional factorial having
defining relation I↔ −ABCD, thus completing the full 24 factorial. However,
since the study of the two 1

2 fractions was separated in time, it is sensible to
think of the two parts of the study as different blocks—that is, to think of a fifth
two-level factor (say, E) representing the time of observation.

How then to use the formal multiplication idea to understand the alias struc-
ture? Notice that there are 16 different samples and five factors for consideration.
This suggests that somehow (at least in formal terms) this situation might be
thought of as a 25−1 data structure. Further, the two formal expressions

I↔ ABCD (8.29)

I↔ −ABCD (8.30)

define the two sets of 8 out of 16 ABCD combinations actually run. These result
from a formal expression like

I↔ ABCDE (8.31)

where E can be thought of as contributing either the plus or the minus signs in
expressions (8.29) and (8.30). If one calls block 1 (the first set of 8 samples) the
high level of E, expression (8.31) leads to exactly the I↔ ABCD 1

2 -fraction of
24 combinations of A, B, C, and D for use as block 1. And the I↔ −ABCD
1
2 -fraction for use as block 2. This can be seen in Table 8.39.

With factor E designating block number, the two columns of Table 8.39
taken together designate the I↔ ABCDE 1

2 -fraction of 25 A, B, C, D, and E
combinations. And (ignoring the e) the first column of Table 8.39 designates
the I↔ ABCD 1

2 -fraction of 24 A, B, C, and D combinations, while the second
designates the I↔ −ABCD 1

2 -fraction of 24 A, B, C, and D combinations.
Once it is clear that the Johnson, Clapp, and Baqai study can be thought

of in terms of expression (8.31) with the two-level blocking factor E, it is also
clear how any block effects will show up during data analysis. One temporarily
ignores the blocks and uses the Yates algorithm to compute fitted 24 factorial
effects. It is then necessary to remember, for example, that the fitted ABCD 4-
factor interaction reflects not only αβγ δ2222 but any block main effects as well.
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Table 8.39
A 25−1 Fractional Factorial or
a 24 Factorial in Two Blocks

Block 1 Block 2

e a
abe b
ace c
bce abc
ade d
bde abc
cde acd
abcde bcd

And for example, any 2-factor interaction of A and blocks will be reflected in
the fitted BCD 3-factor interaction. Of course, if all interactions with blocks are
negligible, all fitted effects except that for the ABCD 4-factor interaction would
indeed represent the appropriate 24 factorial effects.

Example 17 A 24 Factorial Run in Four Blocks

For the sake of illustration, suppose that Johnson, Clapp, and Baqai had a priori
planned to conduct a full 24 factorial set of ABCD combinations in four incom-
plete blocks (of four combinations each). Consider how those blocks might have
been chosen and how subsequent data analysis would have proceeded.

The one four-level factor Blocks can here be thought of in terms of the
combinations of two extra two-level factors, which can be designated as E and F.
In order to accommodate the original four factors and these two additional ones
in 16 ABCDEF combinations, one must choose a 26−2 design by specifying two
generators. The choices

E↔ BCD (8.32)

F↔ ABC (8.33)

leading to the defining relation

I↔ BCDE↔ ABCF↔ ADEF (8.34)

will be used here. Table 8.40 indicates the 16 combinations of levels of factors A
through F prescribed by the generators (8.32) and (8.33).
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Example 17
(continued )

The four different combinations of levels of E and F ((1), e, f, and ef) can be
thought as designating in which block a given ABCD combination should appear.
So generators (8.32) and (8.33) prescribe the division of the full 24 factorial (in
the factors A through D) into the blocks indicated in Table 8.40 and Table 8.41.

As always, the defining relation (given here in display (8.34)) describes how
effects are aliased. Table 8.42 indicates the aliases of each of the 24 factorial
effects, obtained by multiplying through relation (8.34) by the various combina-
tions of the letters A, B, C, and D. Notice from Table 8.42 that the BCD and ABC
3-factor interactions are aliased with block main effects. So is the AD 2-factor

Table 8.40
16 Combinations of Levels of A through F

A B C D E F Block Prescribed by Levels of E and F

− − − − − − 1
+ − − − − + 3
− + − − + + 4
+ + − − + − 2
− − + − + + 4
+ − + − + − 2
− + + − − − 1
+ + + − − + 3
− − − + + − 2
+ − − + + + 4
− + − + − + 3
+ + − + − − 1
− − + + − + 3
+ − + + − − 1
− + + + + − 2
+ + + + + + 4

Table 8.41
A 24 Factorial in Four Blocks
(from a 26−2 Fractional Factorial)

Block 1 Block 2 Block 3 Block 4

(1) ab a b
bc ac abc c
abd d bd ad
acd bcd cd abcd
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Table 8.42
Aliases of the 24 Factorial Effects
When Run in Four Blocks Prescribed
by Generators (8.32) and (8.33)

I↔ BCDE↔ ABCF↔ ADEF
A↔ ABCDE↔ BCF↔ DEF
B↔ CDE↔ ACF↔ ABDEF
AB↔ ACDE↔ CF↔ BDEF
C↔ BDE↔ ABF↔ ACDEF
AC↔ ABDE↔ BF↔ CDEF
BC↔ DE↔ AF↔ ABCDEF
ABC↔ ADE↔ F↔ BCDEF
D↔ BCE↔ ABCDF↔ AEF
AD↔ ABCE↔ BCDF↔ EF
BD↔ CE↔ ACDF↔ ABEF
ABD↔ ACE↔ CDF↔ BEF
CD↔ BE↔ ABDF↔ ACEF
ACD↔ ABE↔ BDF↔ CEF
BCD↔ E↔ ADF↔ ABCEF
ABCD↔ AE↔ DF↔ BCEF

interaction, since one of its aliases is EF, which involves only the two-level extra
factors E and F used to represent the four-level factor Blocks. On the other hand,
if interactions with Blocks are negligible, it is only these three of the 24 factorial
effects that are aliased with other possibly nonnegligible effects. (For any other
of the 24 factorial effects, each alias involves letters both from the group A, B, C,
and D and also from the group E and F—and is therefore some kind of Block ×
Treatment interaction.)

Analysis of data from a plan like that in Table 8.41 would proceed as indicated
repeatedly in this chapter. The Yates algorithm applied to sample means listed
in Yates standard order for factors A, B, C, and D produces estimates that are
interpreted in light of the alias structure laid out in Table 8.42.

Example 18 A 24−1 Fractional Factorial Run in Four Blocks

As a final variant on the 4-factor weaving example, consider how the original 1
2

fraction of the 24 factorial might itself have been run in four incomplete blocks of
two combinations. (Imagine that for some reason, only two combinations could
be prepared on any single day and that there was some fear of Day effects related
to environmental changes, instrument drift, etc.)
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Example 18
(continued )

Only eight combinations are to be chosen. In doing so, one needs to account
for the four experimental factors A, B, C, and D and two extras E and F, which
can be used to represent the four-level factor Blocks. Starting with the first three
experimental factors A, B, and C (three of them because 23 = 8), one needs to
choose three generators. The original 24−1 study had generator

D↔ ABC

so it is natural to begin there. For the sake of example, consider also the generators

E↔ BC

F↔ AC

These give the defining relation

I↔ ABCD↔ BCE↔ ACF↔ ADE↔ BDF↔ ABEF↔ CDEF (8.35)

and the prescribed set of combinations listed in Table 8.43. (The four different
combinations of levels of E and F ((1), e, f, and ef) designate in which block a
given ABCD combination from the 1

2 fraction should appear.)

Table 8.43
A 26−3 Fractional Factorial or a 24−1 Fractional Factorial
in Four Blocks

Block 1 Block 2 Block 3 Block 4

ab ade bdf ef
cd bce acf abcdef

Some experimenting with relation (8.35) will show that all 2-factor inter-
actions of the four original experimental factors A, B, C, and D are aliased not
only with other 2-factor interactions of experimental factors but also with Block
main effects. Thus, any systematic block-to-block changes would further confuse
one’s perception of 2-factor interactions of the experimental factors. But at least
the main effects of A, B, C, and D are not aliased with Block main effects.

Examples 16 through 18 all treat situations where blocks are incomplete—in
the sense that they don’t each contain every combination of the experimental factors
studied. Complete block plans with 2t blocks can also be developed and analyzed
through the use of t “extra” two-level factors to represent the single (2t -level) factor
Blocks. The path to be followed is by now worn enough through use in this chapter
that further examples will not be included. But the reader should have no trouble
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figuring out, for example, how to analyze a full 24 factorial that is run completely
once in each of two blocks, or even how to analyze a standard 24−1 fractional
factorial that is run completely once in each of four blocks.

8.4.4 Some Additional Comments

This 2p−q fractional factorial material is fascinating, and extremely useful when
used with a proper understanding of both its power and its limitations. However, an
engineer who tries to use it in a cookbook fashion will usually wind up frustrated
and disillusioned. The implications of aliasing must be thoroughly understood for
successful use of the material. And a clear understanding of these implications will
work to keep the engineer from routinely trying to study many factors based on very
small amounts of data in a one-shot experimentation mode.

Engineers newly introduced to fractional factorial experimentation sometimes
try to routinely draw final engineering conclusions about multifactor systems based
on as few as eight data points. The folly of such a method of operation should be
apparent. Economy of experimental effort involves not just collecting a small amount
of data on a multifactor system, but rather collecting the minimum amount sufficient
for a practically useful and reliable understanding of system behavior. Just a few
expensive engineering errors, traceable to naive and overzealous use of fractional
factorial experimentation, will easily negate any supposed savings generated by
overly frugal data collection.

Although several 8-combination plans have been used as examples in this sec-Choice of
experiment

size
tion, such designs are often too small to provide much information on the behavior of
real engineering systems. Typically, 2p−q studies with p − q ≥ 4 are recommended
as far more likely to lead to a satisfactory understanding of system behavior.

It has been said several times that when intelligently used as factor-screening
tools, 2p−q fractional factorial studies will usually be followed up with more com-
plete experimentation, such as a larger fraction or a complete factorial (often in a
reduced set of factors). It is also true that techniques exist for choosing a relatively
small second fraction in such a way as to resolve certain particular types of am-
biguities of interpretation that can remain after the analysis of an initial fractional
factorial. The interested reader can refer to Section 12.5 of Statistics for Experi-
menters by Box, Hunter, and Hunter for discussions of how to choose an additional
fraction to “dealias” a particular main effect and all its associated interactions or to
“dealias” all main effects.
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1. What are the advantages and disadvantages of frac-
tional factorial experimentation in comparison to
factorial experimentation?

2. Under what circumstances can one hope to be suc-
cessful experimenting with (say) 12 factors in (say)
16 experimental runs (i.e., based on 16 data points)?

3. What is the principle of “sparsity of effects” and
how can it be used in the analysis of unreplicated
2p and 2p−q experiments?

4. In a 7-factor study, only 32 different combinations
of levels of (two-level factors) A, B, C, D, E, F, and
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G will be included, at least initially. The genera-
tors F↔ ABCD and G↔ ABCE will be used to
choose the 32 combinations to include in the study.
(a) Write out the whole defining relation for the

experiment that is contemplated here.
(b) Based on your answer to part (a), what effects

will be aliased with the C main effect in the
experiment that is being planned?

(c) When running the experiment, what levels of
factors F and G are used when all of A, B, C,
D, and E are at their low levels? What levels
of factors F and G are used when A, B, and C
are at their high levels and D and E are at their
low levels?

(d) Suppose that after listing the data (observed
y’s) in Yates standard order as regards factors
A, B, C, D, and E, you use the Yates algo-
rithm to compute 32 fitted sums of effects.
Suppose further that the fitted values appear-
ing on the A+ aliases, ABCD+ aliases, and
BCD+ aliases rows of the Yates computations
are the only ones judged to be of both sta-
tistical significance and practical importance.
What is the simplest possible interpretation of
this result?

5. In a 25−2 study, where four sample sizes are 1 and
four sample sizes are 2, sP = 5. If 90% two-sided
confidence limits are going to be used to judge
the statistical detectability of sums of effects, what
plus-or-minus value will be used?

6. Consider planning, executing, and analyzing the re-
sults of a 26−2 fractional factorial experiment based
on the two generators E↔ ABC and F↔ BCD.
(a) Write out the defining relation (i.e., the whole

list of aliases of the grand mean) for such a
plan.

(b) When running the experiment, what levels of
factors E and F are used when all of A, B, C,
and D are at their low levels? When A is at
its high level but B, C, and D are at their low
levels?

(c) Suppose that m = 3 data points from each of
the 16 combinations of levels of factors (spec-
ified by the generators) give a value of sP ≈
2.00. If individual 90% two-sided confidence
intervals are to be made to judge the statistical
significance of the estimated (sums of) effects,
what is the value of the plus-or-minus part of
each of those intervals?
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1. Return to the situation of Chapter Exercise 4 of
Chapter 4. That exercise concerns some unrepli-
cated 23 factorial data taken from a study of the
mechanical properties of a polymer. If you have
not already done so, use the Yates algorithm to
compute fitted 23 factorial effects for the data
given in that exercise. Then make a normal plot
of the seven fitted effects a2, b2, . . . , abc222 as a
means of judging the statistical detectability of
the various effects on impact strength. Interpret
this plot.

2. Chapter Exercise 5 in Chapter 4 concerns a 23

study of mechanical pencil lead strength done by
Timp and M-Sidek. Return to that exercise, and if
you have not already done so, use the Yates algo-
rithm to compute fitted 23 effects for the logged
data.

(a) Compute sP for the logged data. Individual
confidence intervals for the theoretical 23 ef-
fects are of the form Ê ±1. Find 1 if 95%
individual two-sided intervals are of interest.

(b) Based on your value from part (a), which
of the factorial effects are statistically de-
tectable? Considering only those effects that
are both statistically detectable and large
enough to have a material impact on the
breaking strength, interpret the results of the
students’ experiment. (For example, if the A
main effect is judged to be both detectable
and of practical importance, what does mov-
ing from the .3 diameter to the .7 diameter do
to the breaking strength? Remember to trans-
late back from the log scale when making
these interpretations.)
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(c) Use the reverse Yates algorithm to produce
fitted ln(y) values for a few-effects model
corresponding to your answer to (b). Use the
fitted values to compute residuals (still on the
log scale). Normal-plot these and plot them
against levels of each of the three factors and
against the fitted values, looking for obvious
problems with the few-effects model.

(d) Based on your few-effects model, give a 95%
two-sided confidence interval for the mean
ln(y) that would be produced by the abc treat-
ment combination. By exponentiating the
endpoints of this interval, give a 95% two-
sided confidence interval for the median num-
ber of clips required to break a piece of lead
under this set of conditions.

3. The following are the weights recorded by I = 3
different students when weighing the same nomi-
nally 5 g mass with J = 2 different scales m = 2
times apiece. (They are part of the much larger
data set given in Chapter Exercise 5 of Chapter 3.)

Scale 1 Scale 2

Student 1 5.03, 5.02 5.07, 5.09

Student 2 5.03, 5.01 5.02, 5.07

Student 3 5.06, 5.00 5.10, 5.08

Corresponding fitted factorial effects are: a1 =
.00417, a2 = −.01583, a3 = .01167, b1 =−.02333, b2 = .02333, ab11 = −.00417, ab12 =
.00417, ab21 = .01083, ab22 = −.01083, ab31 =−.00667, and ab32 = .00667. Further, a pooled
standard deviation is sP = .02483.
(a) To enhance an interaction plot of sample

means with error bars derived from 95% two-
sided individual confidence limits for the
mean weights, what plus-or-minus value
would be used to make those error bars? Make
such a plot and discuss the likely statistical
detectability of the interactions.

(b) Individual 95% two-sided confidence limits
for the interactionsαβi j are of the form abi j ±
1. Find 1 here. Based on this, are the inter-
actions statistically detectable?

(c) Compare the Student main effects using indi-
vidual 95% two-sided confidence intervals.

(d) Compare the Student main effects using si-
multaneous 95% two-sided confidence inter-
vals.

4. The oil viscosity study of Dunnwald, Post, and
Kilcoin (referred to in Chapter Exercise 8 of
Chapter 7) was actually a 3× 4 full factorial
study. Some summary statistics for the entire data
set are recorded in the accompanying tables. Sum-
marized are m = 10 measurements of the viscosi-
ties of each of four different weights of three dif-
ferent brands of motor oil at room temperature.
Units are seconds required for a ball to drop a
particular distance through the oil.

10W30 SAE 30

Brand M ȳ11 = 1.385 ȳ12 = 2.066

s11 = .091 s12 = .097

Brand C ȳ21 = 1.319 ȳ22 = 2.002

s21 = .088 s22 = .089

Brand H ȳ31 = 1.344 ȳ32 = 2.049

s31 = .066 s32 = .089

10W40 20W50

Brand M ȳ13 = 1.414 ȳ14 = 4.498

s13 = .150 s14 = .204

Brand C ȳ23 = 1.415 ȳ24 = 4.662

s23 = .115 s24 = .151

Brand H ȳ33 = 1.544 ȳ34 = 4.549

s33 = .068 s34 = .171

(a) Find the pooled sample standard deviation
here. What are the associated degrees of free-
dom?

(b) Make an interaction plot of sample means.
Enhance this plot by adding error bars derived
from 99% individual confidence intervals for
the cell means. Does it appear that there are
important and statistically detectable interac-
tions here?
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(c) If the Tukey method is used to find simulta-
neous 95% two-sided confidence intervals for
all differences in Brand main effects, the in-
tervals produced are of the form ȳi. − ȳi ′. ±
1. Find 1.

(d) If the Tukey method is used to find simulta-
neous 95% two-sided confidence intervals for
all differences in Weight main effects, the in-
tervals produced are of the form ȳ

. j − ȳ
. j ′ ±

1. Find 1.
(e) Based on your answers to (c) and (d), would

you say that there are statistically detectable
Brand and/or Weight main effects on viscos-
ity?

(f) We strongly suspect that the “m = 10” vis-
cosity measurements made for each of the
12 Brand/Weight combinations were made on
oil from a single quart of that type of oil. If
this is the case, sP, the baseline measure of
variability, is measuring only the variability
associated with experimental technique (not,
for example, from quart to quart of a given
type of oil). One might thus argue that the
real-world inferences to be made, properly
speaking, extend only to the particular quarts
used in the study. Discuss how these inter-
pretations (of sP and the extent of statistically
based inferences) would be different if in fact
the students used different quarts of oil in
producing the “m = 10” different viscosity
measurements in each cell.

5. The article “Effect of Temperature on the Early-
Age Properties of Type I, Type III and Type I/Fly
Ash Concretes” by N. Gardner (ACI Materials
Journal, 1990) contains summary statistics for a
very large study of the properties of several con-
cretes under a variety of curing conditions. The
accompanying tables present some of the statis-
tics from that paper. Given here are the sample
means and standard deviations of 14-day com-
pressive strengths for m = 5 specimens of Type
I cement/fly ash concrete for all possible combi-
nations of I = 2 water-cement ratios and J = 4
curing temperatures. The units are MPa.

0◦C 10◦C

.55 Water/Cement Ratio ȳ11 = 28.99 ȳ12 = 30.24

s11 = .91 s12 = 1.26

.35 Water/Cement Ratio ȳ21 = 38.70 ȳ22 = 36.16

s21 = .77 s22 = 1.92

20◦C 30◦C

.55 Water/Cement Ratio ȳ13 = 33.99 ȳ14 = 36.02

s13 = 1.85 s14 = .93

.35 Water/Cement Ratio ȳ23 = 40.18 ȳ24 = 42.36

s23 = 2.86 s24 = 1.35

(a) Find the pooled sample standard deviation
here. What are the associated degrees of free-
dom?

(b) Make an interaction plot of sample means.
Enhance this plot by adding error bars derived
from simultaneous 95% confidence intervals
for the cell means. Does it appear that there
are important and statistically detectable in-
teractions here? What practical implications
would this have for a cold-climate civil engi-
neer?

(c) Compute the fitted factorial effects from the
eight sample means.

(d) If one wished to make individual 95% confi-
dence intervals for the Ratio× Temperature
interactions αβi j , these would be of the form
abi j ±1, for an appropriate value of1. Find
this 1. Based on this value, do you judge
any of the interactions to be statistically de-
tectable?

6. The same article referred to in Exercise 5 reported
summary statistics (similar to the ones for Type I
cement/fly ash concrete) for the 14-day compres-
sive strengths of Type III cement concrete. These
are shown in the accompanying tables.
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0◦C 10◦C

.55 Water/Cement Ratio ȳ11 = 47.82 ȳ12 = 42.75

s11 = 4.03 s12 = 2.96

.35 Water/Cement Ratio ȳ21 = 42.14 ȳ22 = 36.72

s21 = 2.64 s22 = 3.03

20◦C 30◦C

.55 Water/Cement Ratio ȳ13 = 42.38 ȳ14 = 43.45

s13 = 2.62 s14 = 1.80

.35 Water/Cement Ratio ȳ23 = 36.72 ȳ24 = 37.70

s23 = 1.51 s24 = .89

(a) Find the pooled sample standard deviation
here. What are the associated degrees of free-
dom? (m = 5, as in Exercise 5.)

(b) Make an interaction plot of sample means
useful for investigating the size of Ratio×
Temperature interactions. Enhance this plot
by adding error bars derived from simulta-
neous 95% confidence intervals for the cell
means. Does it appear that there are impor-
tant and statistically detectable interactions
here? What practical implications would this
have for a cold-climate civil engineer?

(c) Compute the fitted factorial effects from the
eight sample means.

(d) If one wished to make individual 95% confi-
dence intervals for the Ratio× Temperature
interactions αβi j , these would be of the form
abi j ±1, for an appropriate value of1. Find
this 1. Based on this value, do you judge
any of the interactions to be statistically de-
tectable?

(e) Give and interpret a 90% confidence interval
for the difference in water/cement ratio main
effects, α2 − α1. How would this be of prac-
tical use to a cold-climate civil engineer?

7. Suppose that in the context of Exercises 5 and
6, you judge that for the Type I cement/fly ash
concrete there are important Ratio× Temperature

interactions, but that for the Type III cement con-
crete there are not important Ratio× Temperature
interactions. Taking the whole data set from both
exercises together (both concrete types), would
there be important (3-factor) Type× Ratio×
Temperature interactions? Explain.

8. The ISU M.S. thesis, “An Accelerated Engine
Test for Crankshaft and Bearing Compatibility,”
by P. Honan, discusses an industrial experiment
run to investigate the effects of three factors on
the wear of engine bearings. The factors and lev-
els shown here were used in a 100-hour, 20-step
engine probe test.

A Crankshaft Material cast nodular iron (−)

vs. forged steel (+)

B Bearing Material aluminum (−)

vs. copper/lead (+)

C Debris Added to Oil none (−) vs. 5.5 g SAE

fine dust every 25 hours (+)

Two response variables were measured:

y1 = rod journal wear (µm)

y2 = main journal wear (µm)

The values of y1 and y2 reported by Honan are as
follows.

Combination y1 y2 Combination y1 y2

(1) 2.7 5.6 c 3.1 3.2

a .9 1.4 ac 18.6 27.3

b 3.0 7.1 bc 2.5 6.0

ab 1.1 1.6 abc 60.3 99.7

(a) Use the Yates algorithm and compute the fit-
ted effects of the three experimental factors on
both the rod and main bearing wear figures.

(b) Because there was no replication in this rela-
tively expensive industrial experiment, there
is no real option for judging the statistical
significance of the 23 factorial effects except
the use of normal-plotting. Make normal plots
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of the seven fitted effects, a2, b2, . . . , abc222
for both response variables. Do these iden-
tify one or two of the 23 factorial effects as
clearly larger than the others? How hopeful
are you that there is a simple, intuitively ap-
pealing few-effects description of the effects
of factors A, B, and C on y1 and y2?

(c) Your normal plots from (b) ought to each have
an interesting gap in the middle of the plot.
Explain the origin of both that gap and the
fact that all of your fitted effects should be
positive, in terms of the relative magnitudes of
the responses listed. (How, for example, does
the response for combination abc enter into
the calculation of the various fitted effects?)

(d) One simple way to describe the outcomes ob-
tained in this study is as having one very big
response and one moderately big response.
Is there much chance that this pattern in y1
and y2 is in fact due only to random variation
(i.e., that none of the factors have any effect
here)? Make a normal plot of the raw y1 val-
ues and one for the raw y2 values to support
your answer.

9. There is a certain degree of arbitrariness in the
choice to use signs on the fitted effects corre-
sponding to the “all high treatment” combination
when normal-plotting fitted 2p factorial effects.
This can be eliminated by probability plotting the
absolute values of the fitted effects and using not
standard normal quantiles but rather quantiles for
the distribution of the absolute value of a standard
normal random variable. This notion is called half
normal-plotting the absolute fitted effects, since
the probability density of the absolute value of a
standard normal variable looks like the right half
of the standard normal density (multiplied by 2).
The half normal quantiles are related to the stan-
dard normal quantiles via

Q(p) = Qz

(
1+ p

2

)
and one interprets a half normal plot in essentially
the same way that a normal plot is interpreted.
That is, one thinks of the smaller plotted values as

establishing a pattern of random-looking variation
and identifies any of the larger values plotting off
a line on the plot established by the small values
as detectably larger than the others.
(a) Redo part (a) of Exercise 2 of Section 8.2 us-

ing a half normal plot of the absolute values of
the fitted effects. (Your i th plotted point will
have a horizontal coordinate equal to the i th
smallest absolute fitted effect and a vertical
coordinate equal to the p = i−.5

15 half normal
quantile.) Are the conclusions about the sta-
tistical detectability of effects here the same
as those you reached in Exercise 2 of Sec-
tion 8.2?

(b) Redo Exercise 1 here using a half normal plot
of the absolute values of the fitted effects.
(Your i th plotted point will have a horizontal
coordinate equal to the i th smallest absolute
fitted effect and a vertical coordinate equal to
the p = i−.5

7 half normal quantile.) Are the
conclusions about the statistical detectability
of effects here the same as those you reached
in Exercise 1?

10. The text Engineering Statistics by Hogg and Led-
olter contains an account (due originally to R.
Snee) of a partially replicated 23 factorial indus-
trial experiment. Under investigation were the ef-
fects of the following factors and levels on the
percentage impurity, y, in a chemical product:

A Polymer Type standard (−) vs.

new (but expensive) (+)

B Polymer Concentration .01% (−) vs. .04% (+)

C Amount of an Additive 2 lb (−) vs. 12 lb (+)

The data that were obtained are as follows:

Combination y (%) Combination y (%)

(1) 1.0 c .9, .7

a 1.0, 1.2 ac 1.1

b .2 bc .2, .3

ab .5 abc .5
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(a) Compute the fitted 23 factorial effects corre-
sponding to the “all high treatment” combi-
nation.

(b) Compute the pooled sample standard devia-
tion, sP.

(c) Use your value of sP from (b) and find the
plus-or-minus part of 90% individual two-
sided confidence limits for the 23 factorial
effects.

(d) Based on your calculation in (c), which of the
effects do you judge to be detectable in this
23 study?

(e) Write a paragraph or two for your engineer-
ing manager, summarizing the results of this
experiment and making recommendations for
the future running of this process. (Remem-
ber that you want low y and, all else being
equal, low production cost.)

11. The article “Use of Factorial Designs in the De-
velopment of Lighting Products” by J. Scheesley
(Experiments in Industry: Design, Analysis and
Interpretation of Results, American Society for
Quality Control, 1985) discusses a large indus-
trial experiment intended to compare the use of
two different types of lead wire in the manufac-
ture of incandescent light bulbs under a variety of
plant circumstances. The primary response vari-
able in the study was

y = average number of leads missed per hour
(because of misfeeds into automatic
assembly equipment)

which was measured and recorded on the basis of
eight-hour shifts. Consider here only part of the
original data, which may be thought of as having
replicated 24 factorial structure. That is, consider
the following factors and levels:

A Lead Type standard (−) vs. new (+)

B Plant 1 (−) vs. 2 (+)

C Machine Type standard (−) vs. high speed (+)

D Shift 1st (−) vs. 2nd (+)

m = 4 values of y (each requiring an eight-hour
shift to produce) for each combination of levels

of factors A, B, C, and D gave the accompanying
ȳ and s2 values.

Combination ȳ s2 Combination ȳ s2

(1) 28.4 97.6 d 36.8 146.4

a 21.9 15.1 ad 19.2 24.8

b 20.2 5.1 bd 19.9 5.7

ab 14.3 61.1 abd 22.5 22.5

c 30.4 43.5 cd 25.5 53.4

ac 25.1 96.2 acd 21.5 56.6

bc 38.2 100.8 bcd 22.0 10.4

abc 12.8 23.6 abcd 22.5 123.8

(a) Compute the pooled sample standard devia-
tion. What does it measure in the present con-
text? (Variability in hour-to-hour missed lead
counts? Variability in shift-to-shift missed
lead per hour figures?)

(b) Use the Yates algorithm and compute the fit-
ted 24 factorial effects.

(c) Which of the effects are statistically detectable
here? (Use individual two-sided 98% confi-
dence limits for the effects to make this de-
termination.) Is there a simple interpretation
of this set of effects?

(d) Would you be willing to say, on the basis of
your analysis in (a) through (c), that the new
lead type will provide an overall reduction in
the number of missed leads? Explain.

(e) Would you be willing to say, on the basis of
your analysis in (a) through (c), that a switch
to the new lead type will provide a reduction
in missed leads for every set of plant circum-
stances? Explain.

12. DeBlieck, Rohach, Topf, and Wilcox conducted
a replicated 3× 3 factorial study of the uniaxial
force required to buckle household cans. A single
brand of cola cans, a single brand of beer cans, and
a single brand of soup cans were used in the study.
The cans were prepared by bringing them to 0◦C,
22◦C, or 200◦C before testing. The forces required
to buckle each of m = 3 cans for the nine different
Can Type/Temperature combinations follow.
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Can Type Temperature Force Required, y (lb)

cola 0◦C 174, 306, 192

cola 22◦C 150, 188, 125

cola 200◦C 200, 198, 204

beer 0◦C 234, 246, 300

beer 22◦C 204, 339, 254

beer 200◦C 414, 200, 286

soup 0◦C 570, 704, 632

soup 22◦C 667, 593, 647

soup 200◦C 600, 620, 596

(a) Make an interaction plot of the nine combi-
nation sample means. Enhance it with error
bars derived using 98% individual two-sided
confidence intervals.

(b) Compute the fitted main effects and inter-
actions from the nine combination sample
means. Use these to make individual 98%
confidence intervals for all of the main effects
and interactions in this 3× 3 factorial study.
What do these indicate about the detectability
of the various effects?

(c) Use Tukey’s method for simultaneous com-
parison of main effects and give simultaneous
99% confidence intervals for all differences in
Can Type main effects. Then use the same
method and give simultaneous 99% confi-
dence intervals for all differences in Temper-
ature main effects.

13. Consider again the 24 factorial data set in Chapter
Exercise 20 of Chapter 4. (Paper airplane flight
distances collected by K. Fellows were studied
there.) As a means of making the evaluation of
which of the fitted effects produced by the Yates
algorithm appear to be detectable, normal-plot the
fitted effects. Interpret the plot.

14. Boston, Franzen, and Hoefer conducted a 2× 3
factorial study of the strengths of rubber bands.
Two different brands of bands were studied. From
both companies, bands of three different widths
were used. For each Brand/Width combination,
the strengths of m = 5 bands of length 18–20 cm
were determined by loading the bands till fail-

ure. Some summary statistics from the study are
presented in the accompanying table.

Factor B Width

1 narrow

(<2 mm)

ȳ11 = 2.811 kg
1

s11 = .0453 kg
Factor A Brand

2 ȳ21 = 2.459 kg

s21 = .4697 kg

2 medium

(3.5 mm)

ȳ12 = 4.164 kg
1

s12 = .2490 kg
Factor A Brand

ȳ22 = 4.111 kg
2

s22 = .1030 kg

3 wide

(5.5 mm)

ȳ13 = 8.001 kg
1

s13 = .8556 kg
Factor A Brand

ȳ23 = 6.346 kg
2

s23 = .1924 kg

(a) Compute sP for the rubber band strength data.
What is this supposed to measure?

(b) Make an interaction plot of sample means.
Use error bars for the means calculated from
95% two-sided individual confidence limits.
(Make use of your value of sP.)

(c) Based on your plot from (b), which fac-
torial effects appear to be distinguishable
from background noise? (Brand main effects?
Width main effects? Brand×Width interac-
tions?)

(d) Compute all of the fitted factorial effects for
the strength data. (Find the ai ’s, the bj ’s, and
the abi j ’s defined in Section 4.3.)

(e) To find individual 95% confidence intervals
for the interactions αβi j , intervals of the form
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abi j ±1 are appropriate. Find 1. Based on
this value, are there statistically detectable
interactions here? How does this conclusion
compare with your more qualitative answer
to part (c)?

(f) To compare Width main effects, confidence
intervals for the differences βj − βj ′ are in
order. Find individual 95% two-sided con-
fidence intervals for β1 − β2, β1 − β3, and
β2 − β3. Based on these, are there statis-
tically detectable Width main effects here?
How does this compare with your answer to
part (c)?

(g) Redo part (f), this time using simultaneous
95% two-sided confidence intervals.

15. In Section 8.3, you were advised to choose 1
2 frac-

tions of 2p factorials by using the generator

last factor↔ product of all other factors

For example, this means that in choosing 1
2 of 24

possible combinations of levels of factors A, B, C,
and D, you were advised to use the generator D↔
ABC. There are other possibilities. For example,
you could use the generator D↔ AB.
(a) Using this alternative plan (specified by D↔

AB), what eight different combinations of
factor levels would be run? (Use the standard
naming convention, listing for each of the
eight sets of experimental conditions to be run
those factors appearing at their high levels.)

(b) For the alternative plan specified by D↔ AB,
list all eight pairs of effects of factors A, B,
C, and D that would be aliased. (You may,
if you wish, list eight sums of the effects
µ
....
, α2, β2, αβ22, γ2, . . . etc. that can be esti-

mated.)
(c) Suppose that in an analysis of data from an

experiment run according to the alternative
plan (with D↔ AB), the Yates algorithm is
used with ȳ’s listed according to Yates stan-
dard order for factors A, B, and C. Give four
equally plausible interpretations of the even-
tuality that the first four lines of the Yates
calculations produce large estimated sums of

effects (in comparison to the other four, for
example).

(d) Why might it be well argued that the choice
D↔ ABC is superior to the choice D↔
AB?

16. p = 5 factors A, B, C, D, and E are to be stud-
ied in a 25−2 fractional factorial study. The two
generators D↔ AB and E↔ AC are to be used
in choosing the eight ABCDE combinations to be
included in the study.
(a) Give the list of eight different combinations

of levels of the factors that will be included
in the study. (Use the convention of naming,
for each sample, those factors that should be
set at their high levels.)

(b) Give the list of all effects aliased with the
A main effect if this experimental plan is
adopted.

17. The following are eight sample means listed in
Yates standard order (left to right), considering
levels of three two-level factors A, B, and C:

70, 61, 72, 59, 68, 64, 69, 69

(a) Use the Yates algorithm here to compute eight
estimates of effects from the sample means.

(b) Temporarily suppose that no value for sP is
available. Make a plot appropriate to identify-
ing those estimates from (a) that are likely to
represent something more than background
noise. Based on the appearance of your plot,
which if any of the estimated effects are
clearly representing something more than
background noise?

(c) As it turned out, sP = .9, based on m = 2
observations at each of the eight different
sets of conditions. Based on 95% individual
two-sided confidence intervals for the under-
lying effects estimated from the eight ȳ’s,
which estimated effects are clearly represent-
ing something other than background noise?
(If confidence intervals Ê ±1 were to be
made, show the calculation of 1 and state
which estimated effects are clearly represent-
ing more than noise.)
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Still considering the eight sample means, hence-
forth suppose that by some criteria, only the es-
timates ending up on the first, second, and sixth
lines of the Yates calculations are considered to
be both statistically detectable and of practical
importance.
(d) If in fact the eight ȳ’s came from a (4-factor)

24−1 experiment with generator D↔ ABC,
how would one typically interpret the result
that the first, second, and sixth lines of the
Yates calculations (for means in standard or-
der for factors A, B, and C) give statistically
detectable and practically important values?

(e) If in fact the eight ȳ’s came from a (5-factor)
25−2 experiment with generators D↔ ABC
and E↔ AC, how would one typically inter-
pret the result that the first, second, and sixth
lines of the Yates calculations (for means in
standard order for factors A, B, and C) give
statistically detectable and practically impor-
tant values?

18. A production engineer who wishes to study six
two-level factors in eight experimental runs de-
cides to use the generators D↔ AB, E↔ AC,
and F↔ BC in planning a 26−3 fractional facto-
rial experiment.
(a) What eight combinations of levels of the six

factors will be run? (Name them using the
usual convention of prescribing for each run
which of the factors will appear at their high
levels.)

(b) What seven other effects will be aliased with
the A main effect in the engineer’s study?

19. The article “Going Beyond Main-Effect Plots” by
Kenett and Vogel (Quality Progress, 1991) out-
lines the results of a 25−1 fractional factorial in-
dustrial experiment concerned with the improve-
ment of the operation of a wave soldering ma-
chine. The effects of the five factors Conveyor
Speed (A), Preheat Temperature (B), Solder Tem-
perature (C), Conveyor Angle (D), and Flux Con-
centration (E) on the variable

y = the number of faults per 100 solder joints
(computed from inspection of 12
circuit boards)

were studied. (The actual levels of the factors em-
ployed were not given in the article.) The combi-
nations studied and the values of y that resulted
are given next.

Combination y Combination y

(1) .037 de .351

a .040 ade .360

b .014 bde .329

ab .042 abde .173

ce .063 cd .372

ace .100 acd .184

bce .067 bcd .158

abce .026 abcd .131

Kenett and Vogel were apparently called in after
the fact of experimentation to help analyze this
nonstandard 1

2 fraction of the full 25 factorial.
The recommendations of Section 8.3 were not
followed in choosing which 16 of the 32 possible
combinations of levels of factors A through E to
include in the wave soldering study. In fact, the
generator E↔ −CD was apparently employed.
(a) Verify that the combinations listed above are

in fact those prescribed by the relationship
E↔ −CD. (For example, with all of A
through D at their low levels, note that the
low level of E is indicated by multiplying
minus signs for C and D by another minus
sign. Thus, combination (1) is one of the 16
prescribed by the generator.)

(b) Write the defining relation for the experiment.
What is the resolution of the design chosen by
the authors? What resolution does the stan-
dard choice of 1

2 fraction provide? Unless
there were some unspecified extenuating cir-
cumstances that dictated the choice of 1

2 frac-
tion, why does it seem to be an unwise one?

(c) Write out the 16 different differences of ef-
fects that can be estimated based on the data
given. (For example, one of these is µ

.....
−

γ δε222, another is α2 − αγ δε2222, etc.)
(d) Notice that the combinations listed here are in

Yates standard order as regards levels of fac-
tors A through D. Use the four-cycle Yates
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algorithm and find the fitted differences of ef-
fects. Normal-plot these and identify any sta-
tistically detectable differences. Notice that
by virtue of the choice of 1

2 fraction made by
the engineers, the most obviously statistically
significant difference is that of a main effect
and a 2-factor interaction.

20. The article “Robust Design: A Cost-Effective
Method for Improving Manufacturing Processes”
by Kacker and Shoemaker (AT&T Technical Jour-
nal, 1986) discusses the use of a 28−4 fractional
factorial experiment in the improvement of the
performance of a step in an integrated circuit fab-
rication process. The initial step in fabricating sil-
icon wafers for IC devices is to grow an epitaxial
layer of sufficient (and, ideally, uniform) thick-
ness on polished wafers. The engineers involved
in running this part of the production process
considered the effects of eight factors (listed in
the accompanying table) on the properties of the
deposited epitaxial layer.

Factor A Arsenic Flow Rate 55% (−) vs. 59% (+)
Factor B Deposition Temperature 1210◦C (−)

vs. 1220◦C (+)
Factor C Code of Wafers 668G4 (−)

vs. 678G4 (+)
Factor D Susceptor Rotation continuous (−)

vs. oscillating (+)
Factor E Deposition Time high (−) vs. low (+)
Factor F HC1 Etch Temperature 1180◦C (−)

vs. 1215◦C (+)
Factor G HC1 Flow Rate 10% (−) vs. 14% (+)
Factor H Nozzle Position 2 (−) vs. 6 (+)

A batch of 14 wafers is processed at one time,
and the experimenters measured thickness at five
locations on each of the wafers processed during
one experimental run. These 14× 5 = 70 mea-
surements from each run of the process were then
reduced to two response variables:

y1 = the mean of the 70 thickness measurements

y2 = the logarithm of the variance of the 70
thickness measurements

y2 is a measure of uniformity of the epitaxial
thickness, and y1 is (clearly) a measure of the
magnitude of the thickness. The authors reported
results from the experiment as shown in the ac-
companying table.

Combination y1 (µm) y2

(1) 14.821 −.4425

afgh 14.888 −1.1989

begh 14.037 −1.4307

abef 13.880 −.6505

cefh 14.165 −1.4230

aceg 13.860 −.4969

bcfg 14.757 −.3267

abch 14.921 −.6270

defg 13.972 −.3467

adeh 14.032 −.8563

bdfh 14.843 −.4369

abdg 14.415 −.3131

cdgh 14.878 −.6154

acdf 14.932 −.2292

bcde 13.907 −.1190

abcdefgh 13.914 −.8625

It is possible to verify that the combinations listed
here come from the use of the four generators E↔
BCD, F↔ ACD, G↔ ABD, and H↔ ABC.
(a) Write out the whole defining relation for this

experiment. (The grand mean will have 15
aliases.) What is the resolution of the design?

(b) Consider first the response y2, the measure
of uniformity of the epitaxial layer. Use the
Yates algorithm and normal- and/or half
normal-plotting (see Exercise 9) to identify
statistically detectable fitted sums of effects.
Suppose that only the two largest (in magni-
tude) of these are judged to be both statisti-
cally significant and of practical importance.
What is suggested about how levels of the
factors might henceforth be set in order to
minimize y2? From the limited description of
the process above, does it appear that these
settings require any extra manufacturing ex-
pense?
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(c) Turn now to the response y1. Again use the
Yates algorithm and normal- and/or half
normal-plotting to identify statistically de-
tectable sums of effects. Which of the factors
seems to be most important in determining
the average epitaxial thickness? In fact, the
target thickness for this deposition process
was 14.5 µm. Does it appear that by appro-
priately choosing a level of this variable it
may be possible to get the mean thickness on
target? Explain. (As it turns out, the thought
process outlined here allowed the engineers
to significantly reduce the variability in epi-
taxial thickness while getting the mean on
target, improving on previously standard pro-
cess operating methods.)

21. Arndt, Cahill, and Hovey worked with a plastics
manufacturer and experimented on an extrusion
process. They conducted a 26−2 fractional facto-
rial study with some partial “replication” (the rea-
son for the quote marks will be discussed later).
The experimental factors in their study were as
follows:

Factor A Bulk Density, a measure of the weight per
unit volume of the raw material used

Factor B Moisture, the amount of water added to the
raw material mix

Factor C Crammer Current, the amperage supplied to
the crammer-auger

Factor D Extruder Screw Speed

Factor E Front-End Temperature, a temperature controlled
by heaters on the front end of the extruder

Factor F Back-End Temperature, a temperature controlled
by heaters on the back end of the extruder

Physically low and high levels of these factors
were identified. Using the two generators E↔
AB and F↔ AC, 16 different combinations of
levels of the factors were chosen for inclusion in
a plant experiment, where the response of primary
interest was the output of the extrusion process in
terms of pounds of useful product per hour. A
coded version of the data the students obtained is
given in the accompanying table. (The data have
been rescaled by subtracting a particular value and

dividing by another so as to disguise the original
responses without destroying their basic structure.
You may think of these values as output measured
in numbers of some undisclosed units above an
undisclosed baseline value.)

Combination y

ef 13.99

a 6.76

bf 20.71

abe 11.11, 11.13

ce 19.61

acf 15.73

bc 23.45

abcef 20.00

def 24.94

ad 24.03, 25.03

bdf 24.97

abde 24.29

cde 24.94, 25.21

acdf 24.32, 24.48

bcd 30.00

abcdef 33.08

(a) The students who planned this experiment
hadn’t been exposed to the concept of design
resolution. What does Table 8.35 indicate is
the best possible resolution for a 26−2 frac-
tional factorial experiment? What is the res-
olution of the one that the students planned?
Why would they have been better off with a
different plan than the one specified by the
generators E↔ AB and F↔ AC?

(b) Find a choice of generators E↔ (some prod-
uct of letters A through D) and F↔ (some
other product of letters A through D) that
provides maximum resolution for a 26−2 ex-
periment.

(c) The combinations here are listed in Yates
standard order as regards factors A through
D. Compute ȳ’s and then use the (four-cycle)
Yates algorithm and compute 16 estimated
sums of 26 factorial effects.
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(d) When the extrusion process is operating, many
pieces of product can be produced in an hour,
but the entire data collection process lead-
ing to the data here took over eight hours.
(Note, for example, that changing tempera-
tures on industrial equipment requires time
for parts to heat up or cool down, changing
formulas of raw material means that one must
let one batch clear the system, etc.) The re-
peat observations above were obtained from
two consecutive pieces of product, made min-
utes apart, without any change in the extruder
setup in between their manufacture. With this
in mind, discuss why a pooled standard de-
viation based on these four “samples of size
2” is quite likely to underrepresent the level
of “baseline” variability in the output of this
process under a fixed combination of levels of
factors A through F. Argue that it would have
been extremely valuable to have (for exam-
ple) rerun one or more of the combinations
tested early in the study again late in the study.

(e) Use the pooled sample standard deviation
from the repeat observations and compute
(using the p = 4 version of formula (8.12) in
Section 8.2) the plus-or-minus part of 90%
two-sided confidence limits for the 16 sums
of effects estimated in part (c), acting as if the
value of sP were a legitimate estimate of back-
ground variability. Which sums of effects are
statistically detectable by this standard? How
do you interpret this in light of the informa-
tion in part (d)?

(f) As an alternative to the analysis in part (e),
make a normal plot of the last 15 of the 16
estimated sums of effects you computed in
part (c). Which sums of effects appear to be
statistically detectable? What is the simplest
interpretation of your findings in the context
of the industrial problem? (What has been
learned about how to run the extruding pro-
cess?)

(g) Briefly discuss where to go from here if it
is your job to optimize the extrusion process
(maximize y). What data would you collect

next, and what would you be planning to do
with them?

22. The article “The Successful Use of the Taguchi
Method to Increase Manufacturing Process Capa-
bility” by S. Shina (Quality Engineering, 1991)
discusses the use of a 28−3 fractional factorial
experiment to improve the operation of a wave
soldering process for through-hole printed circuit
boards. The experimental factors and levels stud-
ied were as shown in the accompanying table.

Factor A Preheat Temperature 180◦ (−) vs. 220◦ (+)

Factor B Solder Wave height .250 (−) vs. .400 (+)

Factor C Wave Temperature 490◦ (−) vs. 510◦ (+)

Factor D Conveyor Angle 5.0 (−) vs. 6.1 (+)

Factor E Flux Type A857 (−) vs. K192 (+)

Factor F Direction of Boards 0 (−) vs. 90 (+)

Factor G Wave Width 2.25 (−) vs. 3.00 (+)

Factor H Conveyor Speed 3.5 (−) vs. 6.0 (+)

The generators F↔ −CD, G↔ −AD, and H↔
−ABCD were used to pick 32 different com-
binations of levels of these factors to run. For
each combination, four special test printed cir-
cuit boards were soldered, and the lead shorts per
board, y1, and touch shorts per board, y2, were
counted, giving the accompanying data. (The data
here and on page 644 are exactly as given in the
article, and we have no explanation for the fact
that some of the numbers do not seem to have
come from division of a raw count by 4.)

Combination y1 y2

(1) 6.00 13.00

agh 10.00 26.00

bh 10.00 12.00

abg 8.50 14.00

cfh 1.50 18.75

acfg .25 16.25

bcf 1.75 25.75

abcfgh 4.25 18.50

dfgh 6.50 6.50

(continued )



644 Chapter 8 Inference for Full and Fractional Factorial Studies

Combination y1 y2

adf .75 .00

bdfg 3.50 1.00

abdfh 3.25 6.50

cdg 6.00 7.25

acdh 9.50 11.25

bcdgh 6.25 10.00

abcd 6.75 12.50

e 20.00 29.25

aegh 16.50 31.25

beh 17.25 28.75

abeg 19.50 41.25

cefh 9.67 21.33

acefg 2.00 10.75

bcef 5.67 28.67

abcefgh 3.75 35.75

defgh 6.00 22.70

adef 7.30 25.70

bdefg 8.70 30.00

abdefh 9.00 29.70

cdeg 19.30 32.70

acdeh 26.70 25.70

bcdegh 17.70 45.30

abcde 10.30 37.00

(a) Verify that the 32 combinations of levels of
the factors A through H listed here are those
that are prescribed by the choice of genera-
tors. (For each combination of levels of the
factors A through E, determine what levels of
F, G, and H are prescribed by the generators
and check that such a combination is listed.)

(b) Use the generators given here and write out
the whole defining relation for this study.
(You will end with I aliased with seven other
strings of letters.) What is the resolution of
the design used in this study? According to
Table 8.35, what was possible in terms of res-
olution for a 28−3 study? Could the engineers
in charge here have done better at containing
the ambiguity that unavoidably follows from
use of a fractional factorial study?

(c) Note that the 32 combinations of the 8 factors
above are listed in Yates standard order as re-
gards Factors A through E (ignoring F, G, and
H). By some means (using a statistical anal-
ysis package like MINITAB, implementing
spreadsheet calculations, or doing the 5-cycle
Yates algorithm “by hand”) find the estimated
sums of effects for the response y1. Normal-
plot the last 31 of these. You should find that
the largest of these would be the CD 2-factor
interaction, the E main effect, and the CDE
3-factor interaction if only 5 factors were in-
volved (instead of 8). These are all positive
and clearly larger in magnitude than the other
estimates. If possible, give a simple interpre-
tation of this in light of the alias structure
specified by the defining relation you found
in part (b).

(d) Now find and normal-plot the estimated sums
of effects for the response y2. (Normal-plot 31
estimates.) You should find the estimate cor-
responding to the E main effect plus aliases to
be positive, larger in magnitude than the rest,
and detectably nonzero.

(e) In light of your answers to (c) and (d), the
signs of the fitted linear combinations of ef-
fects, and a desire to reduce both y1 and y2 to
the minimum values possible, what combina-
tion of levels of the factors do you tentatively
recommend here? Is the combination of levels
that you see as promising one that is among
the 32 tested? If it is not, how would you rec-
ommend proceeding in the real manufactur-
ing scenario? (Would you, for example, order
that any permanent process changes neces-
sary to the use of your promising combination
be adopted immediately?)

The original article reported a decrease in solder
defects by nearly a factor of 10 in this process as a
result of what was learned from this experiment.

23. In the situation of Exercise 22, the 32 different
combinations of levels of factors A through H
were run in the order listed. In fact, the first 16
runs were made by one shift of workers, and the
last 16 were made by a second shift.
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(a) In light of the material in Chapter 2 on ex-
periment planning and the formal notion of
confounding, what risk of a serious logical
flaw did the engineers run in the execution of
their experiment? (How would possible shift-
to-shift differences show up in the data from
an experiment run like this? One of the main
things learned from the experiment was that
factor E was very important. Did the engi-
neers run the risk of clouding their view of
this important fact?) Explain.

(b) Devise an alternative plan that could have
been used to collect data in the situation of
Exercise 22 without completely confounding
the effects of Flux and Shift. Continue to use
the 32 combinations of the original factors
listed in Exercise 22, but give a better as-
signment of 16 of them to each shift. (Hint:
Think of Shift as a ninth factor, pick a sensi-
ble generator, and use it to put half of the 32
combinations in each shift. There are a variety
of possibilities here.)

(c) Discuss in qualitative terms how you would
do data analysis if your suggestion in (b) were
to be followed.

24. The article “Computer Control of a Butane Hy-
drogenolysis Reactor” by Tremblay and Wright
(The Canadian Journal of Chemical Engineering,
1974) contains an interesting data set concerned
with the effects of p = 3 process variables on the
performance of a chemical reactor. The factors
and their levels were as follows:

Factor A Total Feed Flow (cc/sec at STP) 50 (−)
vs. 180 (+)

Factor B Reactor Wall Temperature (◦F) 470 (−)
vs. 520 (+)

Factor C Feed Ratio (Hydrogen/Butane) 4 (−)
vs. 8 (+)

The data had to be collected over a four-day pe-
riod, and two combinations of the levels of fac-
tors A, B, and C above were run each day along
with a center point—a data point with Total Feed
Flow 115, Reactor Wall Temperature 495, and

Feed Ratio 6. The response variable was

y = percent conversion of butane

and the data in the accompanying table were col-
lected.

Feed Wall Feed

Day Flow Temp. Ratio Combination y

1 115 495 6 — 78

1 50 470 4 (1) 99

1 180 520 8 abc 87

2 50 520 4 b 98

2 180 470 8 ac 18

2 115 495 6 — 87

3 50 520 8 bc 95

3 180 470 4 a 59

3 115 495 6 — 90

4 50 470 8 c 76

4 180 520 4 ab 92

4 115 495 6 — 89

(a) Suppose that to begin with, you ignore the
fact that these data were collected over a pe-
riod of four days and simply treat the data as
a complete 23 factorial augmented with a re-
peated center point. Analyze these data using
the methods of this chapter. (Compute sP from
four center points. Use the Yates algorithm
and the eight corner points to compute fitted
23 factorial effects. Then judge the statistical
significance of these using appropriate 95%
two-sided confidence limits based on sP.) Is
any simple interpretation of the experimental
results in terms of factorial effects obvious?

According to the authors, there was the possibility
of “process drift” during the period of experimen-
tation. The one-per-day center points were added
to the 23 factorial at least in part to provide some
check on that possibility, and the allocation of two
ABC combinations to each day was very carefully
done in order to try to minimize the possible con-
founding introduced by any Day/Block effects.
The rest of this problem considers analyses that
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might be performed on the experimenters’ data in
recognition of the possibility of process drift.
(b) Plot the four center points against the num-

ber of the day on which they were collected.
What possibility is at least suggested by your
plot? Would the plot be particularly troubling
if your experience with this reactor told you
that a standard deviation of around 5(%) was
to be expected for values of y from consecu-
tive runs of the reactor under fixed operating
conditions on a given day? Would the plot be
troubling if your experience with this reactor
told you that a standard deviation of around
1(%) was to be expected for values of y from
consecutive runs of the reactor under fixed
operating conditions on a given day?

(c) The four-level factor Day can be formally
thought of in terms of two extra two-level
factors—say, D and E. Consider the choice of
generators D↔ AB and E↔ BC for a 25−2

fractional factorial. Verify that the eight com-
binations of levels of A through E prescribed
by these generators divide the eight possible
combinations of levels of A through C up into
the four groups of two corresponding to the
four days of experimentation. (To begin with,
note that both A low, B low, C low and A
high, B high, C high correspond to D high
and E high. That is, the first level of Day
can be thought of as the D high and E high
combination.)

(d) The choice of generators in (c) produces the
defining relation I↔ ABD↔ BCE↔
ACDE. Write out, on the basis of this defining
relation, the list of eight groups of aliased 25

factorial effects. Any effect involving factors
A, B, or C with either of the letters D (δ) or E
(ε) in its name represents some kind of inter-
action with Days. Explain what it means for
there to be no interactions with Days. Make
out a list of eight smaller groups of aliased ef-
fects that are appropriate supposing that there
are no interactions with Days.

(e) Allowing for the possibility of Day (Block)
effects, it does not make sense to use the cen-
ter points to compute sP. However, one might

normal-plot (or half normal-plot) the fitted
effects from (a). Do so. Interpret your plot,
supposing that there were no interactions with
Days in the reactor study. How do your con-
clusions differ (if at all) from those in (a)?

(f) One possible way of dealing with the possi-
bility of Day effects in this particular study
is to use the center point on each day as a
sort of baseline and express each other re-
sponse as a deviation from that baseline. (If
on day i there is a Day effect γi , and on day
i the mean response for any combination of
levels of factors A through C is µcomb + γi ,
the mean of the difference ycomb − ycenter is
µcomb − µcenter; one can therefore hope to see
23 factorial effects uncontaminated by ad-
ditive Day effects using such differences in
place of the original responses.) For each of
the four days, subtract the response at the cen-
ter point from the other two responses and
apply the Yates algorithm to the eight differ-
ences. Normal-plot the fitted effects on the
(difference from the center point mean) re-
sponse. Is there any substantial difference be-
tween the result of this analysis and that for
the others suggested in this problem?

25. The article “Including Residual Analysis in De-
signed Experiments: Case Studies” by W. H.
Collins and C. B. Collins (Quality Engineering,
1994) contains discussions of several machining
experiments concerned with surface finish. Given
here are the factors and levels studied in (part of)
one of those experiments on a particular lathe.

Factor Levels

A Speed 2500 RPM (−)
vs. 4500 RPM (+)

B Feed .003 in/rev (−)
vs. .009 in/rev (+)

C Tool Condition New (−)
vs. Used (after 250 parts) (+)

m = 2 parts were turned on the lathe for each of
the 23 different combinations of levels of the 3
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factors, and surface finish measurements, y, were
made on these. (y is a measurement of the verti-
cal distance traveled by a probe as it moves hor-
izontally across a particular 1 inch section of the
part.) Next are some summary statistics from the
experiment.

Combination ȳ s Combination ȳ s

(1) 33.0 0.0 c 35.5 6.4

a 45.5 7.8 ac 44.0 7.1

b 222.5 4.9 bc 216.5 6.4

ab 241.5 4.9 abc 216.5 0.7

(a) Find sP and its degrees of freedom. What does
this quantity intend to measure?

(b) 95% individual two-sided confidence limits
for the mean surface finish measurement for
a part turned under a given set of conditions
are of the form ȳi jk ±1. Based on the value
of sP found above, find 1.

(c) Would you say that the mean surface finish
measurements for parts of types “(1)” and
“a” are detectably different? Why or why not?
(Show appropriate calculations.)

(d) 95% individual two-sided individual confi-
dence limits for the 23 factorial effects in this
study are of the form Ê ±1. Find 1.

(e) Compute the 23 factorial fitted effects for the
“all high” combination (abc).

(f) Based on your answers to parts (d) and (e),
which of the main effects and/or interactions
do you judge to be statistically detectable?
Explain.

(g) Give the practical implications of your answer
to part (f). (How do you suggest running the
lathe if small y and minimum machining cost
are desirable?)

(h) Suppose you were to judge only the B main
effect to be both statistically detectable and
of practical importance in this study. What
surface finish value would you then predict
for a part made at a 2500 RPM speed and a
.009 in/rev feed rate using a new tool?

26. Below are 24 factorial data for two response vari-
ables taken from the article “Chemical Vapor De-
position of Tungsten Step Coverage and Thick-
ness Uniformity Experiments” by J. Chang (Thin
Solid Films, 1992). The experiment concerned the
blanket chemical vapor deposition of tungsten in
the manufacture of integrated circuit chips. The
factors studied were as follows:

A Chamber Pressure 8 (−) vs. 9 (+)

B H2 Flow 500 (−) vs. 1000 (+)

C SiH4 Flow 15 (−) vs. 25 (+)

D WF6 Flow 50 (−) vs. 60 (+)

The pressure is measured in Torr and the flows
are measured in standard cm3/min. The response
variable y1 is the “percent step coverage,” 100
times the ratio of tungsten film thickness at the
top of the side wall to the bottom of the side wall
(large is good). The response variable y2 is an
“average sheet resistance” (measured in m�).

Combination y1 y2 Combination y1 y2

(1) 73 646 d 83 666

a 60 623 ad 80 597

b 77 714 bd 100 718

ab 90 643 abd 85 661

c 67 360 cd 77 304

ac 78 359 acd 90 309

bc 100 335 bcd 70 360

abc 77 318 abcd 75 318

(a) Make a normal plot of the 15 fitted effects
a2, b2, . . . , abcd2222 as a means of judging
the statistical detectability of the effects on the
response, y1. Interpret this plot and say what
is indicated about producing good “percent
step coverage.”

(b) Repeat part (a) for the response variable y2.

Now suppose that instead of a full factorial study,
only the half fraction with defining relation
D↔ ABC had been conducted.
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(c) Which 8 of the 16 treatment combinations
would have been run? List these combina-
tions in Yates standard order as regards fac-
tors A, B, and C and use the (3-cycle Yates
algorithm) to compute the 8 estimated sums
of effects that it is possible to derive from
these 8 treatment combinations for response
y2. Verify that each of these 8 estimates is
the sum of two of your fitted effects from
part (b). (For example, you should find that
the first estimated sum here is ȳ

....
+ abcd2222

from part (b).)
(d) Normal-plot the last 7 of the estimated sums

from (c). Interpret this plot. If you had only
the data from this 24−1 fractional factorial,
would your subject-matter conclusions be the
same as those reached in part (b), based on
the full 24 data set?

27. An engineer wishes to study seven experimental
factors, A, B, C, D, E, F and G, each at 2 levels,
using only 16 combinations of factor levels. He
plans initially to use generators E↔ABCD, F↔
ABC, and G↔ BCD.
(a) With this initial choice of generators, what

16 combinations of levels of the seven factors
will be run?

(b) In a 27−3 fractional factorial, each effect is
aliased with 7 other effects. Starting from
the engineer’s choice of generators, find the
defining relation for his study. (You will need
not only to consider products of pairs but also
a product of a triple.)

(c) An alternative choice of generators is
E ↔ ABC, F ↔ BCD, G ↔ ABD. This
choice yields the defining relation

I↔ ABCE↔ BCDF↔ ABDG

↔ ADEF↔ CDEG↔ ACFG↔ BEFG

Which is preferable, the defining relation in
part (b), or the one here? Why?

28. The article “Establishing Optimum Process Lev-
els of Suspending Agents for a Suspension Prod-
uct” by A. Gupta (Quality Engineering,
1997–1998) discussed an unreplicated fractional

factorial experiment. The experimental factors
and their levels in the study were:

A Method of Preparation Usual (−) vs. Modified (+)

B Sugar Content 50% (−) vs. 60% (+)

C Antibiotic Level 8% (−) vs. 16% (+)

D Aerosol .4% (−) vs. .6% (+)

E CMC .2% (−) vs. .4% (+)

The response variable was

y = separated clear volume (%)
for a suspension of antibiotic after 45 days

and the manufacturer hoped to find a way to make
y small. The experimenters failed to follow the
recommendation in Section 8.3 for choosing a
best half fraction of the factorial and used the
generator E ↔ ABC (instead of the better one
E↔ ABCD).
(a) In what sense was the experimental plan used

in the study inferior to the one prescribed in
Section 8.3? (How is the one from Section 8.3
“better”?)

The Yates algorithm applied to the 16 responses
given in the paper produced the 16 fitted sums of
effects:

mean+ alias = 37.563 D+ alias = −7.437

A+ alias = .187 AD+ alias = .937

B+ alias = 2.437 BD+ alias = .678

AB+ alias = .312 ABD+ alias = .812

C+ alias = −1.062 CD+ alias = 1.438

AC+ alias = .312 ACD+ alias = .062

BC+ alias = −1.187 BCD+ alias = .062

ABC+ alias = −2.063 ABCD+ alias = −.062

(a) Make a normal plot of the last 15 of these
fitted sums.

(b) If you had to guess (based on the results of this
experiment) the order of the magnitudes of
the five main effects (A, B, C, D and E) from
smallest to largest, what would you guess?
Explain.
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(c) Based on the normal plot in (b), which sums
of effects do you judge to be statistically de-
tectable? Explain.

(d) Based on your answers to (c) and (d), how do
you suggest that suspensions of this antibiotic
be made in order to produce small y? What
mean y do you predict if your recommenda-
tions are followed?

(e) Actually, the company that ran this study
planned to make suspensions using both high
and low levels of antibiotic (factor C). Does
your answer to (d) suggest that the company
needs to use different product formulations
for the two levels of antibiotic? Explain.

29. The paper “Achieving a Target Value for a Manu-
facturing Process,” by Eibl, Kess, and Pukelsheim
(Journal of Quality Technology, 1992) describes
a series of experiments intended to guide the ad-
justment of a paint coating process. The first of
these was a 26−3 fractional factorial study. The ex-
perimental factors studied were as follows (exact
levels of these factors are not given in the paper,
presumably due to corporate security considera-
tions):

A Tube Height low (−) vs. high (+)

B Tube Width low (−) vs. high (+)

C Paint Viscosity low (−) vs. high (+)

D Belt Speed low (−) vs. high (+)

E Pump Pressure low (−) vs. high (+)

F Heating Temperature low (−) vs. high (+)

The response variable was a paint coating thick-
ness measurement, y, whose units are mm. m = 4
workpieces were painted and measured for each
of the r = 8 combinations of levels of the fac-
tors studied. The r = 8 samples of size m = 4
produced a value of sP = .118 mm.
(a) Suppose that you wish to attach a precision

to one of the r = 8 sample means obtained in
this study. This can be done using 95% two-
sided confidence limits of the form ȳ ±1.
Find 1.

(b) Following are the mean thicknesses measured
for the combinations studied, listed in Yates
standard order as regards levels of factors A,
B, and C. Use the Yates algorithm and find
eight estimated (sums of) effects.

A B C ȳ

− − − .98

+ − − 1.58

− + − 1.13

+ + − 1.74

− − + 1.49

+ − + .84

− + + 2.18

+ + + 1.45

(c) Two-sided confidence limits based on the es-
timated (sums of) effects calculated in part (b)
are of the form Ê ±1. Find1 if (individual)
95% confidence is desired.

(d) Based on your answer to (c), list those esti-
mates from part (b) that represent statistically
detectable (sums of) effects.

In fact, the experimental plan used by the investi-
gators had generators D↔ AC, E↔ BC, and F
↔ ABC.
(e) Specify the combinations (of levels of the ex-

perimental factors A, B, C, D, E and F) that
were included in the experiment.

(f) Write out the whole defining relation for this
study. (You will need to consider here not only
products of pairs but a product of a triple as
well. The grand mean is aliased with seven
other effects.)

(g) In light of your answers to part (d) and the
aliasing pattern here, what is the simplest pos-
sible potential interpretation of the results of
this experiment?




