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Inference for
Unstructured
Multisample Studies

Chapter 6 introduced the basics of formal statistical inference in one- and two-
sample studies. This chapter begins to consider formal inference for multisample
studies, with a look at methods that make no explicit use of structure relating the
samples (beyond time order of data collection). That is, the study of inference
methods specifically crafted for use in factorial and fractional factorial studies and
in curve- and surface-fitting analyses will be delayed until subsequent chapters.

The chapter opens with a discussion of the standard one-way model typically
used in the analysis of measurement data from multisample studies and of the role
of residuals in judging its appropriateness. The making of confidence intervals in
multisample contexts is then considered, including both individual and simultane-
ous confidence interval methods. The one-way analysis of variance (ANOVA) test
for the hypothesis of equality of several means and a related method of estimating
variance components are introduced next. The chapter then covers the basics of
Shewhart control (or process monitoring) charts. The x̄ , R, and s control charts for
measurement data are studied. The chapter then closes with a section on p charts
and u charts for attributes data.
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7.1 The One-Way Normal Model

Statistical engineering studies often produce samples taken under not one or two,
but rather many different sets of conditions. So although the inference methods
of Chapter 6 are a start, they are not a complete statistical toolkit for engineering
problem solving. Methods of formal inference appropriate to multisample studies
are also needed.

443
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This section begins to provide such methods. First the reader is reminded of the
usefulness of some of the simple graphical tools of Chapter 3 for making informal
comparisons in multisample studies. Next the “equal variances, normal distribu-
tions” model is introduced. The role of residuals in evaluating the reasonableness
of that model in an application is explained and emphasized. The section then pro-
ceeds to introduce the notion of combining several sample variances to produce a
single pooled estimate of baseline variation. Finally, there is a discussion of how
standardized residuals can be helpful when sample sizes vary considerably.

7.1.1 Graphical Comparison of Several Samples
of Measurement Data

Any thoughtful analysis of several samples of engineering measurement data should
begin with the making of graphical representations of those data. Where samples
are small, side-by-side dot diagrams are the most natural graphical tool. Where
sample sizes are moderate to large (say, at least six or so data points per sample),
side-by-side boxplots are effective.

Example 1 Comparing Compressive Strengths for Eight Different Concrete Formulas

Armstrong, Babb, and Campen did compressive strength testing on 16 different
concrete formulas. Part of their data are given in Table 7.1, where eight different
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Figure 7.1 Side-by-side dot diagrams for eight samples
of compressive strengths
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Table 7.1
Compressive Strengths for 24 Concrete Specimens

Specimen Concrete Formula 28-Day Compressive Strength (psi)

1 1 5,800
2 1 4,598
3 1 6,508
4 2 5,659
5 2 6,225
6 2 5,376
7 3 5,093
8 3 4,386
9 3 4,103

10 4 3,395
11 4 3,820
12 4 3,112
13 5 3,820
14 5 2,829
15 5 2,122
16 6 2,971
17 6 3,678
18 6 3,325
19 7 2,122
20 7 1,372
21 7 1,160
22 8 2,051
23 8 2,631
24 8 2,490

formulas are represented. (The only differences between formulas 1 through 8
are their water/cement ratios. Formula 1 had the lowest water/cement ratio, and
the ratio increased with formula number in the progression .40, .44, .49, .53,
.58, .62, .66, .71. Of course, knowing these water/cement ratios suggests that a
curve-fitting analysis might be useful with these data, but for the time being this
possibility will be ignored.)

Making side-by-side dot diagrams for these eight samples of sizes n1 = n2 =
n3 = n4 = n5 = n6 = n7 = n8 = 3 amounts to making a scatterplot of compres-
sive strength versus formula number. Such a plot is shown in Figure 7.1. The
general message conveyed by Figure 7.1 is that there are clear differences in
mean compressive strengths between the formulas but that the variabilities in
compressive strengths are roughly comparable for the eight different formulas.
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Example 2 Comparing Empirical Spring Constants
for Three Different Types of Springs

Hunwardsen, Springer, and Wattonville did some testing of three different types
of steel springs. They made experimental determinations of spring constants for
n1 = 7 springs of type 1 (a 4 in. design with a theoretical spring constant of
1.86), n2 = 6 springs of type 2 (a 6 in. design with a theoretical spring constant
of 2.63), and n3 = 6 springs of type 3 (a 4 in. design with a theoretical spring
constant of 2.12), using an 8.8 lb load. The students’ experimental values are
given in Table 7.2.

These samples are just barely large enough to produce meaningful boxplots.
Figure 7.2 gives a side-by-side boxplot representation of these data. The primary
qualitative message carried by Figure 7.2 is that there is a substantial difference in
empirical spring constants between the 6 in. spring type and the two 4 in. spring
types but that no such difference between the two 4 in. spring types is obvious.
Of course, the information in Table 7.2 could also be presented in side-by-side
dot diagram form, as in Figure 7.3.

Table 7.2
Empirical Spring Constants

Type 1 Springs Type 2 Springs Type 3 Springs

1.99, 2.06, 1.99 2.85, 2.74, 2.74 2.10, 2.01, 1.93
1.94, 2.05, 1.88 2.63, 2.74, 2.80 2.02, 2.10, 2.05
2.30
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Figure 7.2 Side-by-side boxplots of
empirical spring constants for springs
of three types

E
xp

er
im

en
ta

l s
pr

in
g 

co
ns

ta
nt

2.0

2.5

Type 1
springs

Type 3
springs

Type 2
springs

Figure 7.3 Side-by-side dot
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Methods of formal statistical inference are meant to sharpen and quantify the
impressions that one gets when making a descriptive analysis of data. But an intel-
ligent graphical look at data and a correct application of formal inference methods
rarely tell completely different stories. Indeed, the methods of formal inference of-
fered here for simple, unstructured multisample studies are confirmatory—in cases
like Examples 1 and 2, they should confirm what is clear from a descriptive or
exploratory look at the data.

7.1.2 The One-Way (Normal) Multisample Model,
Fitted Values, and Residuals

Chapter 6 emphasized repeatedly that to make one- and two-sample inferences,
one must adopt a model for data generation that is both manageable and plausible.
The present situation is no different, and standard inference methods for unstruc-
tured multisample studies are based on a natural extension of the model used in
Section 6.3 to support small-sample comparison of two means. The present dis-
cussion will be carried out under the assumption that r samples of respective sizes
n1, n2, . . . , nr are independent samples from normal underlying distributions with aOne-way normal

model assumptions common variance—say, σ 2. Just as in Section 6.3 the r = 2 version of this one-way
(as opposed, for example, to several-way factorial) model led to useful inference
methods for µ1 − µ2, this general version will support a variety of useful infer-
ence methods for r -sample studies. Figure 7.4 shows a number of different normal
distributions with a common standard deviation. It represents essentially what must
be generating measured responses if the methods of this chapter are to be applied.

In addition to a description of the one-way model in words and the pictorial
representation given in Figure 7.4, it is helpful to have a description of the model in
symbols. This and the next three sections will employ the notation

yi j = the j th observation in sample i

The model equation used to specify the one-way model is then
One-way model

statement in
symbols

yi j = µi + εi j (7.1)

3

Distribution 3

1 r 2

Distribution 1
Distribution r

Distribution 2

µ µ µ µ

Figure 7.4 r normal distributions with a common standard deviation
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whereµi is the i th underlying mean and the quantities ε11, ε12, . . . , ε1n1
, ε21, ε22, . . . ,

ε2n2
, . . . , εr1, εr2, . . . , εrnr

are independent normal random variables with mean 0

and variance σ 2. (In this statement, the means µ1, µ2, . . . , µr and the variance σ 2

are typically unknown parameters.)
Equation (7.1) says exactly what is conveyed by Figure 7.4 and the statement

of the one-way assumptions in words. But it says it in a way that is suggestive of
another useful pattern of thinking, reminiscent of the “residual” notion that was
used extensively in Sections 4.1, 4.2, and 4.3. That is, equation (7.1) says that an
observation in sample i is made up of the corresponding underlying mean plus some
random noise, namely

εi j = yi j − µi

This is a theoretical counterpart of an empirical notion met in Chapter 4. There, it
was useful to decompose data into fitted values and the corresponding residuals.

In the present situation, since any structure relating the r different samples is
specifically being ignored, it may not be obvious how to apply the notions of fitted
values and residuals. But a plausible meaning for

ŷi j = the fitted value corresponding to yi j

in the present context is the i th sample mean

ith sample mean ȳi =
1

ni

ni∑
j=1

yi j

That is,

Fitted values
for the one-
way model

ŷi j = ȳi (7.2)

(This is not only intuitively plausible but also consistent with what was done in
Sections 4.1 and 4.2. If one fits the approximate relationship yi j ≈ µi to the data via
least squares—i.e., by minimizing

∑
i j (yi j − µi )

2 over choices ofµ1, µ2, . . . , µr —
each minimizing value of µi is ȳi .)

Taking equation (7.2) to specify fitted values for an r -sample study, the pattern
established in Chapter 4 (specifically, Definition 4, page 132) then says that residuals
are differences between observed values and sample means. That is, with

ei j = the residual corresponding to yi j
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one has

Residuals for
the one-way

model
ei j = yi j − ŷi j = yi j − ȳi (7.3)

Rearranging display (7.3) gives the relationship

yi j = ŷi j + ei j = ȳi + ei j (7.4)

which is an empirical counterpart of the theoretical statement (7.1). In fact, combin-
ing equations (7.1) and (7.4) into a single statement gives

yi j = µi + εi j = ȳi + ei j (7.5)

This is a specific instance of a pattern of thinking that runs through all of the common
normal-distribution-based methods of analysis for multisample studies. In words,
equation (7.5) says

Observation = deterministic response+ noise = fitted value+ residual (7.6)

and display (7.6) is a paradigm that provides a unified way of approaching the
majority of the analysis methods presented in the rest of this book.

The decompositions (7.5) and (7.6) suggest that

1. the fitted values (ŷi j = ȳi ) are meant to approximate the deterministic part
of a system response (µi ), and

2. the residuals (ei j ) are therefore meant to approximate the corresponding
noise in the response (εi j ).

The fact that the εi j in equation (7.1) are assumed to be iid normal (0, σ 2) random
variables then suggests that the ei j ought to look at least approximately like a random
sample from a normal distribution.

So the normal-plotting of an entire set of residuals (as in Chapter 4) is a way
of checking on the reasonableness of the one-way model. The plotting of residuals
against (1) fitted values, (2) time order of observation, or (3) any other potentially
relevant variable—hoping (as in Chapter 4) to see only random scatter—are other
ways of investigating the appropriateness of the model assumptions.

These kinds of plotting, which combine residuals from all r samples, are often
especially useful in practice. When r is large at all, budget constraints on total data
collection costs often force the individual sample sizes n1, n2, . . . , nr to be fairly
small. This makes it fruitless to investigate “single variance, normal distributions”
model assumptions using (for example) sample-by-sample normal plots. (Of course,
where all of n1, n2, . . . , nr are of a decent size, a sample-by-sample approach can
be effective.)
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Example 1
(continued )

Returning again to the concrete strength study, consider investigating the reason-
ableness of model (7.1) for this case. Figure 7.1 is a first step in this investigation.
As remarked earlier, it conveys the visual impression that at least the “equal
variances” part of the one-way model assumptions is plausible. Next, it makes
sense to compute some summary statistics and examine them, particularly the
sample standard deviations. Table 7.3 gives sample sizes, sample means, and
sample standard deviations for the data in Table 7.1.

At first glance, it might seem worrisome that in this table s1 is more than three
times the size of s8. But the sample sizes here are so small that a largest ratio of

Table 7.3
Summary Statistics for the Concrete Strength Study

i , ni , ȳi , si ,
Concrete Sample Sample Sample Standard
Formula Size Mean (psi) Deviation (psi)

1 n1 = 3 ȳ1 = 5,635.3 s1 = 965.6
2 n2 = 3 ȳ2 = 5,753.3 s2 = 432.3
3 n3 = 3 ȳ3 = 4,527.3 s3 = 509.9
4 n4 = 3 ȳ4 = 3,442.3 s4 = 356.4
5 n5 = 3 ȳ5 = 2,923.7 s5 = 852.9
6 n6 = 3 ȳ6 = 3,324.7 s6 = 353.5
7 n7 = 3 ȳ7 = 1,551.3 s7 = 505.5
8 n8 = 3 ȳ8 = 2,390.7 s8 = 302.5

Table 7.4
Example Computations of Residuals for the Concrete Strength Study

i , yi j , ŷi j = ȳi ,
Concrete Compressive Fitted ei j ,

Specimen Formula Strength (psi) Value Residual

1 1 5,800 5,635.3 164.7
2 1 4,598 5,635.3 −1,037.3
3 1 6,508 5,635.3 872.7
4 2 5,659 5,753.3 −94.3
5 2 6,225 5,753.3 471.7
...

...
...

...
...

22 8 2,051 2,390.7 −339.7
23 8 2,631 2,390.7 240.3
24 8 2,490 2,390.7 99.3
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sample standard deviations on the order of 3.2 is hardly unusual (for r = 8 sam-
ples of size 3 from a normal distribution). Note from the F tables (Tables B.6)
that for samples of size 3, even if only 2 (rather than 8) sample standard de-
viations were involved, a ratio of sample variances of (965.6/302.5)2 ≈ 10.2
would yield a p-value between .10 and .20 for testing the null hypothesis
of equal variances with a two-sided alternative. The sample standard devia-
tions in Table 7.3 really carry no strong indication that the one-way model
is inappropriate.

Since the individual sample sizes are so small, trying to see anything useful
in eight separate normal plots of the samples is hopeless. But some insight can
be gained by calculating and plotting all 8× 3 = 24 residuals. Some of the
calculations necessary to compute residuals for the data in Table 7.1 (using the
fitted values appearing as sample means in Table 7.3) are shown in Table 7.4.
Figures 7.5 and 7.6 are, respectively, a plot of residuals versus fitted y (ei j versus
ȳi j ) and a normal plot of all 24 residuals.
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Example 1
(continued )

Figure 7.5 gives no indication of any kind of strong dependence of σ on
µ (which would violate the “constant variance” restriction). And the plot in
Figure 7.6 is reasonably linear, thus identifying no obvious difficulty with the
assumption of normal distributions. In all, it seems from examination of both the
raw data and the residuals that analysis of the data in Table 7.1 on the basis of
model (7.1) is perfectly sensible.

Example 2
(continued )

The spring testing data can also be examined with the potential use of the one-way
normal model (7.1) in mind. Figures 7.2 and 7.3 indicate reasonably comparable
variabilities of experimental spring constants for the r = 3 different spring types.
The single very large value (for spring type 1) causes some doubt both in terms of
this judgment and also (by virtue of its position on its boxplot as an outlying value)
regarding a “normal distribution” description of type 1 experimental constants.
Summary statistics for these samples are given in Table 7.5.

Table 7.5
Summary Statistics for the Empirical
Spring Constants

i , Spring Type ni ȳi si

1 7 2.030 .134
2 6 2.750 .074
3 6 2.035 .064

Without the single extreme value of 2.30, the first sample standard deviation
would be .068, completely in line with those of the second and third samples.
But even the observed ratio of largest to smallest sample variance (namely
(.134/.064)2 = 4.38) is not a compelling reason to abandon a one-way model
description of the spring constants. (A look at the F tables with ν1 = 6 and ν2 = 5
shows that 4.38 is between the F6,5 distribution .9 and .95 quantiles. So even if
there were only two rather than three samples involved, a variance ratio of 4.38
would yield a p-value between .1 and .2 for (two-sided) testing of equality of
variances.) Before letting the single type 1 empirical spring constant of 2.30 force
abandonment of the highly tractable model (7.1) some additional investigation
is warranted.

Sample sizes n1 = 7 and n2 = n3 = 6 are large enough that it makes sense
to look at sample-by-sample normal plots of the spring constant data. Such plots,
drawn on the same set of axes, are shown in Figure 7.7. Further, use of the fitted
values (ȳi ) listed in Table 7.5 with the original data given in Table 7.2 produces
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Figure 7.7 Normal plots of empirical spring constants for springs
of three types

Table 7.6
Example Computations of Residuals for the Spring Constant Study

j ,
i , Observation yi j , ŷi j = ȳi , ei j ,

Spring Type Number Spring Constant Sample Mean Residual

1 1 1.99 2.030 −.040
...

...
...

...
...

1 7 2.30 2.030 .270
2 1 2.85 2.750 .100
...

...
...

...
...

2 6 2.80 2.750 .050
3 1 2.10 2.035 .065
...

...
...

...
...

3 6 2.05 2.035 .015

19 residuals, as partially illustrated in Table 7.6. Then Figures 7.8 and 7.9, re-
spectively, show a plot of residuals versus fitted responses and a normal plot of
all 19 residuals.
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Example 2
(continued )
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Figure 7.9 Normal plot of the spring constant residuals

But Figures 7.8 and 7.9 again draw attention to the largest type 1 empirical
spring constant. Compared to the other measured values, 2.30 is simply too large
(and thus produces a residual that is too large compared to all the rest) to permit
serious use of model (7.1) with the spring constant data. Barring the possibility
that checking of original data sheets would show the 2.30 value to be an arithmetic
blunder or gross error of measurement (which could be corrected or legitimately
force elimination of the 2.30 value from consideration), it appears that the use of
model (7.1) with the r = 3 spring types could produce inferences with true (and
unknown) properties quite different from their nominal properties.

One might, of course, limit attention to spring types 2 and 3. There is nothing
in the second or third samples to render the “equal variances, normal distributions”
model untenable for those two spring types. But the pattern of variation for
springs of type 1 appears to be detectably different from that for springs of types
2 and 3, and the one-way model is not appropriate when all three types are
considered.
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7.1.3 A Pooled Estimate of Variance for Multisample Studies

The “equal variances, normal distributions” model (7.1) has as a fundamental pa-
rameter, σ , the standard deviation associated with responses from any of conditions
1, 2, 3, . . . , r . Similar to what was done in the r = 2 situation of Section 6.3, it is
typical in multisample studies to pool the r sample variances to arrive at a single
estimate of σ derived from all r samples.

Definition 1 If r numerical samples of respective sizes n1, n2, . . . , nr produce sample
variances s2

1 , s2
2 , . . . , s2

r , the pooled sample variance, s2
P, is the weighted

average of the sample variances, where the weights are the sample sizes
minus 1. That is,

s2
P =

(n1 − 1)s2
1 + (n2 − 1)s2

2 + · · · + (nr − 1)s2
r

(n1 − 1)+ (n2 − 1)+ · · · + (nr − 1)
(7.7)

The pooled sample standard deviation, sP, is the square root of s2
P.

Definition 1 is just Definition 14 in Chapter 6 restated for the case of more than
two samples. As was the case for sP based on two samples, sP is guaranteed to lie
between the largest and smallest of the si and is a mathematically convenient form
of compromise value.

Equation (7.7) can be rewritten in a number of equivalent forms. For one thing,
letting

The total number
of observations in
an r-sample study

n =∑r
i=1 ni = the total number of observations in all r samples

it is common to rewrite the denominator on the right of equation (7.7) as

r∑
i=1

(ni − 1) =
r∑

i=1

ni −
r∑

i=1

1 = n − r

And noting that the i th sample variance is

s2
i =

1

ni − 1

ni∑
j=1

(yi j − ȳi )
2
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the numerator on the right of equation (7.7) is

r∑
i=1

(ni − 1)

 1

(ni − 1)

ni∑
j=1

(yi j − ȳi )
2

 = r∑
i=1

ni∑
j=1

(yi j − ȳi )
2 (7.8)

=
r∑

i=1

ni∑
j=1

e2
i j (7.9)

So one can define s2
P in terms of the right-hand side of equation (7.8) or (7.9) dividedAlternative

formulas for s 2
P by n − r .

Example 1
(continued )

For the compressive strength data, each of n1, n2, . . . , n8 are 3, and s1 through s8
are given in Table 7.3. So using equation (7.7),

s2
P =

(3− 1)(965.6)2 + (3− 1)(432.3)2 + · · · + (3− 1)(302.5)2

(3− 1)+ (3− 1)+ · · · + (3− 1)

= 2[(965.6)2 + (432.3)2 + · · · + (302.5)2]

16

= 2,705,705

8

= 338, 213 (psi)2

and thus

sP =
√

338,213 = 581.6 psiI

One estimates that if a large number of specimens of any one of formulas 1
through 8 were tested, a standard deviation of compressive strengths on the order
of 582 psi would be obtained.

sP is an estimate of the intrinsic or baseline variation present in a responseThe meaning
of sP variable at a fixed set of conditions, calculated supposing that the baseline variation

is constant across the conditions under which the samples were collected. When
that supposition is reasonable, the pooling idea allows a number of individually
unreliable small-sample estimates to be combined into a single, relatively more
reliable combined estimate. It is a fundamental measure that figures prominently in
a variety of useful methods of formal inference.
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On occasion, it is helpful to have not only a single number as a data-based best
guess at σ 2 but a confidence interval as well. Under model restrictions (7.1), the
variable

(n − r)s2
P

σ 2

has a χ2
n−r distribution. Thus, in a manner exactly parallel to the derivation in Section

6.4, a two-sided confidence interval for σ 2 has endpoints

Confidence limits
for the one-way
model variance

(n − r)s2
P

U
and

(n − r)s2
P

L
(7.10)

where L and U are such that the χ2
n−r probability assigned to the interval (L ,U )

is the desired confidence level. And, of course, a one-sided interval is available by
using only one of the endpoints (7.10) and choosing U or L such that the χ2

n−r
probability assigned to the interval (0,U ) or (L ,∞) is the desired confidence.

Example 1
(continued )

In the concrete compressive strength case, consider the use of display (7.10) in
making a two-sided 90% confidence interval for σ . Since n − r = 16 degrees
of freedom are associated with s2

P, one consults Table B.5 for the .05 and .95
quantiles of the χ2

16 distribution. These are 7.962 and 26.296, respectively. Thus,
from display (7.10), a confidence interval for σ 2 has endpoints

16(581.6)2

26.296
and

16(581.6)2

7.962

So a two-sided 90% confidence interval for σ has endpoints√
16(581.6)2

26.296
and

√
16(581.6)2

7.962

that is,

453.7psi and 824.5psi

7.1.4 Standardized Residuals

In discussing the use of residuals, the reasoning has been that the ei j are meant to
approximate the corresponding random errors εi j . Since the model assumptions are
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that the εi j are iid normal variables, the ei j ought to look approximately like iid
normal variables. This is sensible rough-and-ready reasoning, adequate for many
circumstances. But strictly speaking, the ei j are neither independent nor identically
distributed, and it can be important to recognize this.

As an extreme example of the dependence of the residuals for a given sample i ,
consider a case where ni = 2. Since

ei j = yi j − ȳi

one immediately knows that ei1 = −ei2. So ei1 and ei2 are clearly dependent.
One can further apply Proposition 1 of Chapter 5 to show that if the sample

sizes ni are varied, the residuals don’t have the same variance (and therefore can’t
be identically distributed). That is, since

ei j = yi j − ȳi =
(

ni − 1

ni

)
yi j −

1

ni

∑
j ′ 6= j

yi j ′

it is the case that

Var ei j =
(

ni − 1

ni

)2

σ 2 +
(
− 1

ni

)2

(ni − 1)σ 2 = ni − 1

ni

σ 2 (7.11)

So, for example, residuals from a sample of size ni = 2 have variance σ 2/2, while
those from a sample of size ni = 100 have variance 99σ 2/100, and one ought to
expect residuals from larger samples to be somewhat bigger in magnitude than those
from small samples.

A way of addressing at least the issue that residuals need not have a common
variance is through the use of standardized residuals.

Definition 2 If a residual e has variance a · σ 2 for some positive constant a, and s is some
estimate of σ , the standardized residual corresponding to e is

e∗ = e

s
√

a
(7.12)

The division by s
√

a in equation (7.12) is a division by an estimated standard
deviation of e. It serves, so to speak, to put all of the residuals on the same scale.
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Plotting with standardized residuals

Standardized
residuals for the
one-way model

e∗i j =
ei j

sP

√
ni − 1

ni

(7.13)

is a somewhat more refined way of judging the adequacy of the one-way model
than the plotting of raw residuals ei j illustrated in Examples 1 and 2. When all ni
are the same, as in Example 1, the plotting of the standardized residuals in equation
(7.13) is completely equivalent to plotting with the raw residuals. And as a practical
matter, unless some ni are very small and others are very large, the standardization
used in equation (7.13) typically doesn’t have much effect on the appearance of
residual plots.

Example 2
(continued )

In the spring constant study, allowing for the fact that sample 1 is larger than the
other two (and thus according to the model (7.1) should produce larger residuals)
doesn’t materially change the outcome of the residual analysis. To see this, note
that using the summary statistics in Table 7.5,

s2
P =

(7− 1)(.134)2 + (6− 1)(.074)2 + (6− 1)(.064)2

(7− 1)+ (6− 1)+ (6− 1)
= .0097

so that

sP =
√
.0097 = .099

Then using equation (7.13), each residual from sample 1 should be divided by

.099

√
7− 1

7
= .0913

to get standardized residuals, while each residual from the second and third
samples should be divided by

.099

√
6− 1

6
= .0900

Clearly, .0913 and .0900 are not much different, and the division before plotting
has little effect on the appearance of residual plots. By way of example, a normal
plot of all 19 standardized residuals is given in Figure 7.10. Verify its similarity
to the normal plot of all 19 raw residuals given in Figure 7.9 on page 454.
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Example 2
(continued )
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Figure 7.10 Normal plot of the spring constant
standardized residuals

The notion of standardized residuals is often introduced only in the context
of curve- and surface-fitting analyses, where the variances of residuals e = (y − ŷ)
depend not only on the sizes of the samples involved but also on the associated values
of the independent or predictor variables (x1, x2, . . . , etc.). The concept has been
introduced here, not only because it can be of importance in the present situation if
the sample sizes vary widely but also because it is particularly easy to motivate the
idea in the present context.
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1. Return again to the data of Example 1 in Chapter
4. These may be viewed as simply r = 5 samples
of m = 3 densities. (For the time being, ignore the
fact that the pressure variable is quantitative and
that curve fitting seems a most natural method of
analysis to apply to these data.)
(a) Compute and make a normal plot of the residu-

als for the one-way model. What does the plot
indicate about the appropriateness of the one-
way model assumptions here?

(b) Using the five samples, find sP, the pooled es-
timate of σ . What does this value measure in
this context? Give a two-sided 90% confidence
interval for σ based on sP.

2. In an ISU engineering research project, so called
“tilttable tests” were done in order to determine the
angles at which vehicles experience lift-off of the
“high-side” wheels and begin to roll over. So called
“tilttable ratios” (which are the tangents of angles
at which lift-off occurs) were measured for four
different vans with the following results:

Van #1 Van #2 Van #3 Van #4

1.096, 1.093 .962, .970 1.010, 1.024 1.002, 1.001

1.090, 1.093 .967, .966 1.021, 1.020 1.002, 1.004

1.022

(Notice that Van #3 was tested five times while the
others were tested four times each.) Vans #1 and #2
were minivans, and Vans #3 and #4 were full-size
vans.
(a) Compute and normal-plot residuals as a crude

means of investigating the appropriateness of
the one-way model assumptions for tilttable ra-
tios. Comment on the appearance of your plot.

(b) Redo part (a) using standardized residuals.
(c) Compute a pooled estimate of the standard de-

viation based on these four samples. What is
sP supposed to be measuring in this example?
Give a two-sided 95% confidence interval for
σ based on sP.
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7.2 Simple Confidence Intervals
in Multisample Studies

Section 6.3 illustrates how useful confidence intervals for means and differences in
means can be in one- and two-sample studies. Estimating an individual mean and
comparing a pair of means are every bit as important when there are r samples as
they are when there are only one or two. The methods of Chapter 6 can be applied
in r -sample studies by simply limiting attention to one or two of the samples at
a time. But since individual sample sizes in multisample studies are often small,
such a strategy of inference often turns out to be relatively uninformative. Under the
one-way model assumptions discussed in the previous section, it is possible to base
inference methods on the pooled standard deviation, sP. Those tend to be relatively
more informative than the direct application of the formulas from Section 6.3 in the
present context.

This section first considers the confidence interval estimation of a single mean
and of the difference between two means under the “equal variances, normal dis-
tributions” model. There follows a discussion of confidence intervals for any linear
combination of underlying means. Finally, the section closes with some comments
concerning the notions of individual and simultaneous confidence levels.

7.2.1 Intervals for Means and for Comparing Means

The primary drawback to applying the formulas from Section 6.3 in a multisample
context is that typical small sample sizes lead to small degrees of freedom, large t
multipliers in the plus-or-minus parts of the interval formulas, and thus long intervals.
But based on the one-way model assumptions, confidence interval formulas can be
developed that tend to produce shorter intervals.

That is, in a development parallel to that in Section 6.3, under the one-way
normal model,

T = ȳi − µi

sP√
ni

has a tn−r distribution. Hence, a two-sided confidence interval for the i th mean, µi ,
has endpoints

Confidence limits
for µi based on

the one-way model
ȳi ± t

sP√
ni

(7.14)

where the associated confidence is the probability assigned to the interval from −t
to t by the tn−r distribution. This is exactly formula (6.20) from Section 6.3, except
that sP has replaced si and the degrees of freedom have been adjusted from ni − 1
to n − r .
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In the same way, for conditions i and i ′, the variable

T = ȳi − ȳi ′ −
(
µi − µi ′

)
sP

√
1

ni

+ 1

ni ′

has a tn−r distribution. Hence, a two-sided confidence interval for µi − µi ′ has
endpoints

Confidence limits
for µi − µi′ based

on the one-way
model

ȳi − ȳi ′ ± tsP

√
1

ni

+ 1

ni ′
(7.15)

where the associated confidence is the probability assigned to the interval from−t to
t by the tn−r distribution. Display (7.15) is essentially formula (6.35) of Section 6.3,
except that sP is calculated based on r samples instead of two and the degrees of
freedom are n − r instead of ni + ni ′ − 2.

Of course, use of only one endpoint from formula (7.14) or (7.15) produces a
one-sided confidence interval with associated confidence corresponding to the tn−r
probability assigned to the interval (−∞, t) (for t > 0). The virtues of formulas
(7.14) and (7.15) (in comparison to the corresponding formulas from Section 6.3)
are that (when appropriate) for a given confidence, they will tend to produce shorter
intervals than their Chapter 6 counterparts.

Example 3
(Example 1 revisited )

Confidence Intervals for Individual, and Differences of,
Mean Concrete Compressive Strengths

Return to the concrete strength study of Armstrong, Babb, and Campen. Con-
sider making first a 90% two-sided confidence interval for the mean compressive
strength of an individual concrete formula and then a 90% two-sided confidence
interval for the difference in mean compressive strengths for two different formu-
las. Since n = 24 and r = 8, there are n − r = 16 degrees of freedom associated
with sP = 581.6. So the .95 quantile of the t16 distribution, namely 1.746, is
appropriate for use in both formulas (7.14) and (7.15).

Turning first to the estimation of a single mean compressive strength, since
each ni is 3, the plus-or-minus part of formula (7.14) gives

t
sP√
ni

= 1.746
581.6√

3
= 586.3 psi

So ±586.3 psi precision could be attached to any one of the sample means
in Table 7.7 as an estimate of the corresponding formula’s mean strength. For
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example, since ȳ3 = 4,527.3 psi, a 90% two-sided confidence interval for µ3 has
endpoints

4,527.3± 586.3

that is,

3, 941.0 psi and 5,113.6 psiI
In parallel fashion, consider estimation of the difference in two mean com-

pressive strengths with 90% confidence. Again, since each ni is 3, the plus-or-
minus part of formula (7.15) gives

tsP

√
1

ni

+ 1

ni ′
= 1.746(581.6)

√
1

3
+ 1

3
= 829.1 psi

Thus, ±829.1 psi precision could be attached to any difference between sample
means in Table 7.7 as an estimate of the corresponding difference in formula
mean strengths. For instance, since ȳ3 = 4,527.3 psi and ȳ7 = 1,551.3 psi, a
90% two-sided confidence interval for µ3 − µ7 has endpoints

(4,527.3− 1,551.3)± 829.1

That is,

2,146.9 psi and 3,805.1 psiI

Table 7.7
Concrete Formula Sample Mean Strengths

Concrete Formula Sample Mean Strength (psi)

1 5,635.3
2 5,753.3
3 4,527.3
4 3,442.3
5 2,923.7
6 3,324.7
7 1,551.3
8 2,390.7

The use of n − r = 16 degrees of freedom in Example 3 instead of ni − 1 = 2
and ni + ni ′ − 2 = 4 reflects the reduction in uncertainty associated with sP as an
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estimate of σ as compared to that of si and of sP based on only two samples. That
reduction is, of course, bought at the price of restriction to problems where the
“equal variances” model is tenable.

7.2.2 Intervals for General Linear Combinations of Means

There is an important and simple generalization of the formulas (7.14) and (7.15)
that is easy to state and motivate at this point. Its most common applications are
in the context of factorial studies. But it is pedagogically most sound to introduce
the method in the unstructured r -sample context, so that the logic behind it is clear
and is seen not to be limited to factorial analyses. The basic notion is that µi and
µi − µi ′ are particular linear combinations of the r means µ1, µ2, . . . , µr , and the
same logic that produces confidence intervals for µi and µi − µi ′ will produce a
confidence interval for any linear combination of the r means.

That is, suppose that for constants c1, c2, . . . , cr , the quantity

A linear combination
of population means

L = c1µ1 + c2µ2 + · · · + crµr (7.16)

is of engineering interest. (Note that, for example, if all ci ’s except c3 are 0 and c3 =
1, L = µ3, the mean response from condition 3. Similarly, if c3 = 1, c5 = −1, and
all other ci ’s are 0, L = µ3 − µ5, the difference in mean responses from conditions
3 and 5.) A natural data-based way to approximate L is to replace the theoretical
or underlying means, µi , with empirical or sample means, ȳi . That is, define an
estimator of L by

A linear combination
of sample means

L̂ = c1 ȳ1 + c2 ȳ2 + · · · + cr ȳr (7.17)

(Clearly, if L = µ3, then L̂ = ȳ3, while if L = µ3 − µ5, then L̂ = ȳ3 − ȳ5.)
The one-way model assumptions make it very easy to describe the distribution

of L̂ given in equation (7.17). Since E ȳi = µi and Var ȳi = σ 2/ni , one can appeal
again to Proposition 1 of Chapter 5 (page 307) and conclude that

EL̂ = c1 E ȳ1 + c2 E ȳ2 + · · · + cr E ȳr

= c1µ1 + c2µ2 + · · · + crµr

= L

and

Var L̂ = c2
1 Var ȳ1 + c2

2 Var ȳ2 + · · · + c2
r Var ȳr

= c2
1
σ 2

n1

+ c2
2
σ 2

n2

+ · · · + c2
r

σ 2

nr



7.2 Simple Confidence Intervals in Multisample Studies 465

= σ 2

(
c2

1

n1

+ c2
2

n2

+ · · · + c2
r

nr

)

The one-way model restrictions imply that the ȳi are independent and normal and,
in turn, that L̂ is normal. So the standardized version of L̂,

Z = L̂ − EL̂√
Var L̂

= L̂ − L

σ

√
c2

1

n1

+ c2
2

n2

+ · · · + c2
r

nr

(7.18)

is standard normal. The usual manipulations beginning with this fact would produce
an unusable confidence interval for L involving the unknown parameter σ . A way to
reason to something of practical importance is to begin not with the variable (7.18),
but with

T = L̂ − L

sP

√
c2

1

n1

+ c2
2

n2

+ · · · + c2
r

nr

(7.19)

instead. The fact is that under the current assumptions, the variable (7.19) has a tn−r
distribution. And this leads in the standard way to the fact that the interval with
endpoints

Confidence limits
for a linear

combination of
means

L̂ ± tsP

√
c2

1

n1

+ c2
2

n2

+ · · · + c2
r

nr

(7.20)

can be used as a two-sided confidence interval for L with associated confidence
the tn−r probability assigned to the interval between −t and t . Further, a one-sided
confidence interval for L can be obtained by using only one of the endpoints in
display (7.20) and appropriately adjusting the confidence level upward by reducing
the unconfidence in half.

It is worthwhile to verify that the general formula (7.20) reduces to the formula
(7.14) if a single ci is 1 and all others are 0. And if one ci is 1, one other is −1, and
all others are 0, the general formula (7.20) reduces to formula (7.15).

Example 4 Comparing Absorbency Properties for Three Brands of Paper Towels

D. Speltz did some absorbency testing for several brands of paper towels. His
study included (among others) a generic brand and two national brands. n1 =
n2 = n3 = 5 tests were made on towels of each of these r = 3 brands, and the
numbers of milliliters of water (out of a possible 100) not absorbed out of a
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Example 4
(continued )

graduated cylinder were recorded. Some summary statistics for the tests on these
brands are given in Table 7.8. Plots (not shown here) of the raw absorbency
values and residuals indicate no problems with the use of the one-way model in
the analysis of the absorbency data.

One question of practical interest is “On average, do the national brands
absorb more than the generic brand?” A way of quantifying this is to ask for a
two-sided 95% confidence interval for

L = µ1 −
1

2
(µ2 + µ3) (7.21)

the difference between the average liquid left by the generic brand and the
arithmetic mean of the national brand averages.

With L as in equation (7.21), formula (7.17) shows that

L̂ = 93.2− 1

2
(81.0)− 1

2
(83.8) = 10.8 ml

is an estimate of the increased absorbency offered by the national brands. Using
the standard deviations given in Table 7.8,

s2
P =

(5− 1)(.8)2 + (5− 1)(.7)2 + (5− 1)(.8)2

(5− 1)+ (5− 1)+ (5− 1)
= .59

and thus

sP =
√
.59 = .77 ml

Now n − r = 15− 3 = 12 degrees of freedom are associated with sP, and the
.975 quantile of the t12 distribution for use in (7.20) is 2.179. In addition, since
c1 = 1, c2 = − 1

2 , and c3 = − 1
2 and all three sample sizes are 5,

√
c2

1

n1

+ c2
2

n2

+ c2
3

n3

=

√√√√√1

5
+

(
−1

2

)2

5
+

(
−1

2

)2

5
= .55

Table 7.8
Summary Statistics for Absorbencies of Three
Brands of Paper Towels

Brand i ni ȳi si

Generic 1 5 93.2 ml .8 ml
National B 2 5 81.0 ml .7 ml
National V 3 5 83.8 ml .8 ml
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So finally, endpoints for a two-sided 95% confidence interval for L given in
equation (7.21) are

10.8± 2.179(.77)(.55)

that is,

10.8± .9

i.e.,

9.9 ml and 11.7 ml (7.22)

The interval indicated in display (7.22) shows definitively the substantial advan-
tage in absorbency held by the national brands over the generic, particularly in
view of the fact that the amount actually absorbed by the generic brand appears
to average only about 6.8 ml (= 100 ml− 93.2 ml).

Example 5 A Confidence Interval for a Main Effect in a 22 Factorial
Brick Fracture Strength Study

Graves, Lundeen, and Micheli studied the fracture strength properties of brick
bars. They included several experimental variables in their study, including both
bar composition and heat-treating regimen. Part of their data are given in Table 7.9.
Modulus of rupture values under a bending load are given in psi for n1 = n2 =
n3 = n4 = 3 bars of r = 4 types.

Table 7.9
Modulus of Rupture Measurements for Brick Bars
in a 22 Factorial Study

i , % Water Heat-Treating
Bar Type in Mix Regimen MOR (psi)

1 17 slow cool 4911, 5998, 5676
2 19 slow cool 4387, 5388, 5007
3 17 fast cool 3824, 3140, 3502
4 19 fast cool 4768, 3672, 3242

Notice that the data represented in Table 7.9 have a 2× 2 complete factorial
structure. Indeed, returning to Section 4.3 (in particular, to Definition 5, page 166),
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Example 5
(continued )

it becomes clear that the fitted main effect of the factor Heat-Treating Regimen
at its slow cool level is

1

2
(ȳ1 + ȳ2)−

1

4
(ȳ1 + ȳ2 + ȳ3 + ȳ4) (7.23)

But the variable (7.23) is the L̂ for the linear combination of mean strengths µ1,
µ2, µ3, and µ4 given by

L = 1

4
µ1 +

1

4
µ2 −

1

4
µ3 −

1

4
µ4 (7.24)

So subject to the relevance of the “equal variances, normal distributions” de-
scription of modulus of rupture for fired brick clay bodies of these four types,
formula (7.20) can be applied to develop a precision figure to attach to the fitted
effect (7.23).

Table 7.10 gives summary statistics for the data of Table 7.9. Using the values
in Table 7.10 leads to

L̂ = 1

2
(ȳ1 + ȳ2)−

1

4
(ȳ1 + ȳ2 + ȳ3 + ȳ4)

= 1

4
ȳ1 +

1

4
ȳ2 −

1

4
ȳ3 −

1

4
ȳ4

= 1

4
(5,528.3+ 4,927.3− 3,488.7− 3,894.0)

= 768.2 psi

and

sP =
√
(3− 1)(558.3)2 + (3− 1)(505.2)2 + (3− 1)(342.2)2 + (3− 1)(786.8)2

(3− 1)+ (3− 1)+ (3− 1)+ (3− 1)

= 570.8 psi

Table 7.10
Summary Statistics for the
Modulus of Rupture Measurements

i , Bar Type ȳi si

1 5,528.3 558.3
2 4,927.3 505.2
3 3,488.7 342.2
4 3,894.0 786.8
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Further, n − r = 12− 4 = 8 degrees of freedom are associated with sP. There-
fore, if one wanted (for example) a two-sided 98% confidence interval for L
given in equation (7.24), the necessary .99 quantile of the t8 distribution is 2.896.
Then, since √√√√√(

1

4

)2

3
+

(
1

4

)2

3
+

(
−1

4

)2

3
+

(
−1

4

)2

3
= .2887

a two-sided 98% confidence interval for L has endpoints

768.2± 2.896(570.8)(.2887)

that is,

291.1 psi and 1,245.4 psi (7.25)I
Display (7.25) establishes convincingly the effectiveness of a slow cool

regimen in increasing MOR. It says that the differences in sample mean MOR
values for slow- and fast-cooled bricks are not simply reflecting background
variation. In fact, multiplying the endpoints in display (7.25) each by 2 in order
to get a confidence interval for

2L = 1

2
(µ1 + µ2)−

1

2
(µ3 + µ4)

shows that (when averaged over 17% and 19% water mixtures) the slow, cool
regimen seems to offer an increase in MOR in the range from

582.2 psi to 2,490.8 psi

7.2.3 Individual and Simultaneous Confidence Levels

This section has introduced a variety of confidence intervals for multisample studies.
In a particular application, several of these might be used, perhaps several times each.
For example, even in the relatively simple context of Example 4 (the paper towel
absorbency study), it would be reasonable to desire confidence intervals for each of

µ1, µ2, µ3, µ1 − µ2, µ1 − µ3, µ2 − µ3, and µ1 −
1

2
(µ2 + µ3)

Since many confidence statements are often made in multisample studies, it is
important to reflect on the meaning of a confidence level and realize that it is
attached to one interval at a time. If many 90% confidence intervals are made,



470 Chapter 7 Inference for Unstructured Multisample Studies

the 90% figure applies to the intervals individually. One is “90% sure” of the
first interval, separately “90% sure” of the second, separately “90% sure” of the
third, and so on. It is not at all clear how to arrive at a reliability figure for the
intervals jointly or simultaneously (i.e., an a priori probability that all the intervals
are effective). But it is fairly obvious that it must be less than 90%. That is, the
simultaneous or joint confidence (the overall reliability figure) to be associated
with a group of intervals is generally not easy to determine, but it is typically less
(and sometimes much less) than the individual confidence level(s) associated with
the intervals one at a time.

There are at least three different approaches to be taken once the difference
between simultaneous and individual confidence levels is recognized. The most
obvious option is to make individual confidence intervals and be careful to interpret
them as such (being careful to recognize that as the number of intervals one makes
increases, so does the likelihood that among them are one or more intervals that fail
to cover the quantities they are meant to locate).

A second way of handling the issue of simultaneous versus individual confidence
is to use very large individual confidence levels for the separate intervals and then
employ a somewhat crude inequality to find at least a minimum value for the
simultaneous confidence associated with an entire group of intervals. That is, if
k confidence intervals have associated confidences γ1, γ2, . . . , γk , the Bonferroni
inequality says that the simultaneous or joint confidence that all k intervals are
effective (say, γ ) satisfies

The Bonferroni
inequality

γ ≥ 1− ((1− γ1)+ (1− γ2)+ · · · + (1− γk)
)

(7.26)

(Basically, this statement says that the joint “unconfidence” associated with k inter-
vals (1− γ ) is no larger than the sum of the k individual unconfidences. For example,
five intervals with individual 99% confidence levels have a joint or simultaneous
confidence level of at least 95%.)

The third way of approaching the issue of simultaneous confidence is to develop
and employ methods that for some specific, useful set of unknown quantities provide
intervals with a known level of simultaneous confidence. There are whole books
full of such simultaneous inference methods. In the next section, two of the better
known and simplest of these are discussed.
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1. Return to the situation of Exercise 1 of Section
7.1 (and the pressure/density data of Example 1 in
Chapter 4).
(a) Individual two-sided confidence intervals for

the five different means here would be of the
form ȳi ±1 for a number1. If 95% individual

confidence is desired, what is 1? If all five of
these intervals are made, what does the Bonfer-
roni inequality guarantee for a minimum joint
or simultaneous confidence?

(b) Individual two-sided confidence intervals for
the differences in the five different means
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would be of the form ȳi − ȳi ′ ±1 for a num-
ber1. If 95% individual confidence is desired,
what is 1?

(c) Note that if mean density is a linear func-
tion of pressure over the range of pressures
from 2,000 to 6,000 psi, then µ4000 − µ2000 =
µ6000 − µ4000, that is L = µ6000 − 2µ4000 +
µ2000 has the value 0. Give 95% two-sided
confidence limits for this L . What does your
interval indicate about the linearity of the pres-
sure/density relationship?

2. Return to the tilttable testing problem of Exercise
2 of Section 7.1.
(a) Make (individual) 99% two-sided confidence

intervals for the four different mean tilttable ra-
tios for the four vans, µ1, µ2, µ3 and µ4. What
does the Bonferroni inequality guarantee for a
minimum joint or simultaneous confidence for
these four intervals?

(b) Individual confidence intervals for the differ-
ences between particular pairs of mean tilttable
ratios are of the form ȳi − ȳi ′ ±1 for appro-
priate values of1. Find values of1 if individ-
ual 99% two-sided intervals are desired, first
for pairs of means with samples of size 4 and
then for pairs of means where one sample size
is 4 and the other is 5.

(c) It might be of interest to compare the average
of the tilttable ratios for the minivans to that of
the full-size vans. Give a 99% two-sided con-
fidence interval for the quantity 1

2(µ1 + µ2)−
1
2 (µ3+ µ4) .

3. Explain the difference between several intervals
having associated 95% individual confidences and
having associated 95% simultaneous confidence.
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7.3 Two Simultaneous
Confidence Interval Methods

As Section 7.2 illustrated, there are several kinds of confidence intervals for means
and linear combinations of means that could be made in a multisample study. The
issue of individual versus simultaneous confidence was also raised, but only the use
of the Bonferroni inequality was given as a means of controlling a simultaneous
confidence level.

This section presents two methods for making a number of confidence intervals
and in the process maintaining a desired simultaneous confidence. The first of these is
due to Pillai and Ramachandran; it provides a guaranteed simultaneous confidence in
the estimation of all r individual underlying means. The second is Tukey’s method
for the simultaneous confidence interval estimation of all differences in pairs of
underlying means.

7.3.1 The Pillai-Ramachandran Method

One of the things typically of interest in an r -sample statistical engineering study is
the estimation of all r individual mean responsesµ1, µ2, . . . , µr . If the individual
confidence interval formula of Section 7.2,

ȳi ± t
sP√
ni

(7.27)
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is applied r times to estimate these means, the only handle one has on the corre-
sponding simultaneous confidence is given by the Bonferroni inequality (7.26). This
fairly crude tool says that if r = 8 and one wants 95% simultaneous confidence, in-
dividual “unconfidences” of .05

8 = .00625 (i.e., individual confidences of 99.375%)
for the eight different intervals will suffice to produce the desired simultaneous
confidence.

Another approach to the setting of simultaneous confidence limits on all of
µ1, µ2, . . . , µr is to replace t in formula (7.27) with a multiplier derived specif-
ically for the purpose of providing an exact, stated, simultaneous confidence in
the estimation of all the means. Such multipliers were derived by Pillai and Ra-
machandran, where either all of the intervals for the r means are two-sided or all are
one-sided. That is, Table B.8A gives values of constants k∗2 such that the r two-sided
intervals with respective endpoints

P-R two-sided
simultaneous 95%

confidence limits
for r means

ȳi ± k∗2
sP√
ni

(7.28)

have simultaneous 95% confidence as intervals for the means µ1, µ2, . . . , µr .
(These values k∗2 are in fact .95 quantiles of the Studentized maximum modulus
distributions.)

Table B.8B gives values of some other constants k∗1 such that if for each i from
1 to r , an interval of the form

P-R one-sided
simultaneous 95%

confidence intervals
for r means

(
−∞, ȳi + k∗1

sP√
ni

)
(7.29)

or of the form

P-R one-sided
simultaneous 95%

confidence intervals
for r means

(
ȳi − k∗1

sP√
ni

,∞
)

(7.30)

is made as a confidence interval for µi , the simultaneous confidence associated
with the collection of r one-sided intervals is 95%. (These k∗1 values are in fact .95
quantiles of the Studentized extreme deviate distributions.)

In this book, the use of r intervals of one of the forms (7.28) through (7.30) will
be called the P-R method of simultaneous confidence intervals. In order to apply the
P-R method, one must find (using interpolation as needed) the entry in Tables B.8 in
the column corresponding to the number of samples, r , and the row corresponding
to the degrees of freedom associated with sP, namely ν = n − r .
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Example 6
(Example 3 revisited )

Simultaneous Confidence Intervals
for Eight Mean Concrete Compressive Strengths

Consider again the concrete strength study of Armstrong, Babb, and Campen.
Recall that tests on ni = 3 specimens of each of r = 8 different concrete formulas
gave sP = 581.6 psi. Using formula (7.27) and remembering that there are n −
r = 16 degrees of freedom associated with sP, one has endpoints for 95% two-
sided intervals for the formula mean compressive strengths

ȳi ± 2.120
581.6√

3

that is,

ȳi ± 711.9 psi (7.31)

In contrast to intervals (7.31), consider the use of formula (7.28) to produce
r = 8 two-sided intervals for the formula mean strengths with simultaneous 95%
confidence. Table B.8A shows that k∗2 = 3.099 is appropriate in this application.
So each concrete formula mean compressive strength, µi , should be estimated
using

ȳi ± 3.099
581.6√

3

that is,

ȳi ± 1,040.6 psi (7.32)I

Expressions (7.31) and (7.32) provide two-sided intervals for the eight mean
compressive strengths. If one-sided intervals of the form (#,∞) were desired
instead, consulting the t table for the .95 quantile of the t16 distribution and use
of formula (7.27) shows that the values

ȳi − 1.746
581.6√

3

that is,

ȳi − 586.3 psi (7.33)

are individual 95% lower confidence bounds for the formula mean compres-
sive strengths, µi . At the same time, consulting Table B.8B shows that for
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Example 6
(continued )

simultaneous 95% confidence, use of k∗1 = 2.779 in formula (7.30) is appro-
priate, and the values

ȳi − 2.779
581.6√

3

that is,

ȳi − 933.2 psi (7.34)I
are simultaneous 95% lower confidence bounds for the formula mean compressive
strengths, µi .

Comparing intervals (7.31) with intervals (7.32) and bounds (7.33) with bounds
(7.34) shows clearly the impact of requiring simultaneous rather than individual
confidence. For a given nominal confidence level, the simultaneous intervals must
be bigger (more conservative) than the corresponding individual intervals.

It is common practice to summarize the information about mean responses
gained in a multisample study in a plot of sample means versus sample numbers,
enhanced with “error bars” around the sample means to indicate the uncertainty
associated with locating the means. There are various conventions for the making
of these bars. When looking at such a plot, one typically forms an overall visual
impression. Therefore, it is our opinion that error bars derived from the P-R simul-
taneous confidence limits of display (7.28) are the most sensible representation of
what is known about a group of r means. For example, Figure 7.11 is a graphical
representation of the eight formula sample mean strengths given in Table 7.7 with
±1,040.6 psi error bars, as indicated by expression (7.32).

When looking at a display like Figure 7.11, it is important to remember that
what is represented is the precision of knowledge about the mean strengths, rather
than any kind of predictions for individual compressive strengths. In this regard,
the similarity of the spread of the samples on the side-by-side dot diagram given
as Figure 7.1 and the size of the error bars here is coincidental. As sample sizes
increase, spreads on displays of individual measurements like Figure 7.1 will tend to
stabilize (representing the spreads of the underlying distributions), while the lengths
of error bars associated with means will shrink to 0 as increased information gives
sharper and sharper evidence about the underlying means.

In any case, Figure 7.11 shows clearly that the information in the data is quite
adequate to establish the existence of differences in formula mean compressive
strengths.

7.3.2 Tukey’s Method

A second set of quantities often of interest in an r -sample study consists of the
differences in all r(r−1)

2 pairs of mean responses µi and µi ′ . Section 7.2 argued
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Figure 7.11 Plot of eight sample mean compressive strengths, enhanced
with error bars derived from P-R simultaneous confidence limits

that a single difference in mean responses, µi − µi ′ , can be estimated using an
interval with endpoints

ȳi − ȳi ′ ± tsP

√
1

ni

+ 1

ni ′
(7.35)

where the associated confidence level is an individual one. But if, for example,
r = 8, there are 28 different two-at-a-time comparisons of underlying means to be
considered (µ1 versus µ2, µ1 versus µ3, . . . , µ1 versus µ8, µ2 versus µ3, . . . , and
µ7 versus µ8). If one wishes to guarantee a reasonable simultaneous confidence
level for all these comparisons via the crude Bonferroni idea, a huge individual
confidence level is required for the intervals (7.35). For example, the Bonferroni in-
equality requires 99.82% individual confidence for 28 intervals in order to guarantee
simultaneous 95% confidence.

A better approach to the setting of simultaneous confidence limits on all of
the differences µi − µi ′ is to replace t in formula (7.35) with a multiplier derived
specifically for the purpose of providing exact, stated, simultaneous confidence in
the estimation of all such differences. J. Tukey first pointed out that it is possible
to provide such multipliers using quantiles of the Studentized range distributions.
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Tables B.9A and B.9B give values of constants q∗ such that the set of two-sided
intervals with endpoints

Tukey’s two-
sided simultaneous

confidence limits
for all differences

in r means

ȳi − ȳi ′ ±
q∗√

2
sP

√
1

ni

+ 1

ni ′
(7.36)

has simultaneous confidence at least 95% or 99% (depending on whether Q(.95)
is read from Table B.9A or Q(.99) is read from Table B.9B) in the estimation of
all differences µi − µi ′ . If all the sample sizes n1, n2, . . . , nr are equal, the 95% or
99% nominal simultaneous confidence figure is exact, while if the sample sizes are
not all equal, the true value is at least as big as the nominal value.

In order to apply Tukey’s method, one must find (using interpolation as needed)
the column in Tables B.9 corresponding to the number of samples/means to be
compared and the row corresponding to the degrees of freedom associated with sP,
(namely, ν = n − r ).

Example 6
(continued )

Consider the making of confidence intervals for differences in formula mean
compressive strengths. If a 95% two-sided individual confidence interval is de-
sired for a specific difference µi − µi ′ , formula (7.35) shows that appropriate
endpoints are

ȳi − ȳi ′ ± 2.120(581.6)

√
1

3
+ 1

3

that is,

ȳi − ȳi ′ ± 1,006.7 psi (7.37)

On the other hand, if one plans to estimate all differences in mean com-
pressive strengths with simultaneous 95% confidence, by formula (7.36) Tukey
two-sided intervals with endpoints

ȳi − ȳi ′ ±
4.90√

2
(581.6)

√
1

3
+ 1

3

that is,

ȳi − ȳi ′ ± 1,645.4 psi (7.38)I
are in order (4.90 is the value in the r = 8 column and ν = 16 row of Table B.9A.)
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In keeping with the fact that the confidence level associated with the intervals
(7.38) is a simultaneous one, the Tukey intervals are wider than those indicated
in formula (7.37).

The plus-or-minus part of display (7.38) is not as big as twice the plus-or-
minus part of expression (7.32). Thus, when looking at Figure 7.11, it is not
necessary that the error bars around two means fail to overlap before it is safe to
judge the corresponding underlying means to be detectably different. Rather, it
is only necessary that the two sample means differ by the plus-or-minus part of
formula (7.36)—1,645.4 psi in the present situation.

This section has mentioned only two of many existing methods of simultane-
ous confidence interval estimation for multisample studies. These should serve to
indicate the general character of such methods and illustrate the implications of a
simultaneous (as opposed to individual) confidence guarantee.

One final word of caution has to do with the theoretical justification of all of
the methods found in this section. It is the “equal variances, normal distributions”
model that supports these engineering tools. If any real faith is to be put in the
nominal confidence levels attached to the P-R and Tukey methods presented here,
that faith should be based on evidence (typically gathered, at least to some extent,
as illustrated in Section 7.1) that the standard one-way normal model is a sensible
description of a physical situation.
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1. Return to the situation of Exercises 1 of Sections
7.1 and 7.2 (and the pressure/density data of Ex-
ample 1 in Chapter 4).
(a) Using the P-R method, what 1 can be em-

ployed to make two-sided intervals of the form
ȳi ±1 for all five mean densities, possessing
simultaneous 95% confidence? How does this
1 compare to the one computed in part (a) of
Exercise 1 of Section 7.2?

(b) Using the Tukey method, what 1 can be em-
ployed to make two-sided intervals of the form
ȳi − ȳi ′ ±1 for all differences in the five
mean densities, possessing simultaneous 95%
confidence? How does this 1 compare to the
one computed in part (b) of Exercise 1 of Sec-
tion 7.2?

2. Return to the tilttable study of Exercises 2 of Sec-
tions 7.1 and 7.2.

(a) Use the P-R method of simultaneous confi-
dence intervals and make simultaneous 95%
two-sided confidence intervals for the four
mean tilttable ratios.

(b) Simultaneous confidence intervals for the dif-
ferences in all pairs of mean tilttable ratios
are of the form ȳi − ȳi ′ ±1. Find appropriate
values of1 if simultaneous 99% two-sided in-
tervals are desired, first for pairs of means with
samples of size 4 and then for pairs of means
where one sample size is 4 and the other is
5. How do these compare to the intervals you
found in part (b) of Exercise 2 of Section 7.2?
Why is it reasonable that the 1’s should be
related in this way?
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7.4 One-Way Analysis of Variance (ANOVA)

This book’s approach to inference in multisample studies has to this point been
completely “interval-oriented.” But there are also significance-testing methods that
are appropriate to the multiple-sample context. This section considers some of these
and the issues raised by their introduction. It begins with some general comments
regarding significance testing in r -sample studies. Then the one-way analysis of
variance (ANOVA) test for the equality of r means is discussed. Next, the one-
way ANOVA table and the organization and intuition that it provides are presented.
Finally, there is a brief look at the one-way random effects model and ANOVA-based
inference for its parameters.

7.4.1 Significance Testing and Multisample Studies

Just as there are many quantities one might want to estimate in a multisample study,
there are potentially many issues of statistical significance to be judged. For instance,
one might desire p-values for hypotheses like

H0:µ3 = 7 (7.39)

H0:µ3 − µ7 = 0 (7.40)

H0:µ1 −
1

2
(µ2 + µ3) = 0 (7.41)

The confidence interval methods discussed in Section 7.2 have their significance-
testing analogs for treating hypotheses that, like all three of these, involve linear
combinations of the means µ1, µ2, . . . , µr .

In general (under the standard one-way model), if

L = c1µ1 + c2µ2 + · · · + crµr

the hypothesis

H0: L = # (7.42)

can be tested using the test statistic

T = L̂ − #

sP

√
c2

1

n1

+ c2
2

n2

+ · · · + c2
r

nr

(7.43)

and a tn−r reference distribution. This fact specializes to cover hypotheses of types
(7.39) to (7.41) by appropriate choice of the ci and #.
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But the significance-testing method most often associated with the one-way
normal model is not for hypotheses of the type (7.42). Instead, the most common
method concerns the hypothesis that all r underlying means have the same value. In
symbols, this is

H0:µ1 = µ2 = · · · = µr (7.44)

Given that one is working under the assumptions of the one-way model to begin
with, hypothesis (7.44) amounts to a statement that all r underlying distributions are
essentially the same—or “There are no differences between treatments.”

Hypothesis (7.44) can be thought of in terms of the simultaneous equality of
r(r−1)

2 pairs of means—that is, as equivalent to the statement that simultaneously

µ1 − µ2 = 0, µ1 − µ3 = 0, . . . , µ1 − µr = 0,

µ2 − µ3 = 0, . . . , and µr−1 − µr = 0

And this fact should remind the reader of the ideas about simultaneous confidence
intervals from the previous section (specifically, Tukey’s method). In fact, one way of
judging the statistical significance of an r -sample data set in reference to hypothesis
(7.44) is to apply Tukey’s method of simultaneous interval estimation and note
whether or not all the intervals for differences in means include 0. If they all do,
the associated p-value is larger than 1 minus the simultaneous confidence level. If
not all of the intervals include 0, the associated p-value is smaller than 1 minus
the simultaneous confidence level. (If simultaneous 95% intervals all include 0,
no differences between means are definitively established, and the corresponding
p-value exceeds .05.)

We admit a bias toward estimation over testing per se. A consequence of this
bias is a fondness for deriving a rough idea of a p-value for hypothesis (7.44) as a
byproduct of Tukey’s method. But a most famous significance-testing method for
hypothesis (7.44) also deserves discussion: the one-way analysis of variance test.
(At this point it may seem strange that a test about means has a name apparently
emphasizing variance. The motivation for this jargon is that the test is associated
with a very helpful way of thinking about partitioning the overall variability that is
encountered in a response variable.)

7.4.2 The One-Way ANOVA F Test

The standard method of testing the hypothesis (7.44)

H0:µ1 = µ2 = · · · = µr

of no differences among r means against

Ha: not H0 (7.45)
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is based essentially on a comparison of a measure of variability among the sample
means to the pooled sample variance, s2

P. In order to fully describe this method some
additional notational conventions are needed.

Repeatedly in the balance of this book, it will be convenient to have symbols for
the summary measures of Section 3.3 (sample means and variances) applied to the
data from multisample studies, ignoring the fact that there are r different samples
involved. Already the unsubscripted letter n has been used to stand for n1 + n2 +· · · + nr , the number of observations in hand ignoring the fact that r samples are
involved. This kind of convention will now be formally extended to include statistics
calculated from the n responses. For emphasis, this will be stated in definition form.

Definition 3
(A Notational Convention
for Multisample Studies )

In multisample studies, symbols for sample sizes and sample statistics appear-
ing without subscript indices or dots will be understood to be calculated from
all responses in hand, obtained by combining all samples.

So n will stand for the total number of data points (even in an r -sample study),
ȳ for the grand sample average of response y, and s2 for a grand sample variance
calculated completely ignoring sample boundaries.

For present purposes (of writing down a test statistic for testing hypothesis
(7.44)), one needs to make use of ȳ, the grand sample average. It is important to
recognize that ȳ and

The (unweighted)
average of r sample

means
ȳ
.
= 1

r

r∑
i=1

ȳi (7.46)

are not necessarily the same unless all sample sizes are equal. That is, when sample
sizes vary, ȳ is the (unweighted) arithmetic average of the raw data values yi j but is a
weighted average of the sample means ȳi . On the other hand, ȳ

.
is the (unweighted)

arithmetic mean of the sample means ȳi but is a weighted average of the raw data
values yi j . For example, in the simple case that r = 2, n1 = 2, and n2 = 3,

ȳ = 1

5
(y11 + y12 + y21 + y22 + y23) =

2

5
ȳ1 +

3

5
ȳ2

while

ȳ
.
= 1

2
(ȳ1 + ȳ2) =

1

4
y11 +

1

4
y12 +

1

6
y21 +

1

6
y22 +

1

6
y23

and, in general, ȳ and ȳ
.
will not be the same.
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Now, under the hypothesis (7.44), that µ1 = µ2 = · · · = µr , ȳ is a natural
estimate of the common mean. (All underlying distributions are the same, so the
data in hand are reasonably thought of not as r different samples, but rather as
a single sample of size n.) Then the differences ȳi − ȳ are indicators of possible
differences among the µi . It is convenient to summarize the size of these differences
ȳi − ȳ in terms of a kind of total of their squares—namely,

r∑
i=1

ni (ȳi − ȳ)2 (7.47)

One can think of statistic (7.47) either as a weighted sum of the quantities (ȳi − ȳ)2

or as an unweighted sum, where there is a term in the sum for each raw data point
and therefore ni of the type (ȳi − ȳ)2. The quantity (7.47) is a measure of the
between-sample variation in the data. For a given set of sample sizes, the larger it
is, the more variation there is between the sample means ȳi .

In order to produce a test statistic for hypothesis (7.44), one simply divides the
measure (7.47) by (r − 1)s2

P, giving

One-way ANOVA
test statistic for

equality of r means F =

1

r − 1

r∑
i=1

ni (ȳi − ȳ)2

s2
P

(7.48)

The fact is that if H0:µ1 = µ2 = · · · = µr is true, the one-way model assumptions
imply that this statistic has an Fr−1, n−r distribution. So the hypothesis of equality of
r means can be tested using the statistic in equation (7.48) with an Fr−1, n−r reference
distribution, where large observed values of F are taken as evidence against H0 in
favor of Ha: not H0.

Example 7
(Example 1 revisited )

Returning again to the concrete compressive strength study of Armstrong, Babb,
and Campen, ȳ = 3,693.6 and the 8 sample means ȳi have differences from this
value given in Table 7.11.

Then since each ni = 3, in this situation,

r∑
i=1

ni (ȳi − ȳ)2 = 3(1,941.7)2 + 3(2,059.7)2 + · · ·

+ 3(−2,142.3)2 + 3(−1,302.9)2

= 47,360,780 (psi)2
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Example 7
(continued )

Table 7.11
Sample Means and Their
Deviations from ȳ in the Concrete
Strength Study

i ,
Formula ȳi ȳi − ȳ

1 5,635.3 1,941.7
2 5,753.3 2,059.7
3 4,527.3 833.7
4 3,442.3 −251.3
5 2,923.7 −769.9
6 3,324.7 −368.9
7 1,551.3 −2,142.3
8 2,390.7 −1,302.9

In order to use this figure to judge statistical significance, one standardizes via
equation (7.48) to arrive at the observed value of the test statistic

f =
1

8− 1
(47,360,780)

(581.6)2
= 20.0

It is easy to verify from Tables B.6 that 20.0 is larger than the .999 quantile of
the F7,16 distribution. So

p-value = P[an F7,16 random variable ≥ 20.0] < .001

That is, the data provide overwhelming evidence that µ1, µ2, . . . , µ8 are not all
equal.

For pedagogical reasons, the one-way ANOVA test has been presented after
discussing interval-oriented methods of inference for r -sample studies. But if it is to
be used in applications, the testing method typically belongs chronologically before
estimation. That is, the ANOVA test can serve as a screening device to determine
whether the data in hand are adequate to differentiate conclusively between the
means, or whether more data are needed.

7.4.3 The One-Way ANOVA Identity and Table

Associated with the ANOVA test statistic is some strong intuition related to the
partitioning of observed variability. This is related to an algebraic identity that is
stated here in the form of a proposition.
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Proposition 1 For any n numbers yi j

One-way
ANOVA
identity

(n − 1)s2 =
r∑

i=1

ni (ȳi − ȳ)2 + (n − r)s2
P (7.49)

or in other symbols,

A second statement
of the one-way

ANOVA identity

∑
i, j

(yi j − ȳ)2 =
r∑

i=1

ni (ȳi − ȳ)2 +
r∑

i=1

ni∑
j=1

(yi j − ȳi )
2 (7.50)

Proposition 1 should begin to shed some light on the phrase “analysis of vari-
ance.” It says that an overall measure of variability in the response y, namely,

(n − 1)s2 =
∑
i, j

(yi j − ȳ)2

can be partitioned or decomposed algebraically into two parts. One,

r∑
i=1

ni (ȳi − ȳ)2

can be thought of as measuring variation between the samples or “treatments,” and
the other,

(n − r)s2
P =

r∑
i=1

ni∑
j=1

(yi j − ȳi )
2

measures variation within the samples (and in fact consists of the sum of the squared
residuals). The F statistic (7.48), developed for testing H0:µ1 = µ2 = · · · = µr , has
a numerator related to the first of these and a denominator related to the second. So
using the ANOVA F statistic amounts to a kind of analyzing of the raw variability
in y.

In recognition of their prominence in the calculation of the one-way ANOVA
F statistic and their usefulness as descriptive statistics in their own right, the three
sums (of squares) appearing in formulas (7.49) and (7.50) are usually given special
names and shorthand. These are stated here in definition form.
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Definition 4 In a multisample study, (n − 1)s2, the sum of squared differences between the
raw data values and the grand sample mean, will be called the total sum of
squares and denoted as SSTot.

Definition 5 In an unstructured multisample study,
∑

ni (ȳi − ȳ)2 will be called the treat-
ment sum of squares and denoted as SSTr.

Definition 6 In a multisample study, the sum of squared residuals,
∑
(y − ŷ)2 (which is

(n − r)s2
P in the unstructured situation) will be called the error sum of squares

and denoted as SSE.

In the new notation introduced in these definitions, Proposition 1 states that in
an unstructured multisample context,

A third statement
of the one-way

ANOVA identity
SSTot = SSTr+ SSE (7.51)

Partially as a means of organizing calculation of the F statistic given in formula
(7.48) and partially because it reinforces and extends the variance partitioning
insight provided by formulas (7.49), (7.50), and (7.51), it is useful to make an
ANOVA table. There are many forms of ANOVA tables corresponding to various
multisample analyses. The form most relevant to the present situation is given in
symbolic form as Table 7.12.

The column headings in Table 7.12 are Source (of variation), Sum of Squares
(corresponding to the source), degrees of freedom (corresponding to the source),
Mean Square (corresponding to the source), and F (for testing the significance of
the source in contributing to the overall observed variability). The entries in the
Source column of the table are shown here as being Treatments, Error, and Total.
But the name Treatments is sometimes replaced by Between (Samples), and the

Table 7.12
General Form of the One-Way ANOVA Table

ANOVA Table (for testing H0:µ1 = µ2 = · · · = µr )
Source SS d f MS F

Treatments SSTr r − 1 SSTr/(r − 1) MSTr/MSE
Error SSE n − r SSE/(n − r)

Total SSTot n − 1
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name Error is sometimes replaced by Within (Samples) or Residual. The first two
entries in the SS column must sum to the third, as indicated in equation (7.51).
Similarly, the Treatments and Error degrees of freedom add to the Total degrees of
freedom, (n − 1). Notice that the entries in the d f column are those attached to the
numerator and denominator, respectively, of the test statistic in equation (7.48). The
ratios of sums of squares to degrees of freedom are called mean squares, here the
mean square for treatments (MSTr) and the mean square for error (MSE). Verify that
in the present context, MSE = s2

P and MSTr is the numerator of the F statistic given
in equation (7.48). So the single ratio appearing in the F column is the observed
value of F for testing H0:µ1 = µ2 = · · · = µr .

Example 7
(continued )

Consider once more the concrete strength study. It is possible to return to the raw
data given in Table 7.1 and find that ȳ = 3,693.6, so

SSTot = (n − 1)s2

= (5,800− 3,693.6)2 + (4,598− 3,693.6)2 + (6,508− 3,693.6)2

+ · · · + (2,631− 3,693.6)2 + (2,490− 3,693.6)2

= 52,772,190 (psi)2

Further, as in Section 7.1, s2
P = 338,213.1 (psi)2 and n − r = 16, so

SSE = (n − r)s2
P = 5,411,410 (psi)2

And from earlier in this section,

SSTr =
r∑

i=1

ni (ȳi − ȳ)2 = 47,360,780

Then, plugging these and appropriate degrees of freedom values into the general
form of the one-way ANOVA table produces the table for the concrete compres-
sive strength study, presented here as Table 7.13.

Table 7.13
One-Way ANOVA Table for the Concrete Strength Study

ANOVA Table (for testing H0:µ1 = µ2 = · · · = µ8)
Source SS d f MS F

Treatments 47,360,780 7 6,765,826 20.0
Error 5,411,410 16 338,213

Total 52,772,190 23
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Example 7
(continued )

Notice that, as promised by the one-way ANOVA identity, the sum of the
treatment and error sums of squares is the total sum of squares. Also, Table
7.13 serves as a helpful summary of the testing process, showing at a glance the
observed value of F , the appropriate degrees of freedom, and s2

P = M SE .
The computations here are by no means impossible to do “by hand.” But the

most sensible way to handle them is to employ a statistical package. Printout 1
shows the results of using MINTAB to create an ANOVA table. (The routine
under MINITAB’s “Stat/ANOVA/One-way” menu was used.)

Printout 1 ANOVA Table for a One-Way Analysis
of the Concrete Strength Data

One-way Analysis of Variance

WWW

Analysis of Variance for strength
Source DF SS MS F P
formula 7 47360781 6765826 20.00 0.000
Error 16 5411409 338213
Total 23 52772190

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev -----+---------+---------+---------+-
1 3 5635.3 965.6 (---*----)
2 3 5753.3 432.3 (---*---)
3 3 4527.3 509.9 (---*----)
4 3 3442.3 356.4 (----*---)
5 3 2923.7 852.9 (---*----)
6 3 3324.7 353.5 (----*---)
7 3 1551.3 505.5 (----*---)
8 3 2390.7 302.5 (----*---)

-----+---------+---------+---------+-
Pooled StDev = 581.6 1600 3200 4800 6400

You may recall having used a breakdown of a “raw variation in the data” earlier
in this text (namely, in Chapter 4). In fact, there is a direct connection between the
present discussion and the discussion and use of R2 in Sections 4.1, 4.2, and 4.3.
(See Definition 3 in Chapter 4 and its use throughout those three sections.) In the
present notation, the coefficient of determination defined as a descriptive measure
in Section 4.1 is

The coefficient of
determination in
general sums of

squares notation

R2 = SSTot− SSE

SSTot
(7.52)

(Fitted values for the present situation are the sample means and SSE is the sum
of squared residuals here, just as it was earlier.) Expression (7.52) is a perfectly
general recasting of the definition of R2 into “SS” notation. In the present one-way
context, the one-way identity (7.51) makes it possible to rewrite the numerator of
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the right-hand side of formula (7.52) as SSTr. So in an unstructured r -sample study
(where the fitted values are the sample means)

The coefficient
of determination

in a one-way
analysis

R2 = SSTr

SSTot
(7.53)

That is, the first entry in the SS column of the ANOVA table divided by the total entry
of that column can be taken as “the fraction of the raw variability in y accounted for
in the process of fitting the equation yi j ≈ µi to the data.”

Example 7
(continued )

In the concrete compressive strength study, a look at Table 7.13 and equation
(7.53) shows that

R2 = SSTr

SSTot
= 47,360,780

52,772,190
= .897

That is, another way to describe these data is to say that differences between
concrete formulas account for nearly 90% of the raw variability observed in
compressive strength.

So the ANOVA breakdown of variability not only facilitates the testing of H0:µ1 =
µ2 = · · · = µr but it also makes direct connection with the earlier descriptive anal-
yses of what part of the raw variability is accounted for in fitting a model equation.

7.4.4 Random Effects Models and Analyses (Optional )

On occasion, the r particular conditions leading to the r samples in a multisample
study are not so much of interest in and of themselves, as they are of interest as
representing a wider set of conditions. For example, in the nondestructive testing of
critical metal parts, if ni = 3 mechanical wave travel-time measurements are made
on each of r = 6 parts selected from a large lot of such parts, the six particular parts
are of interest primarily as they provide information on the whole lot.

In such situations, rather than focusing formal inference on the particular r
means actually represented in the data (i.e., µ1, µ2, . . . , µr ), it is more natural
to make inferences about the mechanism that generates the means µi . And it is
possible, under appropriate model assumptions, to use the ANOVA ideas introduced
in this section in this way. The balance of this section is concerned with how this
is done.

The most commonly used probability model for the analysis of r -sample data,
where the r conditions actually studied represent a much wider set of conditions



488 Chapter 7 Inference for Unstructured Multisample Studies

of interest, is a variation on the one-way model of this chapter called the one-way
random effects model. It is built on the usual one-way assumptions that

yi j = µi + εi j (7.54)

where the εi j are iid normal (0, σ 2) random variables. But it doesn’t treat the means
µi as parameters/unknown constants. Instead, the means µ1, µ2, . . . , µr are treated
as (unobservable) random variables independent of the εi j ’s and themselves iidRandom effects

model assumptions according to some normal distribution with an unknown mean µ and unknown
variance σ 2

τ . The random variables µi are now called random (treatment) effects,
and the variances σ 2 and σ 2

τ are called variance components. The objects of
formal inference become µ (the mean of the random effects) and the two variance
components σ 2 and σ 2

τ .

Example 8 Magnesium Contents at Different Locations on an Alloy Rod
and the Random Effects Model

Youden’s Experimentation and Measurement contains an interesting data set
concerned with the magnesium contents of different parts of a long rod of mag-
nesium alloy. A single ingot had been drawn into a rod of about 100 m in length,
with a square cross section about 4.5 cm on a side. r = 5 flat test pieces 1.2 cm
thick were cut from the rod (after it had been cut into 100 bars and 5 of these
randomly selected to represent the rod), and multiple magnesium determinations
were made on the 5 specimens. ni = 10 of the resulting measurements for each
specimen are given in Table 7.14. (There were actually other observations made
not listed in Table 7.14. And some additional structure in Youden’s original data

Table 7.14
Measured Magnesium Contents for Five Alloy Specimens

Specimen 1 Specimen 2 Specimen 3 Specimen 4 Specimen 5

76 69 73 73 70
71 71 69 75 66
70 68 68 69 68
67 71 69 72 68
71 66 70 69 64
65 68 70 69 70
67 71 65 72 69
71 69 67 63 67
66 70 67 69 69
68 68 64 69 67

ȳ1 = 69.2 ȳ2 = 69.1 ȳ3 = 68.2 ȳ4 = 70.0 ȳ5 = 67.8
s1 = 3.3 s2 = 1.7 s3 = 2.6 s4 = 3.3 s5 = 1.9
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will also be ignored for present purposes.) The units of measurement in Table
7.14 are .001% magnesium.

In this example, on the order of 8,300 test specimens could be cut from the
100 m rod. The purpose of creating the rod was to provide secondary standards for
field calibration of chemical analysis instruments. That is, laboratories purchasing
pieces of this rod could use them as being of “known” magnesium content to
calibrate their instruments. As such, the practical issues at stake here are not
primarily how the r = 5 particular test specimens analyzed compare. Rather, the
issues are what the overall magnesium content is and whether or not the rod is
consistent enough in content along its length to be of any use as a calibration tool.
A random effects model and inference for the mean effect µ and the variance
components are quite natural in this situation. Here, σ 2

τ represents the variation
in magnesium content among the potentially 8,300 different test specimens, and
σ 2 represents measurement error plus variation in magnesium content within the
1.2 cm thick specimens, test location to test location.

When all of the r sample sizes ni are the same (say, equal to m), it turns out to
be quite easy to do some diagnostic checking of the aptness of the normal random
effects model (7.54) and make subsequent inferences about µ, σ 2, and σ 2

τ . So this
discussion will be limited to cases of equal sample sizes.

As far as investigation of the reasonableness of the model restrictions on the
distribution of the µi and inference for µ are concerned, a key observation is that

ȳi =
1

m

m∑
j=1

(µi + εi j ) = µi + ε̄i

(where, of course, ε̄i is the sample mean of εi1, . . . , εim). Under the random effects
model (7.54), these ȳi = µi + ε̄i are iid normal variables with mean µ and variance
σ 2
τ + σ 2/m. So normal-plotting the ȳi is a sensible method of at least indirectly

investigating the appropriateness of the normal distribution assumption for the µi .
In addition, the fact that the model says the ȳi are independent normal variables with
mean µ and a common variance suggests that the small-sample inference methods
from Section 6.3 should simply be applied to the sample means ȳi in order to do infer-
ence forµ. In doing so, the “sample size” involved is the number of ȳi ’s—namely, r .

Example 8
(continued )

For the magnesium alloy rod, the r = 5 sample means are in Table 7.14. Figure
7.12 gives a normal plot of those five values, showing no obvious problems with
a normal random effects model for specimen magnesium contents.

To find a 95% two-sided confidence interval for µ, we calculate as follows
(treating the five values ȳi as “observations”). The sample mean (of ȳi ’s) is

ȳ
.
= 1

5

5∑
i=1

ȳi = 68.86
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Example 8
(continued )
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Figure 7.12 Normal plot of five specimen mean
magnesium contents

and the sample variance (of ȳi ’s) is

1

5− 1

5∑
i=1

(ȳi − ȳ
.
)2 = .76

so that the sample standard deviation (of ȳi ’s) is√√√√ 1

5− 1

5∑
i=1

(ȳi − ȳ
.
)2 = .87

Applying the small-sample confidence interval formula for a single mean from
Section 6.3 (since r − 1 = 4 degrees of freedom are appropriate), a two-sided
95% confidence for µ has endpoints

68.86± 2.776
.87√

5

that is,

67.78× 10−3% and 69.94× 10−3%

These limits provide a notion of precision appropriate for the number 68.86×
10−3% as an estimate of the rod’s mean magnesium content.
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It is useful to write out in symbols what was just done to get a confidence
interval for µ. That is, a sample variance of ȳi ’s was used. This is

1

r − 1

r∑
i=1

(ȳi − ȳ
.
)2 = 1

m(r − 1)

r∑
i=1

m(ȳi − ȳ)2 = 1

m(r − 1)
SSTr = 1

m
MSTr

because all ni are m and ȳ
.
= ȳ in this case. But this means that under the assumptions

of the one-way normal random effects model, a two-sided confidence interval for µ
has endpoints

Balanced data
confidence limits

for the overall
mean in the

one-way random
effects model

ȳ
.
± t

√
MSTr

mr
(7.55)

where t is such that the probability the tr−1 distribution assigns to the interval
between −t and t is the desired confidence. One-sided intervals are obtained in the
usual way, by employing only one of the endpoints in display (7.55).

7.4.5 ANOVA-Based Inference
for Variance Components (Optional )

Turning attention to the variance components in the random effects model (7.54),
first note that as far as diagnostic checking of the assumption that the εi j are iid
normal variables and inference for σ 2 = Var εi j are concerned, all of the methods of
Section 7.1 remain in force. If one thinks of holding the µi fixed in formula (7.54),
it is clear that (conditional on the µi ) the random effects model treats the r samples
as random samples from normal distributions with a common variance. So before
doing inference for σ 2 (or σ 2

τ for that matter) via usual normal theory formulas,
it is advisable to do the kind of sample-by-sample normal-plotting and plotting of
residuals illustrated in Section 7.1. And if it is then plausible that the εi j are iid
normal (0, σ 2) variables, formula (7.10) of Section 7.1 can be used to produce a
confidence interval for σ 2, and significance testing for σ 2 can be done based on the
fact that r(m − 1)s2

P/σ
2 has a χ2

r(m−1) distribution.
Inference for σ 2

τ borrows from things already discussed but also provides a new
wrinkle or two of its own. First, significance testing for

H0: σ 2
τ = 0 (7.56)

is made possible by the observation that if H0 is true, then (just as when H0:µ1 =
µ2 = · · · = µr in the case where theµi are not random effects but fixed parameters)
the n = mr observations are all coming from a single normal distribution. So

ANOVA test statistic for
H0: σ 2

τ = 0 in the one-way
random effects model

F = MSTr

MSE
(7.57)
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has an Fr−1, n−r distribution under the assumptions of the random effects model
(7.54) when the null hypothesis (7.56) holds. Thus, the same one-way ANOVA F
test used to test H0:µ1 = µ2 = · · · = µr when the means µi are considered fixed
parameters can also be used to test H0: σ 2

τ = 0 under the assumptions of the random
effects model.

As far as estimation goes, it doesn’t turn out to be possible to give a simple
confidence interval formula for σ 2

τ directly. But what can be done in a straightforward
fashion is to give both a natural ANOVA-based single-number estimate of σ 2

τ and
a confidence interval for the ratio σ 2

τ /σ
2. To accomplish the first of these, consider

the mean values of random variables MSTr and MSE (= s2
P) under the assumptions

of the random effects model. Not too surprisingly,

E(MSE) = Es2
P = σ 2 (7.58)

(After all, s2
P has been used to approximate σ 2. That the “center” of the probability

distribution of s2
P is σ 2 should therefore seem only reassuring.) And further,

E(MSTr) = σ 2 + mσ 2
τ (7.59)

Then, from equations (7.58) and (7.59),

1

m

(
E(MSTr)− E(MSE)

) = σ 2
τ

or

E
1

m
(MSTr−MSE) = σ 2

τ (7.60)

So equation (7.60) suggests that the random variable

1

m
(MSTr−MSE) (7.61)

is one whose distribution is centered about the variance component σ 2
τ and thus is a

natural ANOVA-based estimator of σ 2
τ . The variable in display (7.61) is potentially

negative. When that occurs, common practice is to estimate σ 2
τ by 0. So the variable

actually used to estimate σ 2
τ is

An ANOVA-based
estimator of the

treatment variance
σ̂

2
τ = max

(
0,

1

m
(MSTr−MSE)

)
(7.62)

Facts (7.58) and (7.60), which motivate this method of estimating σ 2
τ , are important

enough that they are often included as entries in an Expected Mean Square column
added to the one-way ANOVA table when testing H0: σ 2

τ = 0.
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Although no elementary confidence interval for σ 2
τ is known, it is possible to

give one for the ratio σ 2
τ /σ

2. A basic probability fact is that under the assumptions
of the random effects model (7.54),

F =

MSTr

σ 2 + mσ 2
τ

MSE

σ 2

has an Fr−1, n−r distribution. Some algebraic manipulations beginning from this fact
show that the interval with endpoints

Confidence limits
for σ 2

τ /σ
2 in the

one-way random
effects model

1

m

(
MSTr

U ·MSE
− 1

)
and

1

m

(
MSTr

L ·MSE
− 1

)
(7.63)

can be used as a two-sided confidence interval for σ 2
τ /σ

2, where the associated
confidence is the probability the Fr−1, n−r distribution assigns to the interval (L ,U ).
One-sided intervals for σ 2

τ /σ
2 can be had by using only one of the endpoints and

choosing L or U such that the probability assigned by the Fr−1, n−r distribution to
(L ,∞) or (0,U ) is the desired confidence.

Example 8
(continued )

Consider again the measured magnesium contents for specimens cut from the
100 m alloy rod. Some normal plotting shows the “single variance normal εi j ” part
of the model assumptions (7.54) to be at least not obviously flawed. Sample-by-
sample normal plots show fair linearity (at least after allowing for the discreteness
introduced in the data by the measurement scale used), except perhaps for sample
4, with its five identical values. The five sample standard deviations are roughly
of the same order of magnitude, and the normal plot of residuals in Figure 7.13
is pleasantly linear. So it is sensible to consider formal inference for σ 2 and σ 2

τ

based on the normal theory model.
Table 7.15 is an ANOVA table for the data of Table 7.14. From Table 7.15,

the p-value for testing H0: σ 2
τ = 0 is the F4,45 probability to the right of 1.10.

According to Tables B.6, this is larger than .25, giving very weak evidence of
detectable variation between specimen mean magnesium contents.

The EMS column in Table 7.15 is based on relationships (7.58) and (7.59)
and is a reminder first that MSE = s2

P = 6.88 serves as an estimate of σ 2. So
multiple magnesium determinations on a given specimen would be estimated
to have a standard deviation on the order of

√
6.88 = 2.6× 10−3%. Then theI

expected mean squares further suggest that σ 2
τ be estimated by

σ̂
2
τ =

1

10
(MSTr−MSE) = 1

10
(7.58− 6.88) = .07
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Example 8
(continued )

–1.5

0.0

–5.0 –2.5 0.0 2.5
Residual quantile

5.0 7.5

1.5

St
an

da
rd

 n
or

m
al

 q
ua

nt
ile 3.0

2
2

23
5

22
3 2

5
4
2

Figure 7.13 Normal plot of residuals for the magnesium
content study

Table 7.15
ANOVA Table for the Magnesium Content Study

ANOVA Table (for testing H0: σ 2
τ = 0)

Source SS d f MS EMS F

Treatments 30.32 4 7.58 σ 2 + 10σ 2
τ 1.10

Error 309.70 45 6.88 σ 2

Total 340.02 49

as in equation (7.62). So an estimate of σ
τ

is

√
.07 = .26× 10−3%I

That is, the standard deviation of specimen mean magnesium contents is estimated
to be on the order of 1

10 of the standard deviation associated with multiple
measurements on a single specimen.

A confidence interval for σ 2 could be made using formula (7.10) of Section
7.1. That will not be done here, but formula (7.63) will be used to make a one-
sided 90% confidence interval of the form (0, #) for σ

τ
/σ . The .90 quantile of

the F45,4 distribution is about 3.80, so the .10 quantile of the F4,45 distribution is
about 1

3.80 . Then taking the root of the second endpoint given in display (7.63), a
90% upper confidence bound for σ

τ
/σ is√√√√√√√ 1

10

 7.58(
1

3.80

)
6.88
− 1

 = .56I
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The bottom line here is that σ
τ

is small compared to σ and is not even clearly
other than 0. Most of the variation in the data of Table 7.14 is associated with the
making of multiple measurements on a single specimen. Of course, this is good
news if the rod is to be cut up and distributed as pieces having known magnesium
contents and thus useful for measurement instrument calibration.

Section 4 Exercises ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1. Return to the situation in Exercises 1 of Sections
7.1 through 7.3 (and the pressure/density data of
Example 1 in Chapter 4).
(a) In part (b) of Exercise 1 of Section 7.3, you

were asked to make simultaneous confidence
intervals for all differences in the r = 5 mean
densities. From your intervals, what kind of
a p-value (small or large) do you expect to
find when testing the equality of these means?
Explain.

(b) Make an ANOVA table (in the form of Table
7.12) for the data of Example 1 in Chapter 4.
You should do the calculations by hand first and
then check your arithmetic using a statistical
computer package. Then use the calculations
to find both R2 for the one-way model and also
the observed level of significance for an F test
of the null hypothesis that all five pressures
produce the same mean density.

2. Return to the tilttable study of Exercises 2 of Sec-
tions 7.1 through 7.3.
(a) In part (b) of Exercise 2 of Section 7.3, you

were asked to make simultaneous confidence
intervals for all differences in the r = 4 mean
tilttable ratios. From your intervals, what kind
of a p-value (small or large) do you expect to
find when testing the equality of these means?
Explain.

(b) Make an ANOVA table (in the form of Table
7.12) for the data of Exercise 2 of Section 7.1.
Then find both R2 for the one-way model and
also the observed level of significance for an
F test of the null hypothesis that all four vans
have the same mean tilttable ratio.

3. The following data are taken from the paper “Zero-
Force Travel-Time Parameters for Ultrasonic Head-

Waves in Railroad Rail” by Bray and Leon-
Salamanca (Materials Evaluation, 1985). Given
are measurements in nanoseconds of the travel time
(in excess of 36.1 µs) of a certain type of mechan-
ical wave induced by mechanical stress in railroad
rails. Three measurements were made on each of
six different rails.

Travel Time

Rail (nanoseconds above 36.1 µs)

1 55, 53, 54

2 26, 37, 32

3 78, 91, 85

4 92, 100, 96

5 49, 51, 50

6 80, 85, 83

(a) Make plots to check the appropriateness of a
one-way random effects analysis of these data.
What do these suggest?

(b) Ignoring any possible problems with the stan-
dard assumptions of the random effects model
revealed in (a), make an ANOVA table for these
data (like Table 7.15) and find estimates of σ
and σ

τ
. What, in the context of this problem,

do these two estimates measure?
(c) Find and interpret a two-sided 90% confidence

interval for the ratio σ
τ
/σ .

4. The following are some general questions about the
random effects analyses:
(a) Explain in general terms when a random effects

analysis is appropriate for use with multisam-
ple data.

(b) Consider a scenario where r = 5 different tech-
nicians employed by a company each make
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m = 2 measurements of the diameter of a par-
ticular widget using a particular gauge in a
study of how technician differences show up
in diameter data the company collects. Under
what circumstances would a random effects
analysis of the resulting data be appropriate?

(c) Suppose that the following ANOVA table was
made in a random effects analysis of data like
those described in part (b). Give estimates of
the standard deviation associated with repeat
diameter measurements for a given technician
(σ ) and then for the standard deviation of long-

run mean measurements for various techni-
cians (σ

τ
). The sums of squares are in units

of square inches.

ANOVA Table

Source SS d f MS F

Technician .0000136 4 .0000034 1.42

Error .0000120 5 .0000024

Total .0000256 9

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

7.5 Shewhart Control Charts
for Measurement Data

This text has repeatedly made use of the phrase “stable process” and emphasized
that unless data generation has associated with it a single, repeatable pattern of
variation, there is no way to move from data in hand to predictions and inferences.
The notion that “baseline” or “inherent” variation evident in the output of a process
is a principal limitation on system performance has also been stressed. But no tools
have yet been presented that are specifically crafted for evaluating the extent to
which a data-generation mechanism can be thought of as stable, or for determining
the size of the baseline variation of a process.

W. Shewhart, working in the late 1920s and early 1930s at Bell Laboratories,
developed an extremely simple yet effective device for doing these jobs. This tool
has become known as the Shewhart control chart. (Actually, the nonstandard name
Shewhart monitoring chart is far more descriptive. It also avoids the connotations of
automatic/feedback process adjustment that the word control may carry for readers
familiar with the field of engineering control.)

This section and the next introduce the topic of Shewhart control charts, be-
ginning here with charts for measurement data. This section begins with some
generalities, discussing Shewhart’s conceptualization of process variability. Then
the specific instances of Shewhart control charts for means, ranges, and standard
deviations are considered in turn. Finally, the section closes with comments about
the place of control charts in the improvement of modern industrial processes.

7.5.1 Generalities about Shewhart Control Charts

Stability of an engineering data-generating process refers to a consistency or re-
peatability over time. When one thinks of empirically assessing the stability of a
process, it is therefore clear that samples of data taken from it at different points in
time will be needed.
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Example 9 Monitoring the Lengths of Sheets Cut on a Ream Cutter

Shervheim and Snider worked with a company on the cutting of a rolled material
into sheets using a ream cutter. Every two minutes they sampled five consecutive
sheets and measured their lengths. Part of the students’ length data are given in
Table 7.16, in units of 1

64 inch over a certain reference length.
One of the goals of the study was to investigate the stability of the cutting

process over time. The kind of multisample data the students collected, where
the samples were separated and ordered in time, are ideal for that purpose.

Table 7.16
Lengths of 22 Samples of Five Sheets
Cut on a Ream Cutter

Sample Time Excess Length

1 12:40 9, 10, 7, 8, 10
2 12:42 6, 10, 8, 8, 10
3 12:44 11, 10, 9, 5, 11
4 12:46 10, 9, 9, 8, 7
5 12:48 7, 5, 11, 9, 5
6 12:50 9, 9, 10, 7, 9
7 12:52 10, 8, 6, 11, 8
8 12:54 7, 10, 8, 8, 9
9 12:56 10, 9, 9, 5, 12

10 12:58 8, 10, 6, 8, 10
11 1:00 8, 10, 4, 7, 8
12 1:02 8, 10, 10, 6, 9
13 1:04 10, 8, 6, 7, 10
14 1:06 8, 6, 10, 8, 8
15 1:08 13, 5, 8, 8, 13
16 1:10 10, 4, 9, 10, 8
17 1:12 7, 7, 9, 7, 8
18 1:14 9, 7, 7, 9, 6
19 1:16 5, 10, 5, 8, 10
20 1:18 9, 6, 8, 9, 11
21 1:20 6, 10, 11, 5, 6
22 1:22 15, 3, 7, 9, 11

Data (like those in Table 7.16) collected for purposes of assessing process
stability will often be r samples of some fixed sample size m, lacking any structure
except for the fact that they were taken in a particular time order. So Shewhart control
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charting is at home in this chapter that treats inference methods for unstructured
multisample studies.

Shewhart’s fundamental qualitative insight regarding variation seen in process
data over time is that

Shewhart’s partition
of process variation

Overall process
variation

= baseline variation+ variation that
can be eliminated

(7.64)

Shewhart conceived of baseline variation as that which will remain even under the
most careful process monitoring and appropriate physical interventions—an inherent
property of a particular system configuration, which cannot be reduced without basic
changes in the physical process or how it is run. This is variation due to common
(universal) causes or system causes. Other terms used for it are random variation
and short-term variation. In the context of the cutting operation of Example 9, this
kind of variation might be seen in consecutive sheet lengths cut on a single ream
cutter, from a single roll of material, without any intervening operator adjustments,
following a particular plant standard method of machine operation, etc. It is variation
that comes from hundreds of small unnameable, unidentifiable physical causes.
When only this kind of variation is acting, it is reasonable to call a process “stable.”

The second component of overall process variation is variation that can poten-
tially be eliminated by appropriate physical intervention. This kind of variation has
been called variation due to special or assignable causes, nonrandom variation,
and long-term variation. In the sheet-cutting example, this might be variation in
sheet length brought about by undesirable changes in tension on the material being
cut, roller slippage on the cutter, unwarranted operator adjustments to the machine,
eccentricities associated with how a particular incoming roll of material was wound,
etc. Shewhart reasoned that being able to separate the two kinds of variation is a
prerequisite to ensuring good process performance. It provides a basis for knowing
when to intervene and find and eliminate the cause of any assignable variation,
thereby producing process stability.

Shewhart’s method for separating the two components of overall variation inShewhart control
charts equation (7.64) is graphical and based on the following logic. First, periodically

taken samples are reduced to appropriate summary statistics, and the summary
statistics are plotted against time order of observation. To this simple time-plotting
of summary statistics, Shewhart added the notion that lines be drawn on the chart to
separate values that are consistent with a “baseline variation only” view of process
performance from those that are not. Shewhart called these lines of demarcation
control limits. When all plotted points fall within the control limits, the process is
judged to be stable, subject only to chance causes. But when a point falls outside
the limits, physical investigation and intervention is called for, to eliminate any
assignable cause of variation. Figure 7.14 is a plot of a generic control chart for a
summary statistic,w. It shows upper and lower control limits (UCL and LCL), some
plotted values, and one “out of control” point.

There are any number of charts that fit the general pattern of Figure 7.14.
For example, common possibilities relevant in the sheet-cutting case of Example 9
include control charts for the sample mean, sample range, and sample standard
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Time

w

1 2 3 4 5 6 7 8 9 10 11

Upper Control Limit

Lower Control Limit

“Out of Control”
point

Center line

Figure 7.14 Generic Shewhart control chart for a
statistic w

deviation of sheet lengths. These will presently be discussed in detail. But first,
some additional generalities still need to be considered.

For one thing, there remains the matter of how to set the position of the controlSetting control
limits limits. Shewhart argued that probability theory can be applied and appropriate stable-

process/iid-observations distributions developed for the plotted statistics. Then small
upper and lower percentage points for these can be used to establish control limits.
As an example, the central limit material in Section 5.5 should have conditioned
the reader to think of sample means as approximately normal with mean µ and
standard deviation σ/

√
m, where µ and σ describe individual observations and m is

the sample size. So for plotting sample means, the upper and lower control limits
might be set at small upper and lower percentage points of the normal distribution
with mean µ and standard deviation σ/

√
m, where µ and σ are a process mean and

short-term standard deviation, respectively.
Two different circumstances are possible regarding the origin of values for

process parameters used to produce control limits. In some applications, values of
process parameters (and therefore, parameters for the “stable process” distribution
of the plotted statistic) and thus control limits are provided from outside the data“Standards given”

contexts producing the charted values. Such circumstances will be called “standards given”
situations. For emphasis, the meaning of this term is stated here in definition form.

Definition 7 When control limits are derived from data, requirements, or knowledge of the
behavior of a process that are outside the information contained in the samples
whose summary statistics are to be plotted, the charting is said to be done with
standards given.
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For example, suppose that in the sheet-cutting context of Example 9, past
experience with the ream cutter indicates that a process short-term standard deviation
of σ = 1.9 ( 1

64 in.) is appropriate when the cutter is operating as it should. Further,
suppose that legal and other considerations have led to the establishment of a target
process mean of µ = 10.0 ( 1

64 in. above the reference length). Then control limits
based on these values and applied to data collected tomorrow would be “standards
given” control limits.

One way to think about a “standards given” control chart is as a graphical means“Standards given”
charting and

hypothesis testing
of repeatedly testing the hypothesis

H0: Process parameters are at their standard values (7.65)

When a plotted point lies inside control limits, one is directed to a decision in favor
of hypothesis (7.65) for the time period in question. A point plotting outside limits
makes hypothesis (7.65) untenable at the time represented by the sample.

In contrast to “standards given” applications, there are situations in which noRetrospective
contexts external values for process parameters are used. Instead, a single set of samples

taken from the process is used to both develop a plausible set of parameters for the
process and also to judge the stability of the process over the period represented by
the data. The terms retrospective or “as past data” will be used in this text for such
control charting applications.

Definition 8 When control limits are derived from the same samples whose summary
statistics are plotted, the charting is said to be done retrospectively or “as
past data.”

In the context of Example 9, control limits derived from the data in Table 7.16
and applied to summary statistics for those same data would be “as past data” control
limits for assessing the cutting process stability over the period from 12:40 through
1:22 on the day the data were taken.

A way of thinking about a retrospective control chart is a graphical means ofRetrospective
charting and

hypothesis testing
testing the hypothesis

H0: A single set of process parameters was acting throughout the
time period studied

(7.66)

When a point or points plot outside of control limits derived from the whole data
set, the hypothesis (7.66) of process stability over the period represented by the data
becomes untenable.

7.5.2 “Standards Given” x̄ Control Charts

The single most famous and frequently used Shewhart control chart is the one
where sample mean measurements are plotted. Control charts are typically named
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by the symbols used for the plotted statistics. So the following discussion con-
cerns Shewhart x̄ charts. In using this terminology (and other notation from
the statistical quality control field), this text must choose a path through nota-
tional conflicts that exist between the most common usages in control charting and
those for other multisample analyses. The options that will be exercised here must
be explained.

In the first place, to this point in Chapter 7 (also in Chapter 4, for that matter) theNotational conventions
for x̄ charting symbol y has been used for the basic response variable in a multisample statistical

engineering study, ȳi for a sample mean, and ȳ
.
and ȳ for unweighted and weighted

averages of the ȳi , respectively . In contrast, in Chapters 3 and 6, where the discussion
centered primarily on one- and two-sample studies, x was used as the basic response
variable and x̄ (or x̄ i in the case of two-sample studies) to stand for a sample
mean. Standard usage in Shewhart control charting is to use the x and x̄ (x̄ i )

convention, and the precedent is so strong that this section will adopt it as well.
In addition, historical momentum in control charting dictates that rather than using
x̄
.
notation,

Average sample
mean (quality

control notation)

¯̄x = 1

r

r∑
i=1

x̄ i (7.67)

is used for the average of sample means. But this “bar bar” or “double bar” notation
is used in this book only in this section.

Something must also be said about notation for sample sizes. It is universal
to use the notation ni for an individual sample size. But there is some conflict
when all sample sizes ni have a common value. The convention in this chapter has
been to use m for such a common value and n for

∑
ni . Standard quality control

notation is to instead use n for a common sample size. In this matter, we will
continue to use the conventions established thus far in Chapter 7, believing that to
do otherwise invites too much confusion. But the reader is hereby alerted to the
fact that the m used here is usually going to appear as n in other treatments of
control charting.

Having dealt with the notational problems, we turn to the making of a “standards
given” Shewhart x̄ chart based on samples of size m. An iid model for observations
from a process with mean µ and standard deviation σ produces

Ex̄ = µ (7.68)

and

√
Var x̄ = σ√

m
(7.69)

and often an approximately normal distribution for x̄ . The fact that essentially all of
the probability of a normal distribution is within 3 standard deviations of its mean
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led Shewhart to suggest that given process standards µ and σ , x̄ chart control limits
could be set at

“Standards given”
control limits for x̄

LCLx̄ = µ− 3
σ√
m

and UCLx̄ = µ+ 3
σ√
m

(7.70)

Additionally, he suggested drawing a center line on an x̄ chart at the standard
mean µ.

Limits (7.70) have proved themselves of great utility even in cases where m is
fairly small and there is no reason to expect a normal distribution for observations
in a sampling period. Formulas (7.68) and (7.69) hold regardless of whether a
process distribution is normal, and the 3-sigma (of the plotted statistic x̄) control
limits in display (7.70) tend to bracket most of the distribution of x̄ under nearly
any circumstances. (Indeed, a crude but universal analysis, based on a probability
version of the Chebyschev theorem stated in Section 3.3 for relative frequency
distributions, guarantees that limits (7.70) will bracket at least 8

9 of the distribution
of x̄ in any stable process context.)

Example 9
(continued )

Consider the use of process standards µ = 10 and σ = 1.9 in x̄ charting based
on the data given in Table 7.16 (recall the values there are in units of 1

64 in. over
a reference length). With these standard values for µ and σ , since the r = 22
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Figure 7.15 “Standards given” Shewhart x̄ control chart for cut
sheet lengths
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samples are all of size m = 5, formulas (7.70) indicate control limits

UCLx̄ = 10+ 3
1.9√

5
= 12.55 and LCLx̄ = 10− 3

1.9√
5
= 7.45I

along with a center line drawn at µ = 10. Table 7.17 gives some sample-by-
sample summary statistics for the data of Table 7.16, including the sample means
x̄ i . Figure 7.15 is a “standards given” Shewhart x̄ chart for the same data.

Figure 7.15 shows two points plotting below the lower control limit: the
means for samples 5 and 11. But it is perfectly obvious from the plot what was
going on in the data of Table 7.16 to produce the “out of control” points and
corresponding debunking of hypothesis (7.65). Not one of the r = 22 plotted

Table 7.17
Sample-by-Sample Summary Statistics
for 22 Samples of Sheet Lengths

i , Sample x̄ i si Ri

1 8.8 1.30 3
2 8.4 1.67 4
3 9.2 2.49 6
4 8.6 1.14 3
5 7.4 2.61 6
6 8.8 1.10 3
7 8.6 1.95 5
8 8.4 1.14 3
9 9.0 2.55 7

10 8.4 1.67 4
11 7.4 2.19 6
12 8.6 1.67 4
13 8.2 1.79 4
14 8.0 1.41 4
15 9.4 3.51 8
16 8.2 2.49 6
17 7.6 .89 2
18 7.6 1.34 3
19 7.6 2.51 5
20 8.6 1.82 5
21 7.6 2.70 6
22 9.0 4.47 12∑

x̄ = 183.4
∑

s = 44.41
∑

R = 109
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Example 9
(continued )

sample means lies at or above 10. If an average sheet length of µ = 10 was truly
desired, a simple adjustment was needed, to increase sheet lengths roughly

10− ¯̄x = 10− 8.3 = 1.7
(

1
64 in.

)
The true process mean operating to produce the data was clearly below the
standard mean.

7.5.3 Retrospective x̄ Control Charts

Retrospective (or “as past data”) control limits for x̄ come about by replacing µ and
σ in formulas (7.70) with estimates made from data in hand, under the provisional
assumption that the process was stable over the period represented by the data.
That is, in calculating such estimates, a single set of parameters is presumed to be
adequate to describe process behavior during the study period. Notice that supposing
process stability the present situation is exactly the one met in the ANOVA material
of Section 7.4 under the hypothesis of equality of r means. So one way to think about
a retrospective x̄ chart is as a graphical test of the constancy of the process mean
over time. Further, the analogy with the material of Section 7.4 suggests natural
estimates of µ and σ for use in formulas (7.70).

In Section 7.4, ȳ was used to approximate a hypothesized common value of
µ1, µ2, . . . , µr . In the present notation, this suggests replacing µ in formulas (7.70)
with ¯̄x . Regarding an estimate of σ for use in formulas (7.70), analogy with all that
has gone before in this chapter suggests sP. And indeed, sP is a perfectly rational
choice. But it is not one that is commonly used. Historical precedent/accident in the
quality control field has made other estimates much more widely used. These must
therefore be discussed, not so much because they are better than sP, but because they
represent standard practice.

The most common way of approximating a supposedly constant σ in control
charting contexts is based on probability facts about the range, R, of a sample of
m observations from a normal distribution. It is possible to derive the probability
density for R defined in Definition 8 in Chapter 3 (see page 95), supposing m iid
normal variables with mean µ and standard deviation σ are involved. That density
will not be given in this book. But it is useful to know that the mean of that distribution
is (for a given sample size m) proportional to σ . The constant of proportionality is
typically called d2, and in symbols,

ER = d2σ (7.71)

or equivalently,

σ = ER

d2

(7.72)
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Values of d2 for various m are given in Table B.2. (Return to the comments preceding
Proposition 1 in Section 3.3 and recognize that what was cryptic there should now
make sense.)

Statements (7.71) and (7.72) are theoretical. The way they find practical rel-
evance is to think that under the hypothesis that the process standard deviation is
constant, the sample mean of sample ranges

Average sample
range R = 1

r

r∑
i=1

Ri (7.73)

can be expected to approximate the theoretical mean range, ER. That is, from
statement (7.72), it seems that

A range-based
estimator of σ σ̂ = R

d2

(7.74)

is a plausible way to estimate σ . On theoretical grounds, R/d2 is inferior to sP, but
it has the weight of historical precedent behind it, and it is simple to calculate (an
important virtue before the advent of widespread computing power).

A second estimator of σ with quality control origins comes about by making the
same kind of argument that led to statistic (7.74), beginning not with R but instead
with s. That is, the fact that it is possible to derive a χ2

m−1 probability density for
(m − 1)s2/σ 2 if s2 is based on m iid normal (µ, σ 2) random variables has been used
extensively (beginning in Section 6.4) in this text. That density can in turn be used
to find a theoretical mean for s. As it turns out, although Es2 = σ 2, the theoretical
mean of s is not quite σ , but rather a multiple of σ (for a given sample size m). The
constant of proportionality is typically called c4, and in symbols,

Es = c4σ (7.75)

or equivalently,

σ = Es

c4

(7.76)

It is possible to write out an explicit expression for c4, namely

c4 =
√

2

m − 1

 0
(m

2

)
0

(
m − 1

2

)
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Values of c4 for various m are given in Table B.2. From that table, it is easy to see
that as a function of m, c4 increases from about .8 when m = 2 to essentially 1 for
large m.

The practical use made of the theoretical statements (7.75) and (7.76) is to think
that the sample average of the sample standard deviations

Average sample
standard deviation s̄ = 1

r

r∑
i=1

si (7.77)

can be expected to approximate the theoretical mean (sample) standard deviation
Es, so that (from statement (7.76)) a plausible estimator of σ becomes

A standard deviation-
based estimator of σ σ̂ = s̄

c4

(7.78)

(It is worth remarking that s̄ is not the same as sP, even when all sample sizes are
the same. sP is derived by averaging sample variances and then taking a square root.
s̄ comes from taking the square roots of the sample variances and then averaging.
In general, these two orders of operation do not produce the same results.)

In any case, commonly used retrospective control limits for x̄ are obtained by
substituting ¯̄x given in formula (7.67) for µ and either of the estimates of σ given
in displays (7.74) or (7.78) for σ in the formulas (7.70). Further, an “as past data”
center line for an x̄ chart is typically set at ¯̄x .

Example 9
(continued )

Consider retrospective x̄ control charting for the ream cutter data. Using the
column totals given in Table 7.17, one finds from formulas (7.67), (7.73), and
(7.77) that

¯̄x = 183.4

22
= 8.3

R̄ = 109

22
= 4.95

s̄ = 44.41

22
= 2.019

Then, consulting Table B.2 with a sample size of m = 5, d2 = 2.326, so an
estimate of σ based on R is (from expression (7.74))

R

d2

= 4.95

2.326
= 2.13I
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Also, Table B.2 shows that for a sample size of m = 5, c4 = .9400, so an estimate
of σ based on s̄ is (from expression (7.78))

s̄

c4

= 2.019

.94
= 2.15

(Note that beginning from the standard deviations in Table 7.17, sP = 2.19, and
clearly sP 6= s̄.)

Using (for example) statistic (7.74), one is thus led to substitute 8.3 for µ
and 2.13 for σ in “standards given” formulas (7.70) to obtain the retrospective
limits

LCLx̄ = 8.3− 3
2.13√

5
= 5.44 and UCLx̄ = 8.3+ 3

2.13√
5
= 11.16I

Figure 7.16 shows an “as past data” Shewhart x̄ control chart for the ream cutter
data, using limits based on R.

Notice the contrast between the pictures of the ream cutter performance given
in Figures 7.15 and 7.16. Figure 7.15 shows clearly that process parameters are
not at their standard values, but Figure 7.16 shows that it is perhaps plausible
to think of the data in Table 7.16 as coming from some stable data-generating
mechanism. The observed x̄’s hover nicely (indeed—as will be argued at the end
of the next section—perhaps too nicely) about a central value, showing no “out of
control” points or obvious trends. That hypothesis (7.66) is at least approximately
true is believable on the basis of Figure 7.16.
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Figure 7.16 Retrospective Shewhart x̄ control chart
for cut sheet lengths
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Several comments should be made before turning to a discussion of other Shew-
hart control charts for measurements. First, note that what is represented on an x̄
chart is behavior (both expected and observed) of sample means, not individual
measurements. It is unfortunately all too common to see engineering specifications
(which refer to individual measurements) marked on x̄ control charts either in place
of, or in addition to, proper control limits. But how sample means compare to spec-
ifications for individual measurements tells nothing about either the stability of theControl limits

for x̄ versus
specifications for x

process as represented in the means or the acceptability of individual measurements
according to the stated engineering requirements. It is simply bad practice to mix
(or mix up) control limits and specifications.

A second comment has to do with the fairly arbitrary choice of 3-sigma control
limits in formulas (7.70). A legitimate question is, “Why not 2-sigma or 2.5-sigma
or 3.09-sigma limits?” There is no completely convincing theoretical answer to this
question. Indeed, arguments in favor of other multiples than 3 for use in formulas
(7.70) are heard from time to time. But the forces of historical precedent and many
years of successful application combine to make the use of 3-sigma limits nearly
universal.

As a final point regarding x̄ charts, the basic “standards given” formulas for
control limits (7.70) are sometimes combined with formula (7.74) or (7.78) for
estimating σ , and ¯̄x is put in place of µ to obtain formulas for retrospective control
limits for x̄ . For example, using the estimate of σ in display (7.74), one obtains the
formulas

LCLx̄ = ¯̄x − 3
R

d2

√
m

and UCLx̄ = ¯̄x + 3
R

d2

√
m

(7.79)

In fact, it is standard practice to use the abbreviation

A2 =
3

d2

√
m

and rewrite the limits in formulas (7.79) as

Range-based
retrospective
control limits

for x̄

LCLx̄ = ¯̄x − A2 R and UCLx̄ = ¯̄x + A2 R (7.80)

Values of A2 are given along with the other control chart constants in Table B.2. It
is worthwhile to verify that the use of formulas (7.80) in the context of Example 9
produces exactly the retrospective control limits for x̄ found earlier.

The version of retrospective x̄ chart limits related to the estimate of σ in display
(7.78) is

LCLx̄ = ¯̄x − 3
s̄

c4

√
m

and UCLx̄ = ¯̄x + 3
s̄

c4

√
m

(7.81)



7.5 Shewhart Control Charts for Measurement Data 509

It is also standard practice to use the abbreviation

A3 =
3

c4

√
m

and rewrite the limits in display (7.81) as

Standard deviation-
based retrospective
control limits for x̄

LCLx̄ = ¯̄x − A3s̄ and UCLx̄ = ¯̄x + A3s̄ (7.82)

Values of A3 are given in Table B.2.

7.5.4 Control Charts for Ranges

The x̄ control chart is aimed primarily at monitoring the constancy of the average
process response, µ, over time. It deals only indirectly with the process short-
term variation σ . (If σ increases beyond a standard value, it will produce x̄ i more
variable than expected and eventually trigger an “out of control” point. But such a
possible change in σ is detected most effectively by directly monitoring the spread
of samples.) Thus, in applications, x̄ charts are almost always accompanied by
companion charts intended to monitor σ .

The conceptually simplest and most common Shewhart control charts for mon-
itoring the process standard deviation are the R charts, the charts for sample ranges.
In their “standards given” version, they are based again on the fact that it is possible
to find a probability density for R based on m iid normal (µ, σ 2) random variables.
Using this density, not only is it possible to show that ER = d2σ but the standard
deviation of the probability distribution can be found as well. It turns out (for a given
m) to be proportional to σ . The constant of proportionality is called d3 and is tabled
for various m in Table B.2. That is, for R based on m iid normal observations,

√
Var R = d3σ (7.83)

Although the information about the theoretical distribution of R provided by
formulas (7.71) and (7.83) is somewhat sketchy, it is enough to suggest possible
“standards given” 3-sigma (of R) control limits for R. A plausible center line for a
“standards given” R chart is at ER = d2σ , and (using formula (7.83)) control limits
are

LCLR = ER− 3
√

Var R = d2σ − 3d3σ = (d2 − 3d3)σ (7.84)

UCLR = ER+ 3
√

Var R = (d2 + 3d3)σ (7.85)

The limit indicated in formula (7.84) turns out to be negative for m ≤ 6. For those
sample sizes, since ranges are nonnegative, no lower control limit is used. Formulas
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(7.84) and (7.85) are typically simplified by the introduction of yet more notation.
That is, standard quality control usage is to let

D1 = (d2 − 3d3) and D2 = (d2 + 3d3)

and rewrite formulas (7.84) and (7.85) as

“Standards given”
control limits for R

LCLR = D1σ and UCLR = D2σ (7.86)

Like the other control chart constants, D1 and D2 appear in Table B.2. Note that for
m ≤ 6, there is no tabled value for D1, as no lower limit is in order.

Example 9
(continued )

Consider a “standards given” control chart analysis for the sheet length ranges
given in Table 7.17, using a standardσ = 1.9 ( 1

64 in.). Since samples of size m = 5
are involved, Table B.2 shows that d2 = 2.326 and D2 = 4.918 are appropriate

WWW for establishing a “standards given” control chart for R. The center line should
be drawn at

d2σ = 2.326(1.9) = 4.4

and the upper control limit should be set at

D2σ = 4.918(1.9) = 9.3I
(Since m ≤ 6, no lower control limit will be used.) Figure 7.17 shows a “standards
given” control chart for ranges of the sheet lengths. It is clear from the figure that
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Figure 7.17 “Standards given” Shewhart R chart
for cut sheet lengths
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for the most part, a constant process standard deviation of σ = 1.9 is plausible,
except for the clear indication to the contrary at sample 22. The 22nd observed
range, R = 12, is simply larger than expected based on a sample of size m = 5
from a normal distribution with σ = 1.9. In practice, it would be appropriate
to undertake a physical search for the cause of the apparent increase in process
variability associated with the last sample taken.

As was the case for x̄ charts, combination of formulas for the estimation of
(supposedly constant) process parameters with the “standards given” limits (7.86)
produces retrospective control limits for R charts. For example, basing an estimate
of σ on R as in display (7.74), leads (not too surprisingly) to a retrospective center
line for R at d2(R/d2) = R and retrospective control limits

LCLR =
D1 R

d2

and UCLR =
D2 R

d2

(7.87)

The abbreviations

D3 =
D1

d2

and D4 =
D2

d2

are commonly used, and limits (7.87) are written as

Retrospective control
limits for R

LCLR = D3 R and UCLR = D4 R (7.88)

Values of the constants D3 and D4 are found in Table B.2.

Example 9
(continued )

For the ream cutter data, R = 109
22 , so retrospective control limits for ranges of

the type (7.88) put a center line at

R = 4.95

and since for m = 5, D4 = 2.114,

UCLR = 2.114

(
109

22

)
= 10.5I

Look again at Figure 7.17 and note that the use of these retrospective limits
(instead of the σ = 1.9 “standards given” limits of Figure 7.17) does not materi-
ally alter the appearance of the plot. The range for sample 22 still plots above the
upper control limit. It is not plausible that a single σ stands behind all of the 22
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Example 9
(continued )

plotted ranges (not even σ ≈ R/d2 = 2.13). It is pretty clear that a different phys-
ical mechanism must have been acting at sample 22 than was operative earlier.

For pedagogical reasons, x̄ charts were considered first before turning to charts
aimed at monitoring σ . In terms of order of attention in an application, however, R
(or s) charts are traditionally (and correctly) given first priority. They deal directly
with the baseline component of process variation. Thus (so conventional wisdom
goes), if they show lack of stability, there is little reason to go on to considering
the behavior of means (which deals primarily with the long-term component of
process variation) until appropriate physical changes bring the ranges (or standard
deviations) to the place of repeatability.

7.5.5 Control Charts for Standard Deviations

Less common but nevertheless important alternatives to range charts are control
charts for standard deviations, s. In their “standards given” version, s charts are
based on the fact that it is possible to find both a mean and variance for s calculated
from m iid normal (µ, σ 2) random variables. We have already used the fact that
Es = c4σ . And it turns out that

√
Var s =

√
1− c2

4 σ (7.89)

Then formulas (7.75) and (7.89) taken together yield “standards given” 3-sigma
control limits for s. That is, with a center line at c4σ , one employs the limits

LCLs = c4σ − 3
√

1− c2
4 σ =

(
c4 − 3

√
1− c2

4

)
σ

UCLs = c4σ + 3
√

1− c2
4 σ =

(
c4 + 3

√
1− c2

4

)
σ

Standard notation is to let

B5 =
(

c4 − 3
√

1− c2
4

)
and B6 =

(
c4 + 3

√
1− c2

4

)
so, ultimately, “standards given” control limits for s become

“Standards given”
control limits for s

LCLs = B5σ and UCLs = B6σ (7.90)

As expected, the constants B5 and B6 are tabled in Table B.2. For m ≤ 5, c4 −
3
√

1− c2
4 turns out to be negative, so no value is shown in Table B.2 for B5, and no

lower control limit for s is typically used for such sample sizes.
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Example 9
(continued )

Returning once more to the ream cutter example of Shervheim and Snider, con-
sider the monitoring of σ through the use of sample standard deviations rather
than ranges, based on a standard of σ = 1.9 ( 1

64 in.). Table B.2 with sample size

WWW m = 5 once again gives c4 = .9400 and also shows that B6 = 1.964. So an s
chart for the data of Table 7.16 has a center line at

c4σ = (.94)(1.9) = 1.79

and an upper control limit at

UCLs = B6σ = 1.964(1.9) = 3.73I

and, since the sample size is only 5, no lower control limit.
Figure 7.18 is a “standards given” Shewhart s chart for the s values given in

Table 7.17. The story told by Figure 7.18 is essentially identical to that conveyed
by the range chart in Figure 7.17. Only at sample 22 does the hypothesis that σ =
1.9 become untenable, and the need for physical intervention is indicated there.
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Figure 7.18 “Standards given” s chart for cut sheet lengths

As was the case for x̄ and R charts, retrospective control limits for s can
be had by replacing the parameter σ in the “standards given” limits (7.90) with
any appropriate estimate. The most common way of proceeding is to employ the
estimator s̄/c4 and thus end up with a retrospective center line for an s chart at
c4(s̄/c4) = s̄ and retrospective control limits

LCLs =
B5s̄

c4

and UCLs =
B6s̄

c4

(7.91)
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And using the abbreviations

B3 =
B5

c4

and B4 =
B6

c4

the retrospective limits (7.91) are written as

Retrospective
control limits

for s
LCLs = B3s̄ and UCLs = B4s̄ (7.92)

Values of B3 and B4 are given in Table B.2.

Example 9
(continued )

For the ream cutter data, s̄ = 44.41
22 = 2.02, so retrospective control limits for

standard deviations of the type (7.92) put a center line at

s̄ = 2.02

and, since B4 = 2.089 for m = 5,

UCLs = 2.089

(
44.41

22

)
= 4.22I

Look again at Figure 7.18 and verify that the use of these retrospective limits (in-
stead of the σ = 1.9 “standards given” limits) wouldn’t much change the appear-
ance of the plot. As was the case for the retrospective R chart analysis, these retro-
spective s chart limits still put sample 22 in a class by itself, suggesting that a dif-
ferent physical mechanism produced it than that which led to the other 21 samples.

Ranges are easier to calculate “by hand” than standard deviations and are
easier to explain as well. As a result, R charts are more popular than s charts. In
fact, R charts are so common that the phrase “x̄ and R charts” is often spoken in
quality control circles in such a way that the x̄/R pair is almost implied to be a
single inseparable entity. However, when computational problems and conceptual
understanding are not issues, s charts are preferable to R charts because of their
superior sensitivity to changes in σ .

A useful final observation about the s chart idea is that for r -sample statistical en-
gineering studies where all sample sizes are the same, the “as past data” control limits
in display (7.92) can provide some rough help in the model-checking activities of
Section 7.1 (in reference to the “single variance” assumption of the one-way model).
B3s̄ and B4s̄ can be treated as rough limits on the variation in sample standard devia-
tions deemed to be consistent with the one-way model’s single variance assumption.
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Example 10
(Example 1 revisited )

s Chart Control Limits and the “Equal Variances” Assumption
in the Concrete Strength Study

In the concrete compressive strength study of Armstrong, Babb, and Campen,
the r = 8 sample standard deviations based on samples of size m = 3 given in
Table 7.3 (page 450) have s̄ = 534.8 psi. Then for m = 3, B4 = 2.568, and so

B4s̄ = 2.568(534.8) = 1,373 psiI

The largest of the eight values si in Table 7.3 is 965.6, and there are thus no “out
of control” standard deviations. So as in Section 7.1, no strong evidence against
the relevance of the “single variance” model assumption is discovered here.

7.5.6 Control Charts for Measurements
and Industrial Process Improvement

The x̄ and R (or x̄ and s) control chart combination is an important engineering
tool for the improvement of manufacturing processes. U.S. companies have trained
literally hundreds of thousands of workers in the making of Shewhart x̄ and R charts
over the past few years, hoping for help in meeting the challenge of international
competition. The record of success produced by this training effort is mixed. It
is thus worth pausing briefly to reflect on what aid the tools of this section can
and cannot rationally be expected to provide in the effort to improve industrial
processes.

In the first place, warnings of assignable variation provided by Shewhart controlOut-of-control
signals must

produce action
charts are helpful in reducing the variation of an industrial process only to the extent
that they are acted on in a timely and competent fashion. If “out of control” signals
don’t lead to appropriate physical investigation and action to eliminate assignable
causes, they contribute nothing toward improved process behavior. If workers collect
data to be archived away on x̄ and R chart forms and do not have the authority, skills,
or motivation to intervene intelligently when excess process variation is indicated,
they are engaged in a futile activity.

Control charts can signal the need for process intervention. But perhaps nearlyControl charts
can prevent

over-adjustment
as important is the fact that they also tell a user when not to be alarmed at observed
variation and give in to the temptation to adjust a stable process. This is the other side
of the intervention coin. Inadvisably adjusting an industrial process that is subject
only to common or random causes degrades its behavior rather than improves it.
Rational use of Shewhart control charts can help prevent this possibility.

It is also important to say that even when properly made and acted on, Shewhart
control charts can do only so much towards the improvement of industrial processes.Control charts

help maintain
current process

best performance

They can be a tool for helping to reduce variation to the minimum possible for a
given system configuration (in terms of equipment, methods of operation, etc.). But
once that minimum has been reached, all that Shewhart charting does is to help
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maintain that configuration’s best performance—to maintain the “baseline variation
only” situation corresponding to the status quo way of doing things.

In a modern world economy, however, companies cannot hope to be leaders
in their industries by being content simply to maintain stable, status quo methodsControl charts are

not directly tools
for innovation

of operation. Instead, ways must be found for improving beyond today’s methods
for tomorrow. This requires thought and, often, engineering experimentation. The
philosophies and methods of experimental design and engineering data collection
and analysis discussed in this book have an important role in that search for improve-
ment beyond today’s best industrial methodology. But the particular role of control
charting in such efforts is only indirect. By using control charts and bringing a current
process to stability, a basis or foundation for improvement through experimentation
and reconfiguration is provided. Indeed, it can be argued fairly convincingly that
unless an existing process is repeatable, there is no sensible way of evaluating the
impact of experimental changes made to it, trying to find tomorrow’s improved
version of the process. It is important to realize, however, that the Shewhart control
charts provide only the foundation rather than the necessary subject matter expertise
or statistical tools needed to guide the experimental search for improved ways of
doing things.

Section 5 Exercises ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1. The following are some data taken from a larger set
in Statistical Quality Control by Grant and Leav-
enworth, giving the drained weights (in ounces)
of contents of size No. 2 1

2 cans of standard grade
tomatoes in puree. Twenty samples of three cans
taken from a canning process at regular intervals
are represented.

Sample x1 x2 x3

1 22.0 22.5 22.5

2 20.5 22.5 22.5

3 20.0 20.5 23.0

4 21.0 22.0 22.0

5 22.5 19.5 22.5

6 23.0 23.5 21.0

7 19.0 20.0 22.0

8 21.5 20.5 19.0

9 21.0 22.5 20.0

10 21.5 23.0 22.0

Sample x1 x2 x3

11 20.0 19.5 21.0

12 19.0 21.0 21.0

13 19.5 20.5 21.0

14 20.0 21.5 24.0

15 22.5 19.5 21.0

16 21.5 20.5 22.0

17 19.0 21.5 23.0

18 21.0 20.5 19.5

19 20.0 23.5 24.0

20 22.0 20.5 21.0

(a) Suppose that standard values for the process
mean and standard deviation of drained
weights (µ and σ ) in this canning plant are
21.0 oz and 1.0 oz, respectively. Make and in-
terpret “standards given” x̄ and R charts based
on these samples. What do these charts indi-
cate about the behavior of the filling process
over the time period represented by these data?

(b) As an alternative to the “standards given” range
chart made in part (a), make a “standards given”
s chart based on the 20 samples. How does its
appearance compare to that of the R chart?

Now suppose that no standard values for µ and σ
have been provided.
(c) Find one estimate of σ for the filling process

based on the average of the 20 sample ranges,
R, and another based on the average of 20 sam-
ple standard deviations, s̄. How do these com-
pare to the pooled sample standard deviation
(of Section 7.1), sP, here?

(d) Use ¯̄x and your estimate of σ based on R and
make retrospective control charts for x̄ and R.
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What do these indicate about the stability of the
filling process over the time period represented
by these data?

(e) Use ¯̄x and your estimate of σ based on s̄ and
make retrospective control charts for x̄ and s.
How do these compare in appearance to the
retrospective charts for process mean and vari-
ability made in part (d)?

2. A manufacturer of U-bolts collects data on the
thread lengths of the bolts that it produces. Nine-
teen samples of five consecutive bolts gave the
thread lengths indicated the accompanying table (in
.001 in. above nominal).

Sample Thread Lengths x̄ R s

1 11, 14, 14, 10, 8 11.4 6 2.61

2 14, 10, 11, 10, 11 11.2 4 1.64

3 8, 13, 14, 13, 10 11.6 6 2.51

4 11, 8, 13, 11, 13 11.2 5 2.05

5 13, 10, 11, 11, 11 11.2 3 1.10

6 11, 10, 10, 11, 13 11.0 3 1.22

7 8, 6, 11, 11, 11 9.4 5 2.30

8 10, 11, 10, 14, 10 11.0 4 1.73

9 11, 8, 11, 8, 10 9.6 3 1.52

10 6, 6, 11, 13, 11 9.4 7 3.21

11 11, 14, 13, 8, 11 11.4 6 2.30

12 8, 11, 10, 11, 14 10.8 6 2.17

13 11, 11, 13, 8, 13 11.2 5 2.05

14 11, 8, 11, 11, 11 10.4 3 1.34

15 11, 11, 13, 11, 11 11.4 2 .89

16 14, 13, 13, 13, 14 13.4 1 .55

17 14, 13, 14, 13, 11 13.0 3 1.22

18 13, 11, 11, 11, 13 11.8 2 1.10

19 14, 11, 11, 11, 13 12.0 3 1.41∑
x̄ = 212.4

∑
R = 77

∑
s = 32.92

(a) Compute two different estimates of the process
short-term standard deviation of thread length,
one based on the sample ranges and one based
on the sample standard deviations.

(b) Use your estimate from (a) based on sample
standard deviations and compute control lim-
its for the sample ranges R, and then compute
control limits for the sample standard devia-
tions s. Applying these to the R and s values,
what is suggested about the threading process?

(c) Using a center line at ¯̄x , and your estimate
of σ based on the sample standard deviations,
compute control limits for the sample means
x̄ . Applying these to the x̄ values here, what is
suggested about the threading process?

(d) A check of the control chart form from which
these data were taken shows that the coil of the
heavy wire from which these bolts are made
was changed just before samples 1, 9, and 16
were taken. What insight, if any, does this in-
formation provide into the possible origins of
any patterns you see in the data?

(e) Suppose that a customer will purchase bolts
of the type represented in the data only if es-
sentially all bolts received can be guaranteed
to have thread lengths within .01 in. of nom-
inal. Does it appear that with proper process
monitoring and adjustment, the equipment and
manufacturing practices in use at this company
will be able to produce only bolts meeting these
standards? Explain in quantitative terms. If the
equipment was not adequate to meet such re-
quirements, name two options that might be
taken and their practical pros and cons.

3. State briefly the practical goals of control charting
and action on “out of control” signals produced by
the charts.

4. Why might it well be argued that the name control
chart invites confusion?

5. What must an engineering application of control
charting involve beyond the simple naming of
points plotting out of control if it is to be prac-
tically effective?

6. Explain briefly how a Shewhart x̄ chart can help
reduce variation in, say, a widget diameter, first
by signaling the need for process intervention/
adjustment and then also by preventing adjustments
when no “out of control” signal is given.
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7.6 Shewhart Control Charts
for Qualitative and Count Data

The previous section discussed Shewhart x̄ , R, and s control charts, treating them
as tools for studying the stability of a system over time. This section focuses on how
the Shewhart control charting idea can be applied to attributes data (i.e., counts).

The discussion begins with p charts. Next u charts and their specialization to
the case of a constant-size inspection unit, the c charts, are introduced. Finally,
consideration is given to a number of common nonrandom patterns that can appear
on both variables control charts and attributes control charts. Possible physical
causes for them and some formal rules that are often recommended for automating
their recognition are discussed.

7.6.1 p Charts

This text has consistently indicated that measurements are generally preferable to
attributes data. But in some situations, the only available information on the stability
of a process takes the form of qualitative or count data. Consideration of the topic
of control charting in such situations will begin here with p charts for cases where
what is available for plotting are sample fractions, p̂i . The most common use of this
is where p̂i is the fraction of a sample of ni items that is nonconforming according
to some engineering standard or specification. So this section will use the “fraction
nonconforming” language, in spite of the fact that p̂i can be the sample fraction
having any attribute of interest (desirable, undesirable, or indifferent).

The probability facts supporting control charting for the fraction nonconform-
ing are exactly those used in Section 6.5 to develop inference methods based on p̂.
That is, if a process is stable over time, each ni p̂i is usefully modeled as binomial
(ni , p), where p is a constant likelihood that any sampled item is nonconform-
ing. (This section will explicitly allow for sample sizes ni varying in time. Charts
for measurements are almost always based on fairly small but constant sample
sizes. But charts for attributes data typically involve larger sample sizes that some-
times vary.)

As in Section 6.5, a binomial model for ni p̂i leads immediately to

E p̂i = p (7.93)

and

√
Var p̂i =

√
p(1− p)

ni

(7.94)

But then formulas (7.93) and (7.94) suggest obvious “standards given” 3-sigma
control limits for the sample “fraction nonconforming” p̂i . That is, if p is a standard
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likelihood that any single item is nonconforming, then a “standards given” p chart
has a center line at p and control limits

“Standards given” p
chart control limits

LCLp̂i
= p − 3

√
p(1− p)

ni

(7.95)

UCLp̂i
= p + 3

√
p(1− p)

ni

(7.96)

In the event that formula (7.95) produces a negative value, no lower control limit
is used.

Example 11 p Chart Monitoring of a Pelletizing Process

Kaminski, Rasavahn, Smith, and Weitekamper worked on the same pelletizing

WWW process already used as an example several times in this book. (See Examples 2
(Chapter 1), 14 (Chapter 3), 4 (Chapter 5), and 18 (Chapter 6).) Extensive data
collection on two different days led the students to establish p = .61 as a standard
rate of nonconforming tablets produced by the process, when run under a shop
standard operating regimen. On a third day, the students took r = 25 samples
of n1 = n2 = · · · = n25 = m = 30 consecutive pellets at intervals as they came
off the machine and plotted sample fractions nonconforming p̂i , on a “standards
given” p chart made with p = .61. Their data are given in Table 7.18.

For samples of size ni = m = 30, 3-sigma “standards given” p chart control
limits are, from formulas (7.95) and (7.96),

LCLp̂i
= .61− 3

√
(.61)(1− .61)

30
= .34

I
UCLp̂i

= .61+ 3

√
(.61)(1− .61)

30
= .88

and a center line at .61 is appropriate. Figure 7.19 is a “standards given” p chart
for the data of Table 7.18.

Four p̂i values plot below the lower control limit in Figure 7.19, and the p̂i
values run consistently below the chart’s center line. These facts make untenable
the hypothesis that the pelletizing process was stable at the standard value of
61% nonconforming on the day these data were gathered. In this example, points
plotting “out of control” on the low side are an indication of process improve-
ment. They nevertheless represent a circumstance warranting physical attention
to determine the physical cause for the reduced fraction defective and possibly
to learn how to make the improvement permanent.
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Example 11
(continued )

Table 7.18
Numbers and Fractions of Nonconforming
Pellets in 25 Samples of Size 30

i , ni p̂i ,
Sample Number Nonconforming p̂i

1 13 .43
2 12 .40
3 9 .30
4 15 .50
5 17 .57
6 13 .43
7 20 .67
8 18 .60
9 18 .60

10 16 .53
11 15 .50
12 17 .57
13 15 .50
14 20 .67
15 10 .33
16 12 .40
17 17 .57
18 14 .47
19 16 .53
20 10 .33
21 14 .47
22 13 .43
23 17 .57
24 10 .33
25 12 .40∑

ni p̂i = 363

To make retrospective limits for a p chart, one must settle on a method of
estimating the (supposedly constant) process parameter p. Here the pooling idea
introduced in the two-sample context of Section 6.5 can be used. That is, as a direct
extension of formula (6.71) of Section 6.5, let

Pooled estimator
of a common p p̂ = n1 p̂1 + n2 p̂2 + · · · + nr p̂r

n1 + n2 + · · · + nr

(7.97)
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Figure 7.19 “Standards given” p chart for nonconforming pellets

( p̂ is the total number nonconforming divided by the total number inspected. When
sample sizes vary, it is a weighted average of the p̂i .)

With p̂ as in formula (7.97), an “as past data” Shewhart p chart has a center
line at p̂ and

Retrospective
p chart control

limits

LCLp̂i
= p̂ − 3

√
p̂(1− p̂)

ni

(7.98)

UCLp̂i
= p̂ + 3

√
p̂(1− p̂)

ni

(7.99)

As in the “standards given” context, when formula (7.98) produces a negative value,
no lower control limit is used for p̂i .

Example 11
(continued )

In the pelletizing case, the total number nonconforming in the samples was∑
ni p̂i = 363. Then, since mr = 30(25) = 750 pellets were actually inspected
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Example 11
(continued )

on the day in question,

p̂ = 363

750
= .484

So a retrospective 3-sigma p chart for the data of Table 7.18 has a center line at
p̂ = .484 and, from formulas (7.98) and (7.99),

LCLp̂i
= .484− 3

√
(.484)(1− .484)

30
= .21

I
UCLp̂i

= .484+ 3

√
(.484)(1− .484)

30
= .76

Figure 7.20 is a retrospective p chart for the situation of Kaminski et al. All
points plot within control limits on Figure 7.20. So although it is not tenable
that the pelletizing process was stable at p = .61 over the study period, it is
completely plausible that it was stable at some value of p (and p̂ = .484 is a
sensible guess for that value).
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Figure 7.20 Retrospective p chart for nonconforming pellets

Because of the inherent limitations of categorical data in engineering contexts,
little more will be said in this book about formal inference based on sample fractions
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beyond what is in Section 6.5. For example, formal significance tests of equality of r
proportions, parallel to the tests of equality of r means presented in Section 7.4, won’t
be discussed. However, the retrospective p chart can be interpreted as a rough graph-
ical tool for judging how sensible the hypothesis H0: p1 = p2 = · · · = pr appears.

7.6.2 u Charts

Section 3.4 introduced the notation û for the ratio of the number of occurrences of
a phenomenon of interest to the total number of inspection units or items sampled
in contexts where there may be multiple occurrences on a given item or inspection
unit. The most common application of u charts based on such ratios is that of
nonconformance to some engineering standard or specification. This section will
use the terminology of “nonconformances per unit” in spite of the fact that û can be
the sample occurrence rate for any type of phenomenon (desirable, undesirable, or
indifferent).

The theoretical basis for control charting based on nonconformances per unit
is found in the Poisson distributions of Section 5.1. That is, suppose that for some
specified inspection unit or unit of process output of a given size, a physically stable
process has an associated mean nonconformances per unit of λ and

Xi = the number of nonconformances observed on ki units inspected at time i

Then a reasonable model for Xi is often the Poisson distribution with mean kiλ. The
material in Section 5.1 then says that both E Xi = kiλ and Var Xi = kiλ.

But notice that if ûi is the sample nonconformances per unit observed at period i ,

Rate plotted on
a u chart ûi =

Xi

ki

so Proposition 1 in Chapter 5 (page 307) can be applied to produce a mean and
standard deviation for ûi . That is,

Eûi = E
Xi

ki

= 1

ki

EXi =
1

ki

(kiλ) = λ
(7.100)

Var ûi = Var
Xi

ki

= 1

k2
i

Var Xi =
1

k2
i

(kiλ) =
λ

ki

so

√
Var ûi =

√
λ

ki

(7.101)
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The relationships (7.100) and (7.101) then motivate “standards given” 3-sigma
control limits for ûi . That is, if λ is a standard mean nonconformances per unit, then
a “standards given” u chart has a center line at λ and

“Standards given”
u chart control

limits

LCLûi
= λ− 3

√
λ

ki

(7.102)

UCLûi
= λ+ 3

√
λ

ki

(7.103)

The difference in formula (7.102) can turn out negative. When it does, no lower
control limit is used.

Another matter of notation must be discussed at this point. λ is the symbol
commonly used (as in Section 5.1) for a Poisson mean, and this fact is the basis for
the usage here. However, it is more common in statistical quality control circles to
use c or even c′ for a standard mean nonconformances per unit. In fact, the case of
the u chart where all ki are 1 is usually referred to as a c chart. The λ notation used
here represents the path of least confusion through this notational conflict and thus
c or c′ will not be used in this text. However, be aware that at least in the quality
control world, there is a more popular alternative to the present λ convention.

When the limits (7.102) and (7.103) are used with nonconformances per unit
data, one is essentially checking whether the prespecified λ is a plausible description
of a physical process at each time period covered by the data. Often, however, there
is no obvious standard occurrence rate λ, and u charting is to be done retrospectively.
The question is then whether or not it is plausible that some (single) λ describes
the process over all time periods covered by the data. What is needed in order to
produce retrospective control limits for such cases is a way to use the ûi to make a
single estimate of a supposedly constant λ. This text’s approach to this problem is to
make an estimate exactly analogous to the pooled estimate of p in formula (7.97).
That is, let

Pooled estimator
of a common λ

λ̂ = k1û1 + k2û2 + · · · + kr ûr

k1 + k2 + · · · + kr

(7.104)

λ̂ is the total number of nonconformances observed divided by the total number of
units inspected. Then combining formula (7.104) with limits (7.102) and (7.103), a
retrospective 3-sigma u chart has a center line at λ̂ and

Retrospective u
chart control limits

LCLûi
= λ̂− 3

√
λ̂

ki

(7.105)
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UCLûi
= λ̂+ 3

√
λ̂

ki

(7.106)

As the reader might by now expect, when formula (7.105) gives a negative value,
no lower control limit is employed.

Example 12
(Example 13, Chapter 3,

revisited—see page 110 )

u Chart Monitoring of the Defects per Truck Found at Final Assembly

In his book Statistical Quality Control Methods, I. W. Burr discusses the use of u
charts to monitor the performance of an assembly process at a station in a truck
assembly plant. Part of Burr’s data were given earlier in Table 3.19. Table 7.19

WWW gives a (partially overlapping) r = 30 production days’ worth of Burr’s data. (The
values were extrapolated from Burr’s figures and the fact that truck production
through sample 13 was 95 trucks/day and was 130 trucks/day thereafter. Burr
gives only ûi values, production rates, and the fact that all trucks produced
were inspected.)

Consider the problem of control charting for these data. Since Burr gave no
figure λ for the plant’s standard errors per truck, this problem will be approached
as one of making a retrospective u chart. Using formula (7.104), and the column
totals from Table 7.19,

λ̂ =
∑

Xi∑
ki

= 6,078

3,445
= 1.764

So an “as past data” u chart will have a center line at 1.764 errors/truck. From
formulas (7.105) and (7.106), for the first 13 days (where each ki was 95),

LCLûi
= 1.764− 3

√
1.764

95
= 1.355 errors/truck

I
UCLûi

= 1.764+ 3

√
1.764

95
= 2.173 errors/truck

On the other hand, for the last 17 days (during which 130 trucks were produced
each day),

LCLûi
= 1.764− 3

√
1.764

130
= 1.415 errors/truck

I
UCLûi

= 1.764+ 3

√
1.764

130
= 2.113 errors/truck
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Example 12
(continued )

Table 7.19
Numbers and Rates of Nonconformances for a Truck Assembly Process

i , ki , Xi = ki ûi , ûi ,
Sample Date Trucks Produced Errors Found Errors/Truck

1 11/4 95 114 1.20
2 11/5 95 142 1.50
3 11/6 95 146 1.54
4 11/7 95 257 2.70
5 11/8 95 185 1.95
6 11/11 95 228 2.40
7 11/12 95 327 3.44
8 11/13 95 269 2.83
9 11/14 95 167 1.76

10 11/15 95 190 2.00
11 11/18 95 199 2.09
12 11/19 95 180 1.89
13 11/20 95 171 1.80
14 11/21 130 163 1.25
15 11/22 130 205 1.58
16 11/25 130 292 2.25
17 11/26 130 325 2.50
18 11/27 130 267 2.05
19 11/29 130 190 1.46
20 12/2 130 200 1.54
21 12/3 130 185 1.42
22 12/4 130 204 1.57
23 12/5 130 182 1.40
24 12/6 130 196 1.51
25 12/9 130 140 1.08
26 12/10 130 165 1.27
27 12/11 130 153 1.18
28 12/12 130 181 1.39
29 12/13 130 185 1.42
30 12/16 130 270 2.08∑

ki = 3,445
∑

Xi = 6,078

Notice that since ki appears in the denominator of the plus-or-minus part of control
limit formulas (7.102), (7.103), (7.105), and (7.106), the larger the inspection
effort at a given time period, the tighter the corresponding control limits. This
is perfectly logical. A bigger “sample size” at a given period ought to make the
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corresponding ûi a more reliable indicator of λ, so less variation of ûi ’s about a
standard or estimated common value is tolerated.

Figure 7.21 is a retrospective u chart for the data of Table 7.19. The figure
shows that the data-generating process can in no way be thought of as stable
or subject to only random causes. There is too much variation in the ûi to be
explainable as due only to small unidentifiable causes. Some of the variation
can probably be thought of in terms of a general downward trend, perhaps
associated with workers gaining job skills. But even accounting for that, there
is substantial erratic fluctuation of the ûi —which couldn’t fit between control
limits no matter where they might be centered. These data simply represent a
real engineering process that, according to accepted standards, is not repeatable
enough to allow (without appropriate sleuthing and elimination of large causes
of variation) anything but “one day at a time” inferences about its behavior.
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Figure 7.21 Retrospective u chart for truck assembly errors

This book has had little to say about formal inference from data with an under-
lying Poisson distribution. But retrospective u charts like the one in Example 12 can
be thought of as rough graphical tests of the hypothesis H0: λ1 = λ2 = · · · = λr for
Poisson-distributed Xi = ki ûi .

7.6.3 Common Control Chart Patterns and Special Checks

Shewhart control charts (both those for measurements and those for attributes data)
are useful for reasons beyond the fact that they supply semiformal information of a
hypothesis-testing type. Much important qualitative information is also carried by
patterns that can sometimes be seen in the charts’ simple plots. Section 3.3 included
some comments about engineering information carried in plots of summary statistics
against time. Shewhart charts are such plots augmented with control limits. It is thus
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appropriate to amplify and extend those comments somewhat, in light of the extra
element provided by the control limits.

Before discussing interesting possible departures from the norm, it should prob-What is expected
if a process is stable? ably be explicitly stated how a 3-sigma control chart is expected to look if a process

is physically stable. One expects (tacitly assuming the distribution of the plotted
statistic to be mound-shaped) that

1. most plotted points will lie in the middle, (say, the middle 2
3 ) of the region

delineated by the control limits around the center line,

2. a few (say, on the order of 1 in 20) points will lie outside this region but
inside the control limits,

3. essentially no points will lie outside the control limits, and

4. there will be no obvious trends in time for any sizable part of the chart.

That is, one expects to see a random-scatter/white-noise plot that fills, but essentially
remains within, the region bounded by the control limits. When something else is
seen, even if no points plot outside the control limits, there is reason to consider
the possibility that something in addition to chance causes is active in the data-
generating mechanism.

Cyclical (repeated “up, then back down again”) patterns sometimes show up onCyclical patterns
on a control chart Shewhart control charts. Such behavior is not characteristic of plots resulting from

a stable-process data-generating mechanism. When it occurs, the alert engineer will
look for identifiable physical causes of variation whose effects would come and go on
about the same schedule as the ups and downs seen on the chart. Sometimes cyclical
patterns are associated with daily or seasonal variables like ambient temperature
effects, which may be largely beyond a user’s control. But at other times, they have
to do with things like different (rotating) operators’ slightly different methods of
machine operation, which can be mostly eliminated via standardization, training,
and awareness.

Again, the expectation is that points plotted on a Shewhart control chart shouldToo much variation
on a control chart (over time) pretty much fill up but rarely plot outside the region delineated by

control limits. This can be violated in two different ways, both of which suggest the
need for engineering attention. In the first place, more variation than expected (like
that evident on Figure 7.21), which produces multiple points outside the control
limits, is often termed instability. And (after eliminating the possibility of a blunder
in calculations) it is nearly airtight evidence of one or more unregulated process
variables having effects so large that they must be regulated. Such erratic behavior
can sometimes be traced to material or components from several different suppliers
having somewhat different physical properties and entering a production line in a
mixed or haphazard order. Also, ill-advised operators may overadjust equipment
(without any basis in control charting). This can take a fairly stable process and
make it unstable.

Less variation than expected on a Shewhart chart presents an interesting puzzle.Too little variation
on a control chart Look again at Figure 7.16 on page 507 and reflect on the fact that the plotted x̄’s
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on that chart hug the center line. They don’t come close to filling up the region
between the control limits. The reader’s first reaction to this might well be, “So
what? Isn’t small variation good?” Small variation is indeed a virtue, but when
points on a control chart hug the center line, what one has is unbelievably small
variation, which may conceal a blunder in calculation or (almost paradoxically)
unnecessarily large but nonrandom variation.

In the first place, the simplest possible explanation of a plot like Figure 7.16
is that the process short-term variation, σ , has been overestimated—either because
a standard σ is not applicable or because of some blunder in calculation or logic.
Notice that using a value for σ that is bigger than what is really called for when
making the limits

LCLx̄ = µ− 3
σ√
m

and UCLx̄ = µ+ 3
σ√
m

will spread the control limits too wide and produce an x̄ chart that is insensitive to
changes in µ. So this possibility should not be taken lightly.

A more subtle possible source of unbelievably small variation on a ShewhartSystematic differences
and too little variation

on a control chart/
stratification

chart has to do with the (usually unwitting) mixing of several consistently different
streams of observations in the calculation of a single statistic that is naively thought
to be representing only one stream of observations. This can happen when data are
being taken from a production stream where multiple heads or cavities on a machine
(or various channels of another type of multiple-channel process) are represented in
a regular order in the stream. For example, items machined on heads 1, 2, and 3 of
a machine might show up downstream in a production process in the order 1, 2, 3,
1, 2, 3, 1, 2, 3, etc. Then, if there is more difference between the different types of
observations than there is within a given type, values of a single statistic calculated
using observations of several types can be remarkably (excessively) consistent.

Consider, for example, the possibility that a five-head machine has heads that
are detectably/consistently different. Suppose four of the five are perfectly adjusted
and always produce conforming items and the fifth is severely misadjusted and
always produces nonconforming items. Although 20% of the items produced are
nonconforming, a binomial distribution model with p = .2 will typically overpredict
the variation that will be seen in ni p̂i for samples of items from this process. Indeed,
samples of size m = 5 of consecutive items coming off this machine will have
p̂i = .2, always. Clearly, no p̂i ’s would approach p chart control limits.

Or in a measurement data context, with the same hypothetical five-head ma-
chine, consider the possibility that four of the five heads always produce a part
dimension at the target of 8 in. (plus or minus, say, .01 in.), whereas the fifth head is
grossly misadjusted, always producing the dimension at 9 in. (plus or minus .01 in.).
Then, in this exaggerated example, naive mixing together of the output of all five
heads will produce ranges unbelievably stable at about 1 in. and sample means (of
five consecutive pieces) unbelievably stable at about 8.2 in. But the super-stability
is not a cause for rejoicing. Rather it is a cause for thought and investigation that
could well lead to the physical elimination of the differences between the various
mechanisms producing the data—in this case, the fixing of the faulty head.
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The possibility of unnatural consistency on a Shewhart chart, brought on by
more or less systematic sampling of detectably different data streams, is often
called stratification in quality control circles. Although there is presently no way
of verifying this suspicion, some form of stratification may have been at work in the
production of the ream cutter data of Shervheim and Snider and the x̄ chart in Figure
7.16. For example, multiple blades set at not quite equal angles on a roller that cuts
sheets (as sketched in Figure 7.22) could produce consistently different consecutive
sheet lengths and unbelievably stable x̄’s. Or even with only a single blade on the
cutter roller, regular patterns in material tension, brought on by slight eccentricities
of feeder rollers, could also produce consistent patterns in consecutive sheet lengths
and thus too much stability on the x̄ chart.

Other nonrandom patterns sometimes appearing on control charts include both
gradual and more sudden changes in level and unabated trends up or down. GradualChanges in

level changes in level can sometimes be traced to machine warm-up phenomena, slow
changeovers in a raw material source, or introduction of operator training. And
phenomena like tool wear and machine degradation over time will typically produce
patterns of plotted points moving in a single direction until there is some sort of
human intervention.

The terms grouping and bunching are used to describe irregular patterns onBunching
control charts where plotted points tend to come in sets of similar values but where
the pattern is neither regular/repeatable enough to be termed cyclical nor consistent
enough in one direction to merit the use of the term trend. Such grouping can be
brought about (for example) by calibration changes in a measuring instrument and,
in machining processes, by fixture changes.

Finally, runs of many consecutive points on one side of a center line areRuns
sometimes seen on control charts. Figure 7.15, the “standards given” x̄ chart for the
sheet-length data on page 502, is an extreme example of a chart exhibiting a run.
On “standards given” charts, runs (even when not accompanied by points plotting
outside control limits) tend to discredit the chart’s center line value as a plausible
median for the distribution of the plotted statistic. On x̄ charts, that translates to a
discrediting of the target process mean as the value of the true process mean, thus
indicating that the process is misaimed. (In the sheet-length situation of Figure 7.15,
average sheet length is clearly below the target length.) And on a p or u chart, it

Cutter blades

Cut sheet

Feeder rollers

Material

Figure 7.22 Schematic of a roller cutter
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indicates the inappropriateness of the supposedly standard rate of nonconforming
items or nonconformances. On retrospective control charts, runs on one side of the
center line are usually matched by runs on the other side, and one of the earlier terms
(cycles, trends, or grouping) can typically be applied in addition to the term runs.

In recognition of the fact that the elementary “wait for a point to plot outside
of control limits” mode of using control charts is blind to the various interpretable
patterns discussed here, a variety of special checks have been developed. To give the
reader the flavor of these checks for unnatural patterns, two of the most famous sets
are shown in Tables 7.20 and 7.21. Besides many other different sets appearing in
quality control books, companies making serious use of control charts often develop
their own collections of such rules. The two sets given here are included more to
show what is possible than to advocate them in particular. The real bottom line of this
discussion is simply that when used judiciously (overinterpretation of control chart
patterns is a real temptation that also must be avoided), the qualitative information
carried by patterns on Shewhart control charts can be an important engineering tool.

Table 7.20
Western Electric Alarm Rules (from the AT&T Quality Control Handbook)

■ A single point outside 3-sigma limits

■ 2 out of any 3 successive points outside 2-sigma limits on one side of
the center line

■ 4 out of any 5 successive points outside 1-sigma limits on one side of
the center line

■ 8 consecutive points on one side of the center line

Table 7.21
Alarm Rules of L. S. Nelson (from the Journal of Quality Technology)

■ a single point outside 3-sigma limits

■ 9 points in a row on one side of the center line

■ 6 points in a row increasing or decreasing

■ 14 points in a row alternating up and down

■ 2 out of any 3 successive points outside 2-sigma limits on one side of
the center line

■ 4 out of any 5 successive points outside 1-sigma limits on one side of
the center line

■ 15 points in a row inside 1-sigma limits

■ 8 points in a row with none inside 1-sigma limits
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Section 6 Exercises ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1. The accompanying data are some taken from Statis-
tical Quality Control Methods by I. W. Burr, giving
the numbers of beverage cans found to be defective
in periodic samples of 312 cans at a bottling facility.

Sample Defectives Sample Defectives

1 6 11 7

2 7 12 7

3 5 13 6

4 7 14 6

5 5 15 6

6 5 16 6

7 4 17 23

8 5 18 10

9 12 19 8

10 6 20 5

(a) Suppose that the company standard for the
fraction of cans defective is that p = .02 of the
cans be defective on average. Use this value
and make a “standards given” p chart based on
these data. Does it appear that the process frac-
tion defective was stable at the p = .02 value
over the period represented by these data?

(b) Make a retrospective p chart for these data.
What does this chart indicate about the stability
of the canning process?

2. The accompanying table lists some data on out-
let leaks found in the first assembling of two ra-
diator parts, again taken from Burr’s Statistical
Quality Control Methods. Each radiator may have
several leaks.

Date Number Tested Leaks

6/3 39 14

6/4 45 4

6/5 46 5

6/6 48 13

6/7 40 6

6/10 58 2

Date Number Tested Leaks

6/11 50 4

6/12 50 11

6/13 50 8

6/14 50 10

6/17 32 3

6/18 50 11

6/19 33 1

6/20 50 3

6/24 50 6

6/25 50 8

6/26 50 5

6/27 50 2

(There were 841 radiators tested and a total of 116
leaks detected.) Make a retrospective u chart based
on these data. What does it indicate about the sta-
bility of the assembly process?

3. In a particular defects/unit context, the number of
standard size units inspected at a given opportunity
varies. With

Xi = the number of defects found on sample i

ki = the number of units inspected at time i

ûi = Xi/ki

the following were obtained at eight consecutive
periods:

i 1 2 3 4 5 6 7 8

ki 1 2 1 3 2 1 1 3

ûi 0 1.5 0 .67 2 0 0 .33

(a) What do these values suggest about the stability
of the process?

(b) Suppose that from now on, ki is going to be
held constant and that standard quality will
be defined as a mean of 1.2 defects per unit.
Compare 3-sigma Shewhart c charts based on
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ki = 1 and on ki = 2 in terms of the probabil-
ities that a given sample produces an “out of
control” signal if
(i) the actual defect rate is standard.
(ii) the actual defect rate is twice standard.

4. Successive samples of carriage bolts are checked
for length using “a go–no go” gauge. The results
from ten successive samples are as follows:

Sample 1 2 3 4 5 6 7 8 9 10

Sample Size 30 20 40 30 20 20 30 20 20 20

Nonconforming 2 1 5 1 2 1 3 0 1 2

What do these values indicate about the stability of
the bolt cutting process?

5. Why is it essential to have an operational definition
of a nonconformance to make effective practical
use of a Shewhart c chart?

6. Explain why too little variation appearing on a
Shewhart control chart need not be a good sign.
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1. Hoffman, Jabaay, and Leuer did a study of pen-
cil lead strength. They loaded pieces of lead of
the same diameter (supported on two ends) in
their centers and recorded the forces at which they
failed. Part of their data are given here (in grams
of load applied at failure).

4H lead H lead B lead

56.7, 63.8, 56.7 99.2, 99.2, 92.1 56.7, 63.8, 70.9

63.8, 49.6 106.0, 99.2 63.8, 70.9

(a) In applying the methods of this chapter in the
analysis of these data, what model assump-
tions must be made? Make three normal plots
of these samples on the same set of axes and
also make a normal plot of residuals for the
one-way model as means of investigating the
reasonableness of these assumptions. Com-
ment on the plots.

(b) Compute a pooled estimate of variance based
on these three samples. What is the corre-
sponding value of sP?

(c) Use the value of sP that you calculated in (b)
and make (individual) 95% two-sided con-
fidence intervals for each of the three mean
lead strengths, µ4H, µH, and µB.

(d) Use sP and make (individual) 95% two-sided
confidence intervals for each of the three

differences in mean lead strengths, µ4H −
µH, µ4H − µB, and µH − µB.

(e) Suppose that for some reason it is desirable
to compare the mean strength of B lead to
the average of the mean strengths of 4H and
H leads. Give a 95% two-sided confidence
interval for the quantity 1

2

(
µ4H + µH

)− µB.
(f) Use the P-R method of simultaneous confi-

dence intervals and make simultaneous 95%
two-sided confidence intervals for the three
mean strengths, µ4H, µH, and µB. How do
the lengths of these intervals compare to the
lengths of the intervals you found in part (c)?
Why is it sensible that the lengths should be
related in this way?

(g) Use the Tukey method of simultaneous confi-
dence intervals and make simultaneous 95%
two-sided confidence intervals for the three
differences in mean lead strengths, µ4H −
µH, µ4H − µB, and µH − µB. How do the
lengths of these intervals compare to the
lengths of the intervals you found in part (d)?

(h) Use the one-way ANOVA test statistic and
assess the strength of the evidence against
H0:µ4H = µH = µB in favor of Ha: not H0.
Show the whole five-step format.

(i) Make the ANOVA table corresponding to the
significance test you carried out in part (h).
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( j) As a means of checking your work for parts
(h) and (i) of this problem, use a statistical
package to produce the required ANOVA ta-
ble, F statistic, and p-value.

2. Allan, Robbins, and Wyckoff worked with a ma-
chine shop that employs a CNC (computer nu-
merically controlled) lathe in the manufacture of
a part for a heavy equipment maker. Some sum-
mary statistics for measurements of a particular
diameter on the part for 20 hourly samples of
m = 4 parts turned on the lathe are given here.
(The means are in 10−4 in. above 1.1800 in. and
the ranges are in 10−4 in.)

Sample 1 2 3 4 5

x̄ 9.25 8.50 9.50 6.25 5.25

R 1 2 2 8 7

Sample 6 7 8 9 10

x̄ 5.25 5.75 19.50 10.0 9.50

R 5 5 1 3 1

Sample 11 12 13 14 15

x̄ 9.50 9.75 12.25 12.75 14.50

R 6 1 9 2 7

Sample 16 17 18 19 20

x̄ 8.00 10.0 10.25 8.75 10.0

R 3 0 1 3 0

(a) The midspecification for the diameter in ques-
tion was 1.1809 in. Suppose that a standard
σ for diameters turned on this machine is
2.5× 10−4 in. Use these two values and find
“standards given” control limits for x̄ and R.
Make both x̄ and R charts using these and
comment on what the charts indicate about
the turning process.

(b) In contrast to part (a) where standards were
furnished, compute retrospective or “as past
data” control limits for both x̄ and R. Make
both x̄ and R charts using these and comment

on what the charts indicate about the turning
process.

(c) If you were to judge the sample ranges to
be stable, it would then make sense to use R̄
to develop an estimate of the turning process
short-term standard deviation σ . Find such an
estimate.

(d) The engineering specifications for the turned
diameter are (still in .0001 in. above 1.1800
in.) from 4 to 14. Supposing that the average
diameter could be kept on target (at the mid-
specification), does your estimate of σ from
part (c) suggest that the turning process would
then be capable of producing most diameters
in these specifications? Explain.

3. Becker, Francis, and Nazarudin conducted a study
of the effectiveness of commercial clothes dryers
in removing water from different types of fabric.
The following are some summary statistics from
a part of their study, where a garment made of one
of r = 3 different blends was wetted and dried for
10 minutes in a particular dryer and the (water)
weight loss (in grams) measured. Each of the three
different garments was tested three times.

100% Cotton Cotton/Polyester Cotton/Acrylic

n1 = 3 n2 = 3 n3 = 3

ȳ1 = 85.0 g ȳ2 = 348.3 g ȳ3 = 258.3 g

s1 = 25.0 g s2 = 88.1 g s3 = 63.3 g

(a) What restrictions/model assumptions are re-
quired in order to do formal inference based
on the data summarized here (if information
on the baseline variability involved is pooled
and the formulas of this chapter are used)?
Assume that those model assumptions are a
sensible description of this situation.

(b) Find sP and the associated degrees of free-
dom.

(c) What does sP measure?
(d) Give a 90% lower confidence bound for the

mean amount of water that can be removed
from the cotton garment by this dryer in a
10-minute period.
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(e) Give a 90% two-sided confidence interval for
comparing the means for the two blended gar-
ments.

(f) Suppose that all pairs of fabric means are
to be compared using intervals of the form
ȳi − ȳi ′ ±1 and that simultaneous 95% con-
fidence is desired. Find 1.

(g) A partially completed ANOVA table for test-
ing H0:µ1 = µ2 = µ3 follows. Finish filling
in the table then find a p-value for a signifi-
cance test of this hypothesis.

ANOVA Table

Source SS d f MS F

24,787

132,247

4. The article “Behavior of Rubber-Based Elasto-
meric Construction Adhesive in Wood Joints” by
P. Pellicane (Journal of Testing and Evaluation,
1990) compared the performance of r = 8 dif-
ferent commercially available construction adhe-
sives. m = 8 joints glued with each glue were
tested for strength, giving results summarized as
follows (the units are kN):

Glue (i) 1 2 3 4 5 6 7 8

ȳi 1821 1968 1439 616 1354 1424 1694 1669

si 214 435 243 205 135 191 225 551

(a) Temporarily considering only the test results
for glue 1, give a 95% lower tolerance bound
for the strengths of 99% of joints made with
glue 1.

(b) Still considering only the test results for glue
1, give a 95% lower confidence bound for the
mean strength of joints made with glue 1.

(c) Now considering only the test results for
glues 1 and 2, assess the strength of the evi-
dence against the possibility that glues 1 and
2 produce joints with the same mean strength.
Show the whole five-step significance-testing
format.

(d) What model assumptions stand behind the
formulas you used in parts (a) and (b)? In
part (c)?

For the following questions, consider test results
from all eight glues when making your analyses.
(e) Find a pooled sample standard deviation and

give its degrees of freedom.
(f) Repeat parts (a) and (b) using the pooled stan-

dard deviation instead of only s1. What extra
model assumption is required to do this (be-
yond what was used in parts (a) and (b))?

(g) Find the value of an F statistic for testing
H0:µ1 = µ2 = · · · = µ8 and give its degrees
of freedom. (Hint: These data are balanced.
You ought to be able to use the ȳ’s and the
sample variance routine on your calculator to
help get the numerator for this statistic.)

(h) Simultaneous 95% two-sided confidence lim-
its for the mean strengths for the eight glues
are of the form ȳi ±1 for an appropriate
number 1. Find 1.

(i) Simultaneous 95% two-sided confidence lim-
its for all differences in mean strengths for the
eight glues are of the form ȳi − ȳi ′ ±1 for a
number 1. Find 1.

5. Example 7 in Chapter 4 treats some data collected
by Kotlers, MacFarland, and Tomlinson while
studying strength properties of wood joints. Part
of those data (stress at failure values in units of psi
for four out of the original nine wood/joint type
combinations) are reproduced here, along with ȳ
and s for each of the four samples represented:

Wood Type

Pine Oak

829 1169

Butt 596

ȳ = 712.5 ȳ = 1169

s = 164.8
Joint Type

1000 1295

Lap 859 1561

ȳ = 929.5 ȳ = 1428.0

s = 99.7 s = 188.1
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(a) Treating pine/butt joints alone, give a 95%
two-sided confidence interval for mean
strength for such joints. (Here, base your in-
terval on only the pine/butt data.)

(b) Treating only lap joints, how strong is the
evidence shown here of a difference in mean
joint strength between pine and oak woods?
(Here use only the pine/lap and oak/lap data.)
Use the five-step format.

(c) Give a 90% two-sided confidence interval for
comparing the strength standard deviations
for pine/lap and oak/lap joints.

Consider all four samples in the following ques-
tions.
(d) Assuming that all four wood type/joint type

conditions are thought to have approximately
the same associated variability in joint
strength, give an estimate of this supposedly
common standard deviation.

(e) It is possible to compute simultaneous 95%
lower (one-sided) confidence limits for mean
joint strengths for all four wood type/joint
type combinations. Give these (based on the
P-R method).

(f) Suppose that you want to compare butt joint
strength to lap joint strength and in fact want
a 95% two-sided confidence interval for

1

2
(µpine/butt + µoak/butt)−

1

2
(µpine/lap + µoak/lap)

Give such a confidence interval, again making
use of your answer to (d).

6. In an industrial application of Shewhart x̄ and R
control charts, 20 successive hourly samples of
m = 2 high-precision metal parts were taken, and
a particular diameter on the parts was measured.
x̄ and R values were calculated for each of the 20
samples, and these had

¯̄x = .35080 in. and R = .00019 in.

(a) Give retrospective control limits that you
would use in an analysis of the x̄ and R values.

(b) The engineering specifications for the diame-
ter being measured were .3500 in.± .0020 in.
Unfortunately, even practicing engineers

sometimes have difficulty distinguishing in
their thinking and speech between specifica-
tions and control limits. Briefly (but carefully)
discuss the difference in meaning between the
control limits for x̄ found in part (a) and these
engineering specifications. (To what quanti-
ties do the two apply? What are the different
purposes for the two? Where do the two come
from? And so on.)

7. Here are some summary statistics produced by
Davies and Sehili for ten samples of m = 4 pin
head diameters formed on a type of electrical com-
ponent. The sampled components were groups
of consecutive items taken from the output of a
machine approximately once every ten minutes.
The units are .001 in.

Sample x̄ R s Sample x̄ R s

1 31.50 3 1.29 6 33.00 3 1.41

2 30.75 2 .96 7 33.00 2 .82

3 29.75 3 1.26 8 33.00 4 1.63

4 30.50 3 1.29 9 34.00 2 .82

5 32.00 0 0 10 26.00 0 0

Some summaries for the statistics are∑
x̄ = 313.5

∑
R = 22 and

∑
s = 9.48

(a) Assuming that the basic short-term variabil-
ity of the mechanism producing pin head di-
ameters is constant, it makes sense to try to
quantify it in terms of a standard deviation σ .
Various estimates of that σ are possible. Give
three such possible estimates based on R, s̄,
and sP.

(b) Using each of your estimates from (a), give
retrospective control limits for both x̄ and R.

(c) Compare the x̄’s and R’s given above to your
control limits from (b) based on R. Are there
any points that would plot outside control
limits on a Shewhart x̄ chart? On a Shewhart
R chart?

(d) For the company manufacturing these parts,
what are the practical implications of your
analysis in parts (b) and (c)?
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8. Dunnwald, Post, and Kilcoin studied the viscosi-
ties of various weights of various brands of motor
oil. Some summary statistics for part of their data
are given here. Summarized are m = 10 measure-
ments of the viscosities of each of r = 4 different
weights of Brand M motor oil at room tempera-
ture. Units are seconds required for a ball to drop
a particular distance through the oil.

10W30 SAE 30 10W40 20W50

ȳ = 1.385 ȳ2 = 2.066 ȳ3 = 1.414 ȳ4 = 4.498

s1 = .091 s2 = .097 s3 = .150 s4 = .204

(a) Find the pooled sample standard deviation
here. What are the associated degrees of free-
dom?

(b) If the P-R method is used to find simultane-
ous 95% two-sided confidence intervals for
all four mean viscosities, the intervals pro-
duced are of the form ȳi ±1, for 1 an ap-
propriate number. Find 1.

(c) If the Tukey method is used to find simulta-
neous 95% two-sided confidence intervals for
all differences in mean viscosities, the inter-
vals produced are of the form ȳi − ȳi ′ ±1,
for 1 an appropriate number. Find 1.

(d) Carry out an ANOVA test of the hypothesis
that the four oil weights have the same mean
viscosity.

9. Because of modern business pressures, it is not
uncommon for standards for fractions noncon-
forming to be in the range of 10−4 to 10−6.
(a) What are “standards given” 3-sigma control

limits for a p chart with standard fraction
nonconforming 10−4 and sample size 100?

(b) If p becomes twice the standard value (of
10−4), what is the probability that the scheme
from (a) detects this state of affairs at the first
subsequent sample? (Use your answer to (a)
and the binomial distribution for n = 100 and
p = 2× 10−4.)

(c) What does (b) suggest about the feasibility
of doing process monitoring for very small
fractions defective based on attributes data?

10. Suppose that a company standard for the mean

number of visual imperfections on a square foot
of plastic sheet is λ = .04.
(a) Give upper control limits for the number of

imperfections found on pieces of material
.5 ft× .5 ft and then 5 ft× 5 ft.

(b) What would you tell a worker who, instead
of inspecting a 10 ft× 10 ft specimen of the
plastic (counting total imperfections on the
whole), wants to inspect only a 1 ft× 1 ft
specimen and multiply the observed count of
imperfections by 100?

11. Bailey, Goodman, and Scott worked on a process
for attaching metal connectors to the ends of hy-
draulic hoses. One part of that process involved
grinding rubber off the ends of the hoses. The
amount of rubber removed is termed the skive
length. The values in the accompanying table are
skive length means and standard deviations for
20 samples of five consecutive hoses ground on
one grinder. Skive length is expressed in .001 in.
above the target length.

Sample x̄ s Sample x̄ s

1 −.4 5.27 11 −2.2 5.50

2 0.0 4.47 12 −5.2 2.86

3 −1.4 3.29 13 −.8 1.30

4 1.8 2.28 14 .8 2.68

5 1.4 1.14 15 −2.0 2.92

6 0.0 4.24 16 −.2 1.30

7 −.4 4.39 17 −6.6 2.30

8 1.4 4.51 18 −1.0 4.21

9 .2 4.32 19 −3.2 5.76

10 −3.2 2.05 20 −2.4 4.28

−23.4 69.07

(a) What do these values indicate about the stabil-
ity of the skiving process? Show appropriate
work and explain fully.

(b) Give an estimate of the process short-term
standard deviation based on the given values.

(c) If specifications on the skive length are±.006
in. and, over short periods, skive length can
be thought of as normally distributed, what
does your answer to (b) indicate about the
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best possible fraction (for perfectly adjusted
grinders) of skives in specifications? Give a
number.

(d) Based on your answer to (b), give control
limits for future control of skive length means
and ranges for samples of size m = 3.

(e) Suppose that hoses from all grinders used dur-
ing a given shift are all dumped into a com-
mon bin. If upon sampling, say, 20 hoses from
this bin at the end of a shift, the 20 measured
skive lengths have a standard deviation twice
the size of your answer to (b), what possible
explanations come to mind for this?

(f) Suppose current policy is to sample five con-
secutive hoses once an hour for each grinder.
An alternative possibility is to sample one
hose every 12 minutes for each grinder.
(i) Briefly discuss practical trade-offs that
you see between the two possible sampling
methods.
(ii) If in fact the new sampling scheme were
adopted, would you recommend treating the
five hoses from each hour as a sample of size
5 and doing x̄ and R charting with m = 5?
Explain.

12. Two different types of nonconformance can ap-
pear on widgets manufactured by Company V.
Counts of these on ten widgets produced one per
hour are given here.

Widget 1 2 3 4 5 6 7 8 9 10

Type A Defects 4 2 1 2 2 2 0 2 1 0

Type B Defects 0 2 2 4 2 4 3 3 7 2

Total Defects 4 4 3 6 4 6 3 5 8 2

(a) Considering first total nonconformances, is
there evidence here of process instability?
Show appropriate work.

(b) What statistical indicators might you expect
to observe in data like these if in fact type A
and B defects have a common cause mecha-
nism?

(c) (Charts for Demerits) For the sake of ex-
ample, suppose that type A defects are judged
twice as important as type B defects. One

might then consider charting

X = demerits

= 2(number of A defects)

+ (number of B defects)

If one can model (number of A defects) and
(number of B defects) as independent Pois-
son random variables, it is relatively easy to
come up with sensible control limits. (Re-
member that the variance of a sum of inde-
pendent random variables is the sum of the
variances.)
(i) If the mean number of A defects per wid-
get isλ1 and the mean number of B defects per
widget is λ2, what are the mean and variance
for X? Use your answers to give “standards
given” control limits for X .
(ii) In light of your answer to (i), what nu-
merical limits for X would you use to analyze
these values “as past data”?

13. (Variables Versus Attributes Control Chart-
ing) Suppose that a dimension of parts pro-
duced on a certain machine over a short period can
be thought of as normally distributed with some
mean µ and standard deviation σ = .005 in. Sup-
pose further that values of this dimension more
than .0098 in. from the 1.000 in. nominal value are
considered nonconforming. Finally, suppose that
hourly samples of ten of these parts are to be taken.
(a) If µ is exactly on target (i.e., µ = 1.000 in.),

about what fraction of parts will be noncon-
forming? Is it possible for the fraction non-
conforming ever to be any less than this fig-
ure?

(b) One could use a p chart based on m = 10 to
monitor process performance in this situation.
What would be “standards given” 3-sigma
control limits for the p chart, using your an-
swer from part (a) as the standard value of p?

(c) What is the probability that a particular sam-
ple of m = 10 parts will produce an “out of
control” signal on the chart from (b) if µ re-
mains at its standard value of µ = 1.000 in.?
How does this compare to the same probability
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for a 3-sigma x̄ chart for m = 10 set up
with a center line at 1.000? (For the p chart,
use a binomial probability calculation. For
the x̄ chart, use the facts that µx̄ = µ and
σx̄ = σ/

√
m.)

(d) Compare the probability that a particular sam-
ple of m = 10 parts will produce an “out of
control” signal on the p chart from (b) to the
probability that the sample will produce an
“out of control” signal on the (m = 10) 3-
sigma x̄ chart first mentioned in (c), suppos-
ing that in fact µ = 1.005 in. What moral is
told by your calculations here and in part (c)?

14. The article “How to Use Statistics Effectively in
a Pseudo-Job Shop” by G. Fellers (Quality En-
gineering, 1990) discusses some applications of
statistical methods in the manufacture of corru-
gated cardboard boxes. One part of the article
concerns the analysis of a variable called box
“skew,” which quantifies how far from being per-
fectly square boxes are. This response variable,
which will here be called y, is measured in units
of 1

32 in. r = 24 customer orders (each requir-
ing a different machine setup) were studied, and
from each, the skews, y, of five randomly se-
lected boxes were measured. A partial ANOVA
table made in summary of the data follows.

ANOVA Table

Source SS d f MS F

Order (setup) 1052.39

Error

Total 1405.59 119

(a) Complete the ANOVA table.
(b) In a given day, hundreds of different orders

are run in this plant. This situation is one
in which a random effects analysis is most
natural. Explain why.

(c) Find estimates of σ and σ
τ
. What, in the con-

text of this situation, do these two estimates
measure?

(d) Find and interpret a two-sided 90% confi-
dence interval for σ and then the ratio σ

τ
/σ .

(e) If there is variability in skew, customers must
continually adjust automatic folding and pack-
aging equipment in order to prevent machine
jam-ups. Such variability is therefore highly
undesirable for the box manufacturer, who
wishes to please customers. What does your
analysis from (c) and (d) indicate about how
the manufacturer should proceed in any at-
tempts to reduce variability in skew? (What
is the big component of variance, and what
kind of actions might be taken to reduce it?
For example, is there a need for the immediate
purchase of new high-precision manufactur-
ing equipment?)

15. The article “High Tech, High Touch” by J. Ryan
(Quality Progress, 1987) discusses the quality en-
hancement processes used by Martin Marietta in
the production of the space shuttle external (liq-
uid oxygen) fuel tanks. It includes a graph giving
counts of major hardware nonconformances for
each of 41 tanks produced. The accompanying
data (see next page) are approximate counts read
from that graph for the last 35 tanks. (The first 6
tanks were of a different design than the others
and are therefore not included here.)
(a) Make a retrospective c chart for these data.

Is there evidence of real quality improvement
in this series of counts of nonconformances?
Explain.

(b) Consider only the last 17 tanks. Does it ap-
pear that quality was stable over the produc-
tion period represented by these tanks? (Make
another retrospective c chart.)

(c) It is possible that some of the figures read
from the graph in the original article may dif-
fer from the real figures by as much as, say, 15
nonconformances. Would this measurement
error account for the apparent lack of stabil-
ity you found in (a) or (b) above? Explain.
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Tank Nonconformances Tank Nonconformances

1 537 19 157

2 463 20 120

3 417 21 148

4 370 22 65

5 333 23 130

6 241 24 111

7 194 25 65

8 185 26 74

9 204 27 65

10 185 28 148

11 167 29 74

12 157 30 65

13 139 31 139

14 130 32 213

15 130 33 222

16 267 34 93

17 102 35 194

18 130

16. Kaminski, Rasavahn, Smith, and Weitekamper
worked with the same pelletizing machine re-
ferred to in Examples 2 (Chapter 1), 14 (Chap-
ter 3), and 18 (Chapter 6). They collected process
monitoring data on several different days of op-
eration. The accompanying table shows counts of
nonconforming pellets in periodic samples of size
m = 30 from two different days. (The pelletizing
on day 1 was done with 100% fresh material, and
on the second day, a mixture of fresh and reground
materials was used.)
(a) Make a retrospective p chart for the day 1

data. Is there evidence of process instability
in the day 1 data? Explain.

(b) Treating the day 1 data as a single sample of
size 750 from the day’s production of pellets,
give a 90% two-sided confidence interval for
the fraction nonconforming produced on the
day in question.

(c) In light of your answers to parts (a) and (b),
explain why a process being in control or sta-
ble does not necessarily mean that it is pro-
ducing a satisfactory fraction of conforming
product.

Day 1 Day 2

Sample Nonconforming Sample Nonconforming

1 16 1 14

2 18 2 20

3 17 3 17

4 18 4 13

5 22 5 12

6 14 6 12

7 16 7 14

8 18 8 15

9 18 9 19

10 19 10 21

11 20 11 18

12 25 12 14

13 14 13 13

14 13 14 9

15 23 15 16

16 13 16 16

17 23 17 15

18 15 18 11

19 14 19 17

20 23 20 8

21 17 21 16

22 20 22 13

23 16 23 16

24 19 24 15

25 22 25 13

(d) Repeat parts (a) and (b) for the day 2 data.
(e) Try making a single retrospective control

chart for the two days taken together. Do
points plot out of control on this single chart?
Explain why this does or does not contradict
the results of parts (a), (b), and (d).

(f) Treating the data from days 1 and 2 as two
samples of size 750 from the respective days’
production of pellets, give a two-sided 98%
confidence interval for the difference in
fractions of nonconforming pellets produced
on the two days.
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17. Eastman, Frye, and Schnepf counted defective
plastic bags in 15 consecutive groups of 250 com-
ing off a converting machine immediately after a
changeover to a new roll of plastic. Their counts
are as follows:

Sample Nonconforming Sample Nonconforming

1 147 9 0

2 93 10 0

3 41 11 0

4 0 12 0

5 18 13 0

6 0 14 0

7 31 15 0

8 22

Is it plausible that these data came from a phys-
ically stable process, or is it clear that there is
some kind of start-up phenomenon involved here?
Make and interpret an appropriate control chart to
support your answer.

18. Sinnott, Thomas, and White compared several
properties of five different brands of 10W30 mo-
tor oil. In one part of their study, they measured
the boiling points of the oils. m = 3 measure-
ments for each of the r = 5 oils follow. (Units are
degrees F.)

Brand C Brand H Brand W Brand Q Brand P

378 357 321 353 390

386 365 303 349 378

388 361 306 353 381

(a) Compute and make a normal plot for the
residuals for the one-way model. What does
the plot indicate about the appropriateness of
the one-way model assumptions?

(b) Using the five samples, find sP, the pooled
estimate of σ . What does this value measure?
Give a two-sided 90% confidence interval for
σ based on sP.

(c) Individual two-sided confidence intervals for
the five different means here would be of the

form ȳi ±1, for an appropriate number 1.
If 90% individual confidence is desired, what
value of 1 should be used?

(d) Individual two-sided confidence intervals for
the differences in the five different means
would be of the form ȳi − ȳi ′ ±1, for a num-
ber 1. If 90% individual confidence is de-
sired, what value of 1 should be used here?

(e) Using the P-R method, what1would be used
to make two-sided intervals of the form ȳi ±
1 for all five mean boiling points, possessing
simultaneous 95% confidence?

(f) Using the Tukey method, what 1 would be
used to make two-sided intervals of the form
ȳi − ȳi ′ ±1 for all differences in the five
mean boiling points, possessing simultaneous
99% confidence?

(g) Make an ANOVA table for these data. Then
use the calculations to find both R2 for the
one-way model and also the observed level
of significance for an F test of the null hy-
pothesis that all five oils have the same mean
boiling point.

(h) It is likely that the measurements represented
here were all made on a single can of each
brand of oil. (The students’ report was not
explicit about this point.) If so, the formal in-
ferences made here are really most honestly
thought of as applying to the five particu-
lar cans used in the study. Discuss why the
inferences would not necessarily extend to
all cans of the brands included in the study
and describe the conditions under which you
might be willing to make such an extension.
Is the situation different if, for example, each
of the measurements comes from a different
can of oil, taken from different shipping lots?
Explain.

19. Baik, Johnson, and Umthun worked with a small
metal fabrication company on monitoring the per-
formance of a process for cutting metal rods.
Specifications for the lengths of these rods were
33.69 in.± .03 in. Measured lengths of rods in 15
samples of m = 4 rods, made over a period of two
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days, are shown in the accompanying table. (The
data are recorded in inches above the target value
of 33.69, and the first five samples were made on
day 1, while the remainder were made on day 2.)

Sample Rod Lengths x̄ R s

1 .0075, .0100

.0135, .0135 .01113 .0060 .00293

2 −.0085, .0035

−.0180, .0010 −.00550 .0215 .00981

3 .0085, .0000

.0100, .0020 .00513 .0100 .00487

4 .0005, −.0005

.0145, .0170 .00788 .0175 .00916

5 .0130, .0035

.0120, .0070 .00888 .0095 .00444

6 −.0115, −.0110

−.0085, −.0105 −.01038 .0030 .00131

7 −.0080, −.0070

−.0060, −.0045 −.00638 .0035 .00149

8 −.0095, −.0100

−.0130, −.0165 −.01225 .0070 .00323

9 .0090, .0125

.0125, .0080 .01050 .0045 .00235

10 −.0105, −.0100

−.0150, −.0075 −.01075 .0075 .00312

11 .0115, .0150

.0175, .0180 .01550 .0065 .00297

12 .0020, .0005

.0010, .0010 .00113 .0015 .00063

13 −.0010, −.0025

−.0020, −.0030 −.00213 .0020 .00085

14 −.0020, .0015

.0025, .0025 .00113 .0045 .00214

15 −.0010, −.0015

−.0020, −.0045 −.00225 .0035 .00155

¯̄x = .00078 R = .0072 s̄ = .00339

(a) Find a retrospective center line and control
limits for all 15 sample ranges. Apply them
to the ranges and say what is indicated about
the rod cutting process.

(b) Repeat part (a) for the sample standard devi-
ations rather than ranges.

The initial five samples were taken while the op-
erators were first learning to cut these particu-
lar rods. Suppose that it therefore makes sense
to look separately at the last ten samples. These
samples have ¯̄x = −.00159, R = .00435, and s̄ =
.001964.
(c) Both the ranges and standard deviations of

the last ten samples look reasonably stable.
What about the last ten x̄’s? (Compute control
limits for the last ten x̄’s, based on either R
or s̄, and say what is indicated about the rod
cutting process.)

As a matter of fact, the cutting process worked
as follows. Rods were welded together at one
end in bundles of 80, and the whole bundle cut
at once. The four measurements in each sample
came from a single bundle. (There are 15 bundles
represented.)
(d) How does this explanation help you under-

stand the origin of patterns discovered in the
data in parts (a) through (c)?

(e) Find an estimate of the “process short-term
σ” for the last ten samples. What is it really
measuring in the present context?

(f) Use your estimate from (e) and, assuming
that lengths of rods from a single bundle are
approximately normally distributed, compute
an estimate of the fraction of lengths in a
bundle that are in specifications, if in factµ =
33.69 in.

(g) Simply pooling together the last ten samples
(making a single sample of size 40) and com-
puting the sample standard deviation gives the
value s = .00898. This is much larger than
any s recorded for one of the samples and
should be much larger than your value from
(e). What is the origin of this difference in
magnitude?

20. Consider the last ten samples from Exercise 19.
Upon considering the physical circumstances that
produced the data, it becomes sensible to replace
the control chart analysis done there with a ran-
dom effects analysis simply meant to quantify
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the within- and between-bundle variance compo-
nents.
(a) Make an ANOVA table for these ten samples

of size 4. Based on the mean squares, find es-
timates of σ , the standard deviation of lengths
for a given bundle, and σ

τ
, the standard devi-

ation of bundle mean lengths.
(b) Find and interpret a two-sided 90% confi-

dence interval for the ratio σ
τ
/σ .

(c) What is the principal origin of variability in
the lengths of rods produced by this cutting
method? (Is it variability of lengths within
bundles or differences between bundles?)

21. The following data appear in the text Quality Con-
trol and Industrial Statistics by A. J. Duncan.
They represent the numbers of disabling injuries
suffered and millions of man-hours worked at a
large corporation in 12 consecutive months.

Month 1 2 3 4 5 6

Injuries 11 4 5 8 4 4

106 man-hr .175 .178 .175 .180 .183 .198

Month 7 8 9 10 11 12

Injuries 9 12 2 6 6 7

106 man-hr .210 .212 .210 .211 .195 .200

(a) Temporarily assuming the injury rate per man-
hour to be stable over the period studied, find
a sensible estimate of the mean injuries per
106 man-hours.

(b) Based on your figure from (a), find “control
limits” for the observed rates in each of the 12
months. Do these data appear to be consistent
with a “stable system” view of the corpora-
tion’s injury production mechanisms? Or are
there months that are clearly distinguishable
from the others in terms of accident rates?

22. Eder, Williams, and Bruster studied the force (ap-
plied to the cutting arm handle) required to cut
various types of paper in a standard paper trim-
mer. The students used stacks of five sheets of four
different types of paper and recorded the forces
needed to move the cutter arm (and thus cut the

paper). The data that follow (the units are ounces)
are for m = 3 trials with each of the four paper
types and also for a “baseline” condition where
no paper was loaded into the trimmer.

No Paper Newsprint Construction Computer Magazine

24, 25, 31 61, 51, 52 72, 70, 77 59, 59, 70 54, 59, 61

(a) If the methods of this chapter are applied in
the analysis of these data, what model as-
sumptions must be made? With small sample
sizes such as those here, only fairly crude
checks on the appropriateness of the assump-
tions are possible. One possibility is to com-
pute residuals and normal-plot them. Do this
and comment on the appearance of the plot.

(b) Compute a pooled estimate of the standard
deviation based on these five samples. What
is sP supposed to be measuring in the present
situation?

(c) Use the value of sP and make (individual)
95% two-sided confidence intervals for each
of the five mean force requirements µNo paper,
µNewsprint,µConstruction,µComputer, andµMagazine.

(d) Individual confidence intervals for the differ-
ences between particular pairs of mean force
requirements are of the form ȳi − ȳi ′ ±1,
for an appropriate value of1. Use sP and find
1 if individual 95% two-sided intervals are
desired.

(e) Suppose that it is desirable to compare the
“no paper” force requirement to the average
of the force requirements for the various pa-
pers. Give a 95% two-sided confidence inter-
val for the quantity µNo paper − 1

4 (µNewsprint +
µConstruction + µComputer + µMagazine).

(f) Use the P-R method of simultaneous confi-
dence intervals and make simultaneous 95%
two-sided confidence intervals for the five
mean force requirements. How do the lengths
of these intervals compare to the lengths of
the intervals you found in part (c)? Why is it
sensible that the lengths should be related in
this way?
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(g) Simultaneous confidence intervals for the dif-
ferences between all pairs of mean force re-
quirements are of the form ȳi − ȳi ′ ±1, for
an appropriate value of 1. Use sP and find 1
if Tukey simultaneous 95% two-sided inter-
vals are desired. How does this value compare
to the value you found in part (d)?

(h) Use the one-way ANOVA test statistic and
assess the strength of the students’ evidence
against H0:µNo paper= µNewsprint= µConstruction= µComputer = µMagazine in favor of Ha: not
H0. Show the whole five-step format.

(i) Make the ANOVA table corresponding to the
significance test you carried out in part (h).

23. Duffy, Marks, and O’Keefe did some testing of
the 28-day compressive strengths of 3 in.× 6 in.
concrete cylinders. In part of their study, concrete
specimens made with a .50 water/cement ratio and
different percentages of entrained air were cured
in a moisture room and subsequently strength
tested. m = 4 specimens of each type produced
the measured strengths (in 103 psi) summarized
as follows:

3% Air 6% Air 10% Air

ȳ1 = 5.3675 ȳ2 = 4.9900 ȳ3 = 2.9250

s1 = .1638 s2 = .1203 s3 = .2626

(a) Find the pooled sample standard deviation
and its associated degrees of freedom.

Use your answer to part (a) throughout the rest of
this problem.
(b) Give a 99% lower confidence bound for the

mean strength of 3% air specimens.
(c) Give a 99% two-sided confidence interval for

comparing the mean strengths of 3% air and
10% air specimens.

(d) Suppose that mean strengths of specimens for
all pairs of levels of entrained air are to be
compared using intervals of the form ȳi −
ȳi ′ ±1. Find1 for Tukey simultaneous 99%
two-sided confidence limits.

(e) A partially completed ANOVA table for test-
ing H0:µ1 = µ2 = µ3 follows. Finish filling
in the table, then find a p-value for an F test

of this hypothesis.

ANOVA Table

Source SS d f MS F

Total 14.1608

24. Davis, Martin, and Poppinga used a ytterbium
argon gas laser to make some cuts in stainless
steel-316. Using 95 mJ/pulse and 20 Hz settings
on the laser and a 15.5 mm distance to the steel
specimens (set at a 45◦angle to the laser beam),
the students made cuts in specimens using 100,
500, and 1,000 pulses. (Although this is not ab-
solutely clear from the students’ report, it seems
that four specimens were cut using each number
of pulses.) The depths of cut the students mea-
sured were then as follows:

100 Pulses

7.4, 8.6, 5.6, 8.0

500 Pulses

24.2, 29.5, 26.5, 23.8

1000 Pulses

33.4, 37.5, 35.9, 34.8

(a) If the methods of this chapter are applied
in the analysis of these three samples, what
model assumptions must be made? Compute
residuals and normal plot them as something
of a check on the reasonableness of these as-
sumptions. Comment on the appearance of
the plot.

(b) Compute a pooled estimate of the standard
deviation based on these three samples. What
is sP supposed to be measuring in the present
situation?

(c) Make (individual) 95% two-sided confidence
intervals for each of the three mean depths of
cut, µ100, µ500, and µ1000.

(d) Confidence intervals for the differences be-
tween particular pairs of mean depths of cut
are of the form ȳi − ȳi ′ ±1, for a number1.



Chapter 7 Exercises 545

Find 1 if individual 95% two-sided intervals
are desired.

(e) Suppose that it is desirable to compare the per
pulse change in average depth of cut between
100 pulses and 500 pulses to the per pulse
change in average depth of cut between 500
pulses and 1,000 pulses. Give a 90% two-
sided confidence interval for the quantity

1

400

(
µ500 − µ100

)− 1

500

(
µ1000 − µ500

)
(You will need to write this out as a linear
combination of the three means before apply-
ing any formulas from Section 7.2.) Based on
this interval, does it appear plausible that the
depth of cut changes linearly in the number
of pulses over the range from 100 to 1,000
pulses? Explain.

(f) Use the P-R method of simultaneous confi-
dence intervals and make simultaneous 95%
two-sided confidence intervals for the three
mean depths of cut. How do the lengths of
these intervals compare to the lengths of the
intervals you found in part (c)? Why is it sen-
sible that the lengths should be related in this
way?

(g) Simultaneous confidence intervals for the dif-
ferences between all pairs of mean depths of
cut are of the form ȳi − ȳi ′ ±1, for a num-
ber 1. Find 1 if Tukey simultaneous 95%
two-sided intervals are desired. How does this
value compare to the one you found in part
(d)?

(h) Use the one-way ANOVA test statistic and
assess the strength of the evidence against
H0:µ1 = µ2 = µ3. Show the whole five-step
format.

(i) Make the ANOVA table corresponding to the
significance test you carried out in part (h).

25. Anderson, Panchula, and Patrick tested several de-
signs of “paper helicopters” for flight times when
dropped from a point approximately 8 feet above
the ground. Four different helicopters were made
and tested for each design. Some summary statis-

tics for the tests on four particular designs are
given next. (The units are seconds.)

Design #1 Design #2 Design #3 Design #4

n1 = 4 n2 = 4 n3 = 4 n4 = 4

ȳ1 = 1.640 ȳ2 = 2.545 ȳ3 = 1.510 ȳ4 = 2.600

s1 = .096 s2 = .426 s3 = .174 s4 = .168

(a) Find a pooled estimate of σ in the one-way
model. What does this quantity measure in
the present context?

(b) Give 95% two-sided confidence limits for the
mean flight time of helicopters of Design #1.

(c) P-R simultaneous two-sided 95% confidence
limits for all mean flight times of the designs
are of the form ȳi ±1. Find 1.

(d) Give 95% two-sided confidence limits for the
difference in mean flight times of helicopters
of Designs #1 and #2.

(e) Tukey simultaneous two-sided 95% confi-
dence limits for all differences in mean flight
times of the designs are of the form ȳi − ȳi ′ ±
1, for a number 1. Find 1.

(f) Based on your answer to part (e), do you
believe that there are “statistically signifi-
cant”/“statistically detectable” differences
among these four designs in terms of mean
flight times? Explain.

(g) Do a formal significance test of H0:µ1 =
µ2 = µ3 = µ4. Show the whole five-step for-
mat.

(h) As a matter of fact, the four designs consid-
ered here were Design #1, 2 in. wings and
1 in. body; Design #2, 4 in. wings and 1 in.
body; Design #3, 2 in. wings and 3 in. body;
Design #4, 4 in. wings and 3 in. body. So the
quantity

1

2

(
µ1 + µ3

)− 1

2

(
µ2 + µ4

)
is a measure of the effect of changing from 2
in. wings to 4 in. wings. Give 95% two-sided
confidence limits for this quantity.




