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Introduction to
Formal Statistical
Inference

Formal statistical inference uses probability theory to quantify the reliability of
data-based conclusions. This chapter introduces the logic involved in several general
types of formal statistical inference. Then the most common specific methods for
one- and two-sample statistical studies are discussed.

The chapter begins with an introduction to confidence interval estimation, using
the important case of large-sample inference for a mean. Then the topic of signif-
icance testing is considered, again using the case of large-sample inference for a
mean. With the general notions in hand, successive sections treat the standard one-
and two-sample confidence interval and significance-testing methods for means,
then variances, and then proportions. Finally, the important topics of tolerance and
prediction intervals are introduced.
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6.1 Large-Sample Confidence Intervals for a Mean

Many important engineering applications of statistics fit the following standard
mold. Values for parameters of a data-generating process are unknown. Based on
data, the object is

1. identify an interval of values likely to contain an unknown parameter (or a
function of one or more parameters) and

2. quantify “how likely” the interval is to cover the correct value.

For example, a piece of equipment that dispenses baby food into jars might
produce an unknown mean fill level, µ. Determining a data-based interval likely to

334
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contain µ and an evaluation of the reliability of the interval might be important. Or
a machine that puts threads on U-bolts might have an inherent variation in thread
lengths, describable in terms of a standard deviation, σ . The point of data collection
might then be to produce an interval of likely values for σ , together with a statement
of how reliable the interval is. Or two different methods of running a pelletizing
machine might have different unknown propensities to produce defective pellets,
(say, p1 and p2). A data-based interval for p1 − p2, together with an associated
statement of reliability, might be needed.

The type of formal statistical inference designed to deal with such problems is
called confidence interval estimation.

Definition 1 A confidence interval for a parameter (or function of one or more parameters)
is a data-based interval of numbers thought likely to contain the parameter (or
function of one or more parameters) possessing a stated probability-based
confidence or reliability.

This section discusses how basic probability facts lead to simple large-sample
formulas for confidence intervals for a mean, µ. The unusual case where the standard
deviation σ is known is treated first. Then parallel reasoning produces a formula for
the much more common situation where σ is not known. The section closes with
discussions of three practical issues in the application of confidence intervals.

6.1.1 A Large-n Confidence Interval for µ Involving σ

The final example in Section 5.5 involved a physically stable filling process known
to have a net weight standard deviation of σ = 1.6 g. Since, for large n, the sample
mean of iid random variables is approximately normal, Example 26 of Chapter 5
argued that for n = 47 and

x̄ = the sample mean net fill weight of 47 jars filled by the process (g)

there is an approximately 80% chance that x̄ is within .3 gram of µ. This fact is
pictured again in Figure 6.1.

We need to interrupt for a moment to discuss notation. In Chapter 5, capitalNotational
conventions letters were carefully used as symbols for random variables and corresponding

lowercase letters for their possible or observed values. But here a lowercase symbol,
x̄ , has been used for the sample mean random variable. This is fairly standard
statistical usage, and it is in keeping with the kind of convention used in Chapters 3
and 4. We are thus going to now abandon strict adherence to the capitalization
convention introduced in Chapter 5. Random variables will often be symbolized
using lowercase letters and the same symbols used for their observed values. The
Chapter 5 capitalization convention is especially helpful in learning the basics of
probability. But once those basics are mastered, it is common to abuse notation and
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    – .3     + .3

For n = 47, the approximate
distribution of x has standard
deviation         ≈ .23 g1.6

 47

P[    – .3 <  x  <     + .3] ≈ .8µ µ

µµ µ

Figure 6.1 Approximate probability distribution for x̄ based on
n = 47

to determine from context whether a random variable or its observed value is being
discussed.

The most common way of thinking about a graphic like Figure 6.1 is to think
of the possibility that

µ − .3 < x̄ < µ + .3 (6.1)

in terms of whether or not x̄ falls in an interval of length 2(.3) = .6 centered at µ.
But the equivalent is to consider whether or not an interval of length .6 centered at
x̄ falls on top of µ. Algebraically, inequality (6.1) is equivalent to

x̄ − .3 < µ < x̄ + .3 (6.2)

which shifts attention to this second way of thinking. The fact that expression (6.2)
has about an 80% chance of holding true anytime a sample of 47 fill weights is taken
suggests that the random interval

(x̄ − .3, x̄ + .3) (6.3)

might be used as a confidence interval for µ, with 80% associated reliability or
confidence.

Example 1 A Confidence Interval for a Process Mean Fill Weight

Suppose a sample of n = 47 jars produces x̄ = 138.2 g. Then expression (6.3)
suggests that the interval with endpoints

138.2 g ± .3 g

(i.e., the interval from 137.9 g to 138.5 g) be used as an 80% confidence interval
for the process mean fill weight.
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It is not hard to generalize the logic that led to expression (6.3). Anytime an iid
model is appropriate for the elements of a large sample, the central limit theorem
implies that the sample mean x̄ is approximately normal with mean µ and standard
deviation σ/

√
n. Then, if for p > .5, z is the p quantile of the standard normal

distribution, the probability that

µ − z
σ√
n

< x̄ < µ + z
σ√
n

(6.4)

is approximately 1 − 2(1 − p). But inequality (6.4) can be rewritten as

x̄ − z
σ√
n

< µ < x̄ + z
σ√
n

(6.5)

and thought of as the eventuality that the random interval with endpoints

Large-sample
known σ confidence

limits for µ

x̄ ± z
σ√
n

(6.6)

brackets the unknown µ. So an interval with endpoints (6.6) is an approximate
confidence interval for µ (with confidence level 1 − 2(1 − p)).

In an application, z in equation (6.6) is chosen so that the standard normal
probability between −z and z corresponds to a desired confidence level. Table
3.10 (of standard normal quantiles) on page 89 or Table B.3 (of standard normal
cumulative probabilities) can be used to verify the appropriateness of the entries in
Table 6.1. (This table gives values of z for use in expression (6.6) for some common
confidence levels.)

Table 6.1
z’s for Use in Two-sided
Large-n Intervals for µ

Desired
Confidence z

80% 1.28
90% 1.645
95% 1.96
98% 2.33
99% 2.58



338 Chapter 6 Introduction to Formal Statistical Inference

Example 2 Confidence Interval for the Mean Deviation
from Nominal in a Grinding Operation

Dib, Smith, and Thompson studied a grinding process used in the rebuilding
of automobile engines. The natural short-term variability associated with the
diameters of rod journals on engine crankshafts ground using the process was
on the order of σ = .7 × 10−4 in. Suppose that the rod journal grinding process
can be thought of as physically stable over runs of, say, 50 journals or less. Then
if 32 consecutive rod journal diameters have mean deviation from nominal of
x̄ = −.16 × 10−4 in., it is possible to apply expression (6.6) to make a confidence
interval for the current process mean deviation from nominal. Consider a 95%
confidence level. Consulting Table 6.1 (or otherwise, realizing that 1.96 is the
p =.975 quantile of the standard normal distribution), z = 1.96 is called for in
formula (6.6) (since .95 = 1 − 2(1 − .975)). Thus, a 95% confidence interval for
the current process mean deviation from nominal journal diameter has endpoints

−.16 × 10−4 ± (1.96)
.7 × 10−4

√
32

that is, endpoints

−.40 × 10−4 in. and .08 × 10−4 in.I

An interval like this one could be of engineering importance in determining
the advisability of making an adjustment to the process aim. The interval includes
both positive and negative values. So although x̄ < 0, the information in hand
doesn’t provide enough precision to tell with any certainty in which direction the
grinding process should be adjusted. This, coupled with the fact that potential
machine adjustments are probably much coarser than the best-guess misadjust-
ment of x̄ = −.16 × 10−4 in., speaks strongly against making a change in the
process aim based on the current data.

6.1.2 A Generally Applicable Large-n Confidence Interval for µ

Although expression (6.6) provides a mathematically correct confidence interval, the
appearance of σ in the formula severely limits its practical usefulness. It is unusual to
have to estimate a mean µ when the corresponding σ is known (and can therefore be
plugged into a formula). These situations occur primarily in manufacturing situations
like those of Examples 1 and 2. Considerable past experience can sometimes give
a sensible value for σ , while physical process drifts over time can put the current
value of µ in question.

Happily, modification of the line of reasoning that led to expression (6.6) pro-
duces a confidence interval formula for µ that depends only on the characteristics of
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a sample. The argument leading to formula (6.6) depends on the fact that for large
n, x̄ is approximately normal with mean µ and standard deviation σ/

√
n—i.e., that

Z = x̄ − µ

σ√
n

(6.7)

is approximately standard normal. The appearance of σ in expression (6.7) is what
leads to its appearance in the confidence interval formula (6.6). But a slight gener-
alization of the central limit theorem guarantees that for large n,

Z = x̄ − µ

s√
n

(6.8)

is also approximately standard normal. And the variable (6.8) doesn’t involve σ .
Beginning with the fact that (when an iid model for observations is appropriate

and n is large) the variable (6.8) is approximately standard normal, the reasoning is
much as before. For a positive z,

−z <
x̄ − µ

s√
n

< z

is equivalent to

µ − z
s√
n

< x̄ < µ + z
s√
n

which in turn is equivalent to

x̄ − z
s√
n

< µ < x̄ + z
s√
n

Thus, the interval with random center x̄ and random length 2zs/
√

n—i.e., with
random endpoints

Large-sample
confidence limits

for µ

x̄ ± z
s√
n

(6.9)

can be used as an approximate confidence interval for µ. For a desired confidence,
z should be chosen such that the standard normal probability between −z and z
corresponds to that confidence level.
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Example 3 Breakaway Torques and Hard Disk Failures

F. Willett, in the article “The Case of the Derailed Disk Drives” (Mechanical
Engineering, 1988), discusses a study done to isolate the cause of “blink code
A failure” in a model of Winchester hard disk drive. Included in that article are
the data given in Figure 6.2. These are breakaway torques (units are inch ounces)
required to loosen the drive’s interrupter flag on the stepper motor shaft for 26
disk drives returned to the manufacturer for blink code A failure. For these data,
x̄ = 11.5 in. oz and s = 5.1 in. oz.
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Figure 6.2 Torques required to
loosen 26 interrupter flags

If the disk drives that produced the data in Figure 6.2 are thought of as
representing the population of drives subject to blink code A failure, it seems
reasonable to use an iid model and formula (6.9) to estimate the population mean
breakaway torque. Choosing to make a 90% confidence interval for µ, z = 1.645
is indicated in Table 6.1. And using formula (6.9), endpoints

11.5 ± 1.645
5.1√

26

(i.e., endpoints 9.9 in. oz and 13.1 in. oz) are indicated.
The interval shows that the mean breakaway torque for drives with blink

code A failure was substantially below the factory’s 33.5 in. oz target value.
Recognizing this turned out to be key in finding and eliminating a design flaw in
the drives.

6.1.3 Some Additional Comments Concerning
Confidence Intervals

Formulas (6.6) and (6.9) have been used to make confidence statements of the type
“µ is between a and b.” But often a statement like “µ is at least c” or “µ is no more
than d” would be of more practical value. For example, an automotive engineer
might wish to state, “The mean NO emission for this engine is at most 5 ppm.”
Or a civil engineer might want to make a statement like “the mean compressive
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strength for specimens of this type of concrete is at least 4188 psi.” That is, practical
engineering problems are sometimes best addressed using one-sided confidence
intervals.

There is no real problem in coming up with formulas for one-sided confidenceMaking
one-sided

intervals
intervals. If you have a workable two-sided formula, all that must be done is to

1. replace the lower limit with −∞ or the upper limit with +∞ and

2. adjust the stated confidence level appropriately upward (this usually means
dividing the “unconfidence level” by 2).

This prescription works not only with formulas (6.6) and (6.9) but also with the rest
of the two-sided confidence intervals introduced in this chapter.

Example 3
(continued )

For the mean breakaway torque for defective disk drives, consider making a one-
sided 90% confidence interval for µ of the form (−∞, #), for # an appropriate
number. Put slightly differently, consider finding a 90% upper confidence bound
for µ, (say, #).

Beginning with a two-sided 80% confidence interval for µ, the lower limit can
be replaced with −∞ and a one-sided 90% confidence interval determined. That
is, using formula (6.9), a 90% upper confidence bound for the mean breakaway
torque is

x̄ + 1.28
s√
n

= 11.5 + 1.28
5.1√

26
= 12.8 in. ozI

Equivalently, a 90% one-sided confidence interval for µ is (−∞, 12.8).
The 12.8 in. oz figure here is less than (and closer to the sample mean than)

the 13.1 in. oz upper limit from the 90% two-sided interval found earlier. In the
one-sided case, −∞ is declared as a lower limit so there is no risk of producing
an interval containing only numbers larger than the unknown µ. Thus an upper
limit smaller than that for a corresponding two-sided interval can be used.

A second issue in the application of confidence intervals is a correct understand-
ing of the technical meaning of the term confidence. Unfortunately, there are manyInterpreting a

confidence level possible misunderstandings. So it is important to carefully lay out what confidence
does and doesn’t mean.

Prior to selecting a sample and plugging into a formula like (6.6) or (6.9), the
meaning of a confidence level is obvious. Choosing a (two-sided) 90% confidence
level and thus z = 1.645 for use in formula (6.9), before the fact of sample selection
and calculation, “there is about a 90% chance of winding up with an interval that
brackets µ.” In symbols, this might be expressed as

P

[
x̄ − 1.645

s√
n

< µ < x̄ + 1.645
s√
n

]
≈ .90
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But how to think about a confidence level after sample selection? This is an entirely
different matter. Once numbers have been plugged into a formula like (6.6) or (6.9),
the die has already been cast, and the numerical interval is either right or wrong.
The practical difficulty is that while which is the case can’t be determined, it no
longer makes logical sense to attach a probability to the correctness of the interval.
For example, it would make no sense to look again at the two-sided interval found
in Example 3 and try to say something like “there is a 90% probability that µ

is between 9.9 in. oz and 13.1 in. oz.” µ is not a random variable. It is a fixed
(although unknown) quantity that either is or is not between 9.9 and 13.1. There is
no probability left in the situation to be discussed.

So what does it mean that (9.9, 13.1) is a 90% confidence interval for µ? Like
it or not, the phrase “90% confidence” refers more to the method used to obtain
the interval (9.9, 13.1) than to the interval itself. In coming up with the interval,
methodology has been used that would produce numerical intervals bracketing µ in
about 90% of repeated applications. But the effectiveness of the particular interval
in this application is unknown, and it is not quantifiable in terms of a probability. A
person who (in the course of a lifetime) makes many 90% confidence intervals can
expect to have a “lifetime success rate” of about 90%. But the effectiveness of any
particular application will typically be unknown.

A short statement summarizing this discussion as “the authorized interpretation
of confidence” will be useful.

Definition 2
(Interpretation of a

Confidence Interval )

To say that a numerical interval (a, b) is (for example) a 90% confidence
interval for a parameter is to say that in obtaining it, one has applied methods
of data collection and calculation that would produce intervals bracketing the
parameter in about 90% of repeated applications. Whether or not the particular
interval (a, b) brackets the parameter is unknown and not describable in terms
of a probability.

The reader may feel that the statement in Definition 2 is a rather weak meaning
for the reliability figure associated with a confidence interval. Nevertheless, the
statement in Definition 2 is the correct interpretation and is all that can be rationally
expected. And despite the fact that the correct interpretation may initially seem
somewhat unappealing, confidence interval methods have proved themselves to be
of great practical use.

As a final consideration in this introduction to confidence intervals, note that
formulas like (6.6) and (6.9) can give some crude quantitative answers to the ques-
tion, “How big must n be?” Using formula (6.9), for example, if you have in mindSample sizes

for estimating µ (1) a desired confidence level, (2) a worst-case expectation for the sample standard
deviation, and (3) a desired precision of estimation for µ, it is a simple matter to
solve for a corresponding sample size. That is, suppose that the desired confidence
level dictates the use of the value z in formula (6.9), s is some likely worst-case
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value for the sample standard deviation, and you want to have confidence limits (or
a limit) of the form x̄ ± 1. Setting

1 = z
s√
n

and solving for n produces the requirement

n =
( zs

1

)2

Example 3
(continued )

Suppose that in the disk drive problem, engineers plan to follow up the analysis
of the data in Figure 6.2 with the testing of a number of new drives. This will
be done after subjecting them to accelerated (high) temperature conditions, in an
effort to understand the mechanism behind the creation of low breakaway torques.
Further suppose that the mean breakaway torque for temperature-stressed drives
is to be estimated with a two-sided 95% confidence interval and that the torque
variability expected in the new temperature-stressed drives is no worse than the
s = 5.1 in. oz figure obtained from the returned drives. A ±1 in. oz precision of
estimation is desired. Then using the plus-or-minus part of formula (6.9) and
remembering Table 6.1, the requirement is

1 = 1.96
5.1√

n

which, when solved for n, gives

n =
(

(1.96)(5.1)

1

)2

≈ 100I

A study involving in the neighborhood of n = 100 temperature-stressed
new disk drives is indicated. If this figure is impractical, the calculations at
least indicate that dropping below this sample size will (unless the variability
associated with the stressed new drives is less than that of the returned drives)
force a reduction in either the confidence or the precision associated with the
final interval.

For two reasons, the kind of calculations in the previous example give somewhat
less than an ironclad answer to the question of sample size. The first is that they
are only as good as the prediction of the sample standard deviation, s. If s is
underpredicted, an n that is not really large enough will result. (By the same token,
if one is excessively conservative and overpredicts s, an unnecessarily large sample
size will result.) The second issue is that expression (6.9) remains a large-sample
formula. If calculations like the preceding ones produce n smaller than, say, 25 or 30,
the value should be increased enough to guarantee that formula (6.9) can be applied.
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Section 1 Exercises ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1. Interpret the statement, “The interval from 6.3 to
7.9 is a 95% confidence interval for the mean µ.”

2. In Chapter Exercise 2 of Chapter 3, there is a
data set consisting of the aluminum contents of
26 bihourly samples of recycled PET plastic from
a recycling facility. Those 26 measurements have
ȳ = 142.7 ppm and s ≈ 98.2 ppm. Use these facts
to respond to the following. (Assume that n = 26
is large enough to permit the use of large-sample
formulas in this case.)
(a) Make a 90% two-sided confidence interval for

the mean aluminum content of such specimens
over the 52-hour study period.

(b) Make a 95% two-sided confidence interval for
the mean aluminum content of such specimens
over the 52-hour study period. How does this
compare to your answer to part (a)?

(c) Make a 90% upper confidence bound for the
mean aluminum content of such samples over
the 52-hour study period. (Find # such that
(−∞, #) is a 90% confidence interval.) How
does this value compare to the upper endpoint
of your interval from part (a)?

(d) Make a 95% upper confidence bound for the
mean aluminum content of such samples over
the 52-hour study period. How does this value
compare to your answer to part (c)?

(e) Interpret your interval from (a) for someone
with little statistical background. (Speak in the
context of the recycling study and use Defini-
tion 2 as your guide.)

3. Return to the context of Exercise 2. Suppose that in
order to monitor for possible process changes, fu-
ture samples of PET will be taken. If it is desirable
to estimate the mean aluminum content with ±20
ppm precision and 90% confidence, what future
sample size do you recommend?

4. DuToit, Hansen, and Osborne measured the diam-
eters of some no. 10 machine screws with two dif-
ferent calipers (digital and vernier scale). Part of

their data are recorded here. Given in the small
frequency table are the measurements obtained on
50 screws by one of the students using the digital
calipers.

Diameter (mm) Frequency

4.52 1

4.66 4

4.67 7

4.68 7

4.69 14

4.70 9

4.71 4

4.72 4

(a) Compute the sample mean and standard devi-
ation for these data.

(b) Use your sample values from (a) and make
a 98% two-sided confidence interval for the
mean diameter of such screws as measured by
this student with these calipers.

(c) Repeat part (b) using 99% confidence. How
does this interval compare with the one from
(b)?

(d) Use your values from (a) and find a 98% lower
confidence bound for the mean diameter. (Find
a number # such that (#,∞) is a 98% confi-
dence interval.) How does this value compare
to the lower endpoint of your interval from (b)?

(e) Repeat (d) using 99% confidence. How does
the value computed here compare to your an-
swer to (d)?

(f) Interpret your interval from (b) for someone
with little statistical background. (Speak in the
context of the diameter measurement study and
use Definition 2 as your guide.)
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6.2 Large-Sample Significance Tests for a Mean

The last section illustrated how probability can enable confidence interval estimation.
This section makes a parallel introduction of significance testing.

Significance testing amounts to using data to quantitatively assess the plausi-The goal of
significance

testing
bility of a trial value of a parameter (or function of one or more parameters). This
trial value typically embodies a status quo/“pre-data” view. For example, a process
engineer might employ significance testing to assess the plausibility of an ideal
value of 138 g as the current process mean fill level of baby food jars. Or two dif-
ferent methods of running a pelletizing machine might have unknown propensities
to produce defective pellets, (say, p1 and p2), and significance testing could be used
to assess the plausibility of p1 − p2 = 0—i.e., that the two methods are equally
effective.

This section describes how basic probability facts lead to simple large-sample
significance tests for a mean, µ. It introduces significance testing terminology in
the case where the standard deviation σ is known. Next, a five-step format for
summarizing significance testing is presented. Then the more common situation of
significance testing for µ where σ is not known is considered. The section closes
with two discussions about practical issues in the application of significance-testing
logic.

6.2.1 Large-n Significance Tests for µ Involving σ

Recall once more Example 26 in Chapter 5, where a physically stable filling process
is known to have σ = 1.6 g for net weight. Suppose further that with a declared
(label) weight of 135 g, process engineers have set a target mean net fill weight
at 135 + 3σ = 139.8 g. Finally, suppose that in a routine check of filling-process
performance, intended to detect any change of the process mean from its target
value, a sample of n = 25 jars produces x̄ = 139.0 g. What does this value have to
say about the plausibility of the current process mean actually being at the target of
139.8 g?

The central limit theorem can be called on here. If indeed the current process
mean is at 139.8 g, x̄ has an approximately normal distribution with mean 139.8 g
and standard deviation σ/

√
n = 1.6/

√
25 = .32 g, as pictured in Figure 6.3 along

with the observed value of x̄ = 139.0 g.
Figure 6.4 shows the standard normal picture that corresponds to Figure 6.3. It is

based on the fact that if the current process mean is on target at 139.8 g, then the fact
that x̄ is approximately normal with mean µ and standard deviation σ/

√
n = .32 g

implies that

Z = x̄ − 139.8

σ√
n

= x̄ − 139.8

.32
(6.10)
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139.0 139.8

If     = 139.8, the approximate
distribution of x is normal with
mean 139.8 and standard
deviation .32

*
Observed x

µ

Figure 6.3 Approximate probability distribution for x̄ if
µ = 139.8, and the observed value of x̄ = 139.0

is approximately standard normal. The observed x̄ = 139.0 g in Figure 6.3 has
corresponding observed z = −2.5 in Figure 6.4.

It is obvious from either Figure 6.3 or Figure 6.4 that if the process mean
is on target at 139.8 g (and thus the figures are correct), a fairly extreme/rare x̄ ,
or equivalently z, has been observed. Of course, extreme/rare things occasionally
happen. But the nature of the observed x̄ (or z) might instead be considered as
making the possibility that the process is on target implausible.

The figures even suggest a way of quantifying their own implausibility—through
calculating a probability associated with values of x̄ (or Z ) at least as extreme as
the one actually observed. Now “at least as extreme” must be defined in relation
to the original purpose of data collection—to detect either a decrease of µ below
target or an increase above target. Not only are values x̄ ≤ 139.0 g (z ≤ −2.5) as
extreme as that observed but so also are values x̄ ≥ 140.6 g (z ≥ 2.5). (The first
kind of x̄ suggests a decrease in µ, and the second suggests an increase.) That is,
the implausibility of being on target might be quantified by noting that if this were
so, only a fraction

8(−2.5) + (
1 − 8(2.5)

) = .01

of all samples would produce a value of x̄ (or Z ) as extreme as the one actually
observed. Put in those terms, the data seem to speak rather convincingly against the
process being on target.

0

If     = 139.8, the approximate

distribution of Z = 

is standard normal

*
Observed z

–1–2 1 2

25

x – 139.8
1.6

µ

Figure 6.4 The standard normal picture corresponding to
Figure 6.3
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The argument that has just been made is an application of typical significance-
testing logic. In order to make the pattern of thought obvious, it is useful to isolate
some elements of it in definition form. This is done next, beginning with a formal
restatement of the overall purpose.

Definition 3 Statistical significance testing is the use of data in the quantitative assessment
of the plausibility of some trial value for a parameter (or function of one or
more parameters).

Logically, significance testing begins with the specification of the trial or hy-
pothesized value. Special jargon and notation exist for the statement of this value.

Definition 4 A null hypothesis is a statement of the form

Parameter = #

or

Function of parameters = #

(for some number, #) that forms the basis of investigation in a significance
test. A null hypothesis is usually formed to embody a status quo/“pre-data”
view of the parameter (or function of the parameter(s)). It is typically denoted
as H0.

The notion of a null hypothesis is so central to significance testing that it is
common to use the term hypothesis testing in place of significance testing. The
“null” part of the phrase “null hypothesis” refers to the fact that null hypotheses are
statements of no difference, or equality. For example, in the context of the filling
operation, standard usage would be to write

H0: µ = 139.8 (6.11)

meaning that there is no difference between µ and the target value of 139.8 g.
After formulating a null hypothesis, what kinds of departures from it are of

interest must be specified.

Definition 5 An alternative hypothesis is a statement that stands in opposition to the null
hypothesis. It specifies what forms of departure from the null hypothesis are
of concern. An alternative hypothesis is typically denoted as Ha. It is of the
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same form as the corresponding null hypothesis, except that the equality sign
is replaced by 6=, >, or <.

Often, the alternative hypothesis is based on an investigator’s suspicions and/or
hopes about the true state of affairs, amounting to a kind of research hypothesis
that the investigator hopes to establish. For example, if an engineer tests what is
intended to be a device for improving automotive gas mileage, a null hypothesis
expressing “no mileage change” and an alternative hypothesis expressing “mileage
improvement” would be appropriate.

Definitions 4 and 5 together imply that for the case of testing about a single
mean, the three possible pairs of null and alternative hypotheses are

H0: µ = # H0: µ = # H0: µ = #

Ha: µ > # Ha: µ < # Ha: µ 6= #

In the example of the filling operation, there is a need to detect both the possibility of
consistently underfilled (µ < 139.8 g) and the possibility of consistently overfilled
(µ > 139.8 g) jars. Thus, an appropriate alternative hypothesis is

Ha: µ 6= 139.8 (6.12)

Once null and alternative hypotheses have been established, it is necessary
to lay out carefully how the data will be used to evaluate the plausibility of the
null hypothesis. This involves specifying a statistic to be calculated, a probability
distribution appropriate for it if the null hypothesis is true, and what kinds of observed
values will make the null hypothesis seem implausible.

Definition 6 A test statistic is the particular form of numerical data summarization used
in a significance test. The formula for the test statistic typically involves the
number appearing in the null hypothesis.

Definition 7 A reference (or null) distribution for a test statistic is the probability dis-
tribution describing the test statistic, provided the null hypothesis is in fact
true.

The values of the test statistic considered to cast doubt on the validity of the
null hypothesis are specified after looking at the form of the alternative hypothesis.
Roughly speaking, values are identified that are more likely to occur if the alternative
hypothesis is true than if the null hypothesis holds.
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The discussion of the filling process scenario has vacillated between using x̄
and its standardized version Z given in equation (6.10) for a test statistic. Equation
(6.10) is a specialized form of the general (large-n, known σ ) test statistic for µ,

Large-sample
known σ test
statistic for µ

Z = x̄ − #

σ√
n

(6.13)

for the present scenario, where the hypothesized value of µ is 139.8, n = 25, and
σ = 1.6. It is most convenient to think of the test statistic for this kind of problem
in the standardized form shown in equation (6.13) rather than as x̄ itself. Using
form (6.13), the reference distribution will always be the same—namely, standard
normal.

Continuing with the filling example, note that if instead of the null hypothesis
(6.11), the alternative hypothesis (6.12) is operating, observed x̄’s much larger or
much smaller than 139.8 will tend to result. Such x̄’s will then, via equation (6.13),
translate respectively to large or small (that is, large negative numbers in this case)
observed values of Z—i.e., large values |z|. Such observed values render the null
hypothesis implausible.

Having specified how data will be used to judge the plausibility of the null
hypothesis, it remains to collect them, plug them into the formula for the test
statistic, and (using the calculated value and the reference distribution) arrive at a
quantitative assessment of the plausibility of H0. There is jargon for the form this
will take.

Definition 8 The observed level of significance or p-value in a significance test is the
probability that the reference distribution assigns to the set of possible values
of the test statistic that are at least as extreme as the one actually observed (in
terms of casting doubt on the null hypothesis).

The smaller the observed level of significance, the stronger the evidence againstSmall p-values
are evidence

against H0

the validity of the null hypothesis. In the context of the filling operation, with an
observed value of the test statistic of

z = −2.5

the p-value or observed level of significance is

8(−2.5) + (
1 − 8(2.5)

) = .01

which gives fairly strong evidence against the possibility that the process mean is
on target.
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6.2.2 A Five-Step Format for Summarizing Significance Tests

It is helpful to lay down a step-by-step format for organizing write-ups of significanceFive-step
significance

testing format
tests. The one that will be used in this text includes the following five steps:

Step 1 State the null hypothesis.

Step 2 State the alternative hypothesis.

Step 3 State the test criteria. That is, give the formula for the test statistic
(plugging in only a hypothesized value from the null hypothesis,
but not any sample information) and the reference distribution. Then
state in general terms what observed values of the test statistic will
constitute evidence against the null hypothesis.

Step 4 Show the sample-based calculations.

Step 5 Report an observed level of significance and (to the extent possible)
state its implications in the context of the real engineering problem.

Example 4 A Significance Test Regarding a Process Mean Fill Level

The five-step significance-testing format can be used to write up the preceding
discussion of the filling process.

1. H0: µ = 139.8.

2. Ha: µ 6= 139.8.

3. The test statistic is

Z = x̄ − 139.8

σ√
n

The reference distribution is standard normal, and large observed values
|z| will constitute evidence against H0.

4. The sample gives

z = 139.0 − 139.8

1.6√
100

= −2.5

5. The observed level of significance is

P[a standard normal variable ≤ −2.5]
+P[a standard normal variable ≥ 2.5]

= P [|a standard normal variable| ≥ 2.5]
= .01
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This is reasonably strong evidence that the process mean fill level is not
on target.

6.2.3 Generally Applicable Large-n Significance Tests for µ

The significance-testing method used to carry the discussion thus far is easy to
discuss and understand but of limited practical use. The problem with it is that
statistic (6.13) involves the parameter σ . As remarked in Section 6.1, there are few
engineering contexts where one needs to make inferences regarding µ but knows
the corresponding σ . Happily, because of the same probability fact that made it
possible to produce a large-sample confidence interval formula for µ free of σ , it is
also possible to do large-n significance testing for µ without having to supply σ .

For observations that are describable as essentially equivalent to random selec-
tions with replacement from a single population with mean µ and variance σ 2, if n
is large,

Z = x̄ − µ

s√
n

is approximately standard normal. This means that for large n, to test

H0: µ = #

a widely applicable method will simply be to use the logic already introduced but
with the statistic

Large-sample
test statistic

for µ

Z = x̄ − #

s√
n

(6.14)

in place of statistic (6.13).

Example 5
(Example 3 revisited )

Significance Testing and Hard Disk Failures

Consider again the problem of disk drive blink code A failure. Breakaway torques
set at the factory on the interrupter flag connection to the stepper motor shaft
averaged 33.5 in. oz, and there was suspicion that blink code A failure was
associated with reduced breakaway torque. Recall that a sample of n = 26 failed
drives had breakaway torques (given in Figure 6.2) with x̄ = 11.5 in. oz and
s = 5.1 in. oz.

Consider the situation of an engineer wishing to judge the extent to which the
data in hand debunk the possibility that drives experiencing blink code A failure
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Example 5
(continued )

have mean breakaway torque equal to the factory-set mean value of 33.5 in. oz.
The five-step significance-testing format can be used.

1. H0: µ = 33.5.

2. Ha: µ < 33.5.
(Here the alternative hypothesis is directional, amounting to a research
hypothesis based on the engineer’s suspicions about the relationship be-
tween drive failure and breakaway torque.)

3. The test statistic is

Z = x̄ − 33.5

s√
n

The reference distribution is standard normal, and small observed values
z will constitute evidence against the validity of H0. (Means less than 33.5
will tend to produce x̄’s of the same nature and therefore small—i.e., large
negative—z’s.)

4. The sample gives

z = 11.5 − 33.5

5.1√
26

= −22.0

5. The observed level of significance is

P[a standard normal variable < −22.0] ≈ 0

The sample provides overwhelming evidence that failed drives have a
mean breakaway torque below the factory-set level.

It is important not to make too much of a logical jump here to an incorrect
conclusion that this work constitutes the complete solution to the real engineering
problem. Drives returned for blink code A failure have substandard breakaway
torques. But in the absence of evidence to the contrary, it is possible that they
are no different in that respect from nonfailing drives currently in the field. And
even if reduced breakaway torque is at fault, a real-world fix of the drive failure
problem requires the identification and prevention of the physical mechanism
producing it. This is not to say the significance test lacks importance, but rather
to remind the reader that it is but one of many tools an engineer uses to do a job.
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6.2.4 Significance Testing and Formal Statistical
Decision Making (Optional )

The basic logic introduced in this section is sometimes applied in a decision-making
context, where data are being counted on to provide guidance in choosing between
two rival courses of action. In such cases, a decision-making framework is often
built into the formal statistical analysis in an explicit way, and some additional
terminology and patterns of thought are standard.

In some decision-making contexts, it is possible to conceive of two different
possible decisions or courses of action as being related to a null and an alternative
hypothesis. For example, in the filling-process scenario, H0: µ = 139.8 might cor-
respond to the course of action “leave the process alone,” and Ha: µ 6= 139.8 could
correspond to the course of action “adjust the process.” When such a correspondence
holds, two different errors are possible in the decision-making process.

Definition 9 When significance testing is used in a decision-making context, deciding in
favor of Ha when in fact H0 is true is called a type I error.

Definition 10 When significance testing is used in a decision-making context, deciding in
favor of H0 when in fact Ha is true is called a type II error.

The content of these two definitions is represented in the 2 × 2 table pictured in
Figure 6.5. In the filling-process problem, a type I error would be adjusting an
on-target process. A type II error would be failing to adjust an off-target process.

Significance testing is harnessed and used to come to a decision by choosing
a critical value and, if the observed level of significance is smaller than the critical
value (thus making the null hypothesis correspondingly implausible), deciding in
favor of Ha. Otherwise, the course of action corresponding to H0 is followed. The
critical value for the observed level of significance ends up being the a priori

H0

Ha

H0 Ha

Type I
error

Type II
error

The true state
of affairs is
described by:

The ultimate decision is in favor of:

Figure 6.5 Four potential outcomes in a
decision problem
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probability the decision maker runs of deciding in favor of Ha, calculated supposing
H0 to be true. There is special terminology for this concept.

Definition 11 When significance testing is used in a decision-making context, a critical
value separating those large observed levels of significance for which H0 will
be accepted from those small observed levels of significance for which H0
will be rejected in favor of Ha is called the type I error probability or the
significance level. The symbol α is usually used to stand for the type I error
probability.

It is standard practice to use small numbers, like .1, .05, or even .01, for α. This
puts some inertia in favor of H0 into the decision-making process. (Such a practice
guarantees that type I errors won’t be made very often. But at the same time, it
creates an asymmetry in the treatment of H0 and Ha that is not always justified.)

Definition 10 and Figure 6.5 make it clear that type I errors are not the only
undesirable possibility. The possibility of type II errors must also be considered.

Definition 12 When significance testing is used in a decision-making context, the prob-
ability—calculated supposing a particular parameter value described by Ha
holds—that the observed level of significance is bigger than α (i.e., H0 is not
rejected) is called a type II error probability. The symbol β is usually used
to stand for a type II error probability.

For most of the testing methods studied in this book, calculation of β’s is more
than the limited introduction to probability given in Chapter 5 will support. But the
job can be handled for the simple known-σ situation that was used to introduce the
topic of significance testing. And making a few such calculations will provide some
intuition consistent with what, qualitatively at least, holds in general.

Example 4
(continued )

Again consider the filling process and testing H0: µ = 139.8 vs. Ha: µ 6= 139.8.
This time suppose that significance testing based on n = 25 will be used tomorrow
to decide whether or not to adjust the process. Type II error probabilities, calcu-
lated supposing µ = 139.5 and µ = 139.2 for tests using α = .05 and α = .2,
will be compared.

First consider α = .05. The decision will be made in favor of H0 if the p-
value exceeds .05. That is, the decision will be in favor of the null hypothesis if
the observed value of Z given in equation (6.10) (generalized in formula (6.13))
is such that

|z| < 1.96
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i.e., if

139.8 − 1.96(.32) < x̄ < 139.8 + 1.96(.32)

i.e., if

139.2 < x̄ < 140.4 (6.15)

Now if µ described by Ha given in display (6.12) is the true process mean, x̄ is
not approximately normal with mean 139.8 and standard deviation .32, but rather
approximately normal with mean µ and standard deviation .32. So for such a µ,
expression (6.15) and Definition 12 show that the corresponding β will be the
probability the corresponding normal distribution assigns to the possibility that
139.2 < x̄ < 140.4. This is pictured in Figure 6.6 for the two means µ = 139.5
and µ = 139.2.

It is an easy matter to calculate z-values corresponding to x̄ = 139.2 and
x̄ = 140.4 using means of 139.5 and 139.2 and a standard deviation of .32 and to
consult a standard normal table in order to verify the correctness of the two β’s
marked in Figure 6.6.

Parallel reasoning for the situation with α = .2 is as follows. The decision
will be in favor of H0 if the p-value exceeds .2. That is, the decision will be in
favor of H0 if |z| < 1.28—i.e., if

139.4 < x̄ < 140.2

139.2 139.5 139.8

The approximate distribution
of  x  if     = 139.5 has mean 139.5
and standard deviation .32 

   ≈ .83

140.4

139.2 139.5 139.8 140.4

The approximate distribution
of  x  if     = 139.2 has mean 139.2
and standard deviation .32 

    ≈ .50

µ
β

β

µ

Figure 6.6 Approximate probability distributions for x̄ for two
different values of µ described by Ha and the corresponding β’s,
when α = .05
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Example 4
(continued )

If µ described by Ha is the true process mean, x̄ is approximately normal with
mean µ and standard deviation .32. So the corresponding β will be the probability
this normal distribution assigns to the possibility that 139.4 < x̄ < 140.2. This
is pictured in Figure 6.7 for the two means µ = 139.5 and µ = 139.2, having
corresponding type II error probabilities β = .61 and β = .27.

The calculations represented by the two figures are collected in Table 6.2.
Notice two features of the table. First, the β values for α = .05 are larger than
those for α = .2. If one wants to run only a 5% chance of (incorrectly) deciding
to adjust an on-target process, the price to be paid is a larger probability of failure
to recognize an off-target condition. Secondly, the β values for µ = 139.2 are
smaller than the β values for µ = 139.5. The further the filling process is from
being on target, the less likely it is that the off-target condition will fail to be
detected.

139.5 139.8

The approximate distribution
of  x  if     = 139.5 has mean 139.5
and standard deviation .32

    ≈ .61

140.2

139.2 139.4 139.8 140.2

The approximate distribution
of  x  if     = 139.2 has mean 139.2
and standard deviation .32

139.4

    ≈ .27

µ

β

µ

β

Figure 6.7 Approximate probability distributions for x̄ for two
different values of µ described by Ha and the corresponding β’s,
when α = .2

Table 6.2
n = 25 type II error
probabilities (β)

µ

139.2 139.5

α
.05 .50 .83

.2 .27 .61
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The story told by Table 6.2 applies in qualitative terms to all uses of significance
testing in decision-making contexts. The further H0 is from being true, the smaller
the corresponding β. And small α’s imply large β’s and vice versa.

There is one other element of this general picture that plays an important role in
the determination of error probabilities. That is the matter of sample size. If a sampleThe effect of

sample size
on β’s

size can be increased, for a given α, the corresponding β’s can be reduced. Redo the
calculations of the previous example, this time supposing that n = 100 rather than
25. Table 6.3 shows the type II error probabilities that should result, and comparison
with Table 6.2 serves to indicate the sample-size effect in the filling-process example.

An analogy helpful in understanding the standard logic applied when signifi-Analogy between
testing and a
criminal trial

cance testing is employed in decision-making involves thinking of the process of
coming to a decision as a sort of legal proceeding, like a criminal trial. In a criminal
trial, there are two opposing hypotheses, namely

H0 : The defendant is innocent

Ha : The defendant is guilty

Evidence, playing a role similar to the data used in testing, is gathered and used to
decide between the two hypotheses. Two types of potential error exist in a criminal
trial: the possibility of convicting an innocent person (parallel to the type I error)
and the possibility of acquitting a guilty person (similar to the type II error). A
criminal trial is a situation where the two types of error are definitely thought of as
having differing consequences, and the two hypotheses are treated asymmetrically.
The a priori presumption in a criminal trial is in favor of H0, the defendant’s
innocence. In order to keep the chance of a false conviction small (i.e., keep α

small), overwhelming evidence is required for conviction, in much the same way
that if small α is used in testing, extreme values of the test statistic are needed in
order to indicate rejection of H0. One consequence of this method of operation in
criminal trials is that there is a substantial chance that a guilty individual will be
acquitted, in the same way that small α’s produce big β’s in testing contexts.

This significance testing/criminal trial parallel is useful, but do not make more
of it than is justified. Not all significance-testing applications are properly thought
of in this light. And few engineering scenarios are simple enough to reduce to a
“decide between H0 and Ha” choice. Sensible applications of significance testing are

Table 6.3
n = 100 Type II Error
Probabilities (β)

µ

139.2 139.5

α
.05 .04 .53

.2 .01 .28
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often only steps of “evidence evaluation” in a many-faceted, data-based detective
job necessary to solve an engineering problem. And even when a real problem can
be reduced to a simple “decide between H0 and Ha” framework, it need not be the
case that the “choose a small α” logic is appropriate. In some engineering contexts,
the practical consequences of a type II error are such that rational decision-making
strikes a balance between the opposing goals of small α and small β’s.

6.2.5 Some Comments Concerning Significance
Testing and Estimation

Confidence interval estimation and significance testing are the two most commonly
used forms of formal statistical inference. These having been introduced, it is ap-
propriate to offer some comparative comments about their practical usefulness and,
in the process, admit to an estimation orientation that will be reflected in much of
the rest of this book’s treatment of formal inference.

More often than not, engineers need to know “What is the value of the pa-
rameter?” rather than “Is the parameter equal to some hypothesized value?” And
it is confidence interval estimation, not significance testing, that is designed to an-
swer the first question. A confidence interval for a mean breakaway torque of from
9.9 in. oz to 13.1 in. oz says what values of µ seem plausible. A tiny observed level
of significance in testing H0: µ = 33.5 says only that the data speak clearly against
the possibility that µ = 33.5, but it doesn’t give any clue to the likely value of µ.

The fact that significance testing doesn’t produce any useful indication of what
parameter values are plausible is sometimes obscured by careless interpretation of
semistandard jargon. For example, it is common in some fields to term p-values less
than .05 “statistically significant” and ones less than .01 “highly significant.” The“Statistical

significance”
and practical

importance

danger in this kind of usage is that “significant” can be incorrectly heard to mean “of
great practical consequence” and the p-value incorrectly interpreted as a measure of
how much a parameter differs from a value stated in a null hypothesis. One reason
this interpretation doesn’t follow is that the observed level of significance in a test
depends not only on how far H0 appears to be from being correct but on the sample
size as well. Given a large enough sample size, any departure from H0, whether of
practical importance or not, can be shown to be “highly significant.”

Example 6 Statistical Significance and Practical Importance
in a Regulatory Agency Test

A good example of the previous points involves the newspaper article in Figure
6.8. Apparently the Pass Master manufacturer did enough physical mileage testing
(used a large enough n) to produce a p-value less than .05 for testing a null
hypothesis of no mileage improvement. That is, a “statistically significant” result
was obtained.

But the size of the actual mileage improvement reported is only “small
but real,” amounting to about .8 mpg. Whether or not this improvement is of
practical importance is a matter largely separate from the significance-testing
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WASHINGTON (AP)—A gadget that cuts off a car’s air conditioner when the
vehicle accelerates has become the first product aimed at cutting gasoline
consumption to win government endorsement.

The device, marketed under the name “Pass Master,” can provide a
“small but real fuel economy benefit,” the Environmental Protection Agency
said Wednesday.

Motorists could realize up to 4 percent fuel reduction while using their air
conditioners on cars equipped with the device, the agency said. That would
translate into .8-miles-per-gallon improvement for a car that normally gets 20
miles to the gallon with the air conditioner on.

The agency cautioned that the 4 percent figure was a maximum amount
and could be less depending on a motorist’s driving habits, the type of car and
the type of air conditioner.

But still the Pass Master, which sells for less than $15, is the first of 40
products to pass the EPA’s tests as making any “statistically significant”
improvement in a car’s mileage.

Figure 6.8 Article from The Lafayette Journal and Courier, Page D-3, August 28, 1980.
Reprinted by permission of the Associated Press. c© 1980 the Associated Press.

result. And an engineer equipped with a confidence interval for the mean mileage
improvement is in a better position to judge this than is one who knows only that
the p-value was less than .05.

Example 5
(continued )

To illustrate the effect that sample size has on observed level of significance,
return to the breakaway torque problem and consider two hypothetical samples,
one based on n = 25 and the other on n = 100 but both giving x̄ = 32.5 in. oz
and s = 5.1 in. oz.

For testing H0: µ = 33.5 with Ha: µ < 33.5, the first hypothetical sample
gives

z = 32.5 − 33.5

5.1√
25

= −.98

with associated observed level of significance

8(−.98) = .16

The second hypothetical sample gives

z = 32.5 − 33.5

5.1√
100

= −1.96
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Example 5
(continued )

with corresponding p-value

8(−1.96) = .02

Because the second sample size is larger, the second sample gives stronger
evidence that the mean breakaway torque is below 33.5 in. oz. But the best data-
based guess at the difference between µ and 33.5 is x̄ − 33.5 = −1.0 in. oz in
both cases. And it is the size of the difference between µ and 33.5 that is of
primary engineering importance.

It is further useful to realize that in addition to doing its primary job of providing
an interval of plausible values for a parameter, a confidence interval itself also pro-
vides some significance-testing information. For example, a 95% confidence interval
for a parameter contains all those values of the parameter for which significance
tests using the data in hand would produce p-values bigger than 5%. (Those values
not covered by the interval would have associated p-values smaller than 5%.)

Example 5
(continued )

Recall from Section 6.1 that a 90% one-sided confidence interval for the mean
breakaway torque for failed drives is (−∞, 12.8). This means that for any value,
#, larger than 12.8 in. oz, a significance test of H0: µ = # with Ha: µ < # would
produce a p-value less than .1. So clearly, the observed level of significance
corresponding to the null hypothesis H0: µ = 33.5 is less than .1 . (In fact, as
was seen earlier in this section, the p-value is 0 to two decimal places.) Put more
loosely, the interval (−∞, 12.8) is a long way from containing 33.5 in. oz and
therefore makes such a value of µ quite implausible.

The discussion here could well raise the question “What practical role remains
for significance testing?” Some legitimate answers to this question are

1. In an almost negative way, p-values can help an engineer gauge the extent to
which data in hand are inconclusive. When observed levels of significance
are large, more information is needed in order to arrive at any definitive
judgment.

2. Sometimes legal requirements force the use of significance testing in a
compliance or effectiveness demonstration. (This was the case in Figure 6.8,
where before the Pass Master could be marketed, some mileage improvement
had to be legally demonstrated.)

3. There are cases where the use of significance testing in a decision-making
framework is necessary and appropriate. (An example is acceptance sam-
pling: Based on information from a sample of items from a large lot, one
must determine whether or not to receive shipment of the lot.)
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So, properly understood and handled, significance testing does have its place in
engineering practice. Thus, although the rest of this book features estimation over
significance testing, methods of significance testing will not be completely ignored.

Section 2 Exercises ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1. In the aluminum contamination study discussed in
Exercise 2 of Section 6.1 and in Chapter Exer-
cise 2 of Chapter 3, it was desirable to have mean
aluminum content for samples of recycled plas-
tic below 200 ppm. Use the five-step significance-
testing format and determine the strength of the
evidence in the data that in fact this contamination
goal has been violated. (You will want to begin with
H0: µ = 200 ppm and use Ha: µ > 200 ppm.)

2. Heyde, Kuebrick, and Swanson measured the
heights of 405 steel punches of a particular type.
These were all from a single manufacturer and were
supposed to have heights of .500 in. (The stamping
machine in which these are used is designed to use
.500 in. punches.) The students’ measurements had
x̄ = .5002 in. and s = .0026 in. (The raw data are
given in Chapter Exercise 9 of Chapter 3.)
(a) Use the five-step format and test the hypothesis

that the mean height of such punches is “on
spec” (i.e., is .500 in.).

(b) Make a 98% two-sided confidence interval for
the mean height of such punches produced by
this manufacturer under conditions similar to
those existing when the students’ punches were
manufactured. Is your interval consistent with
the outcome of the test in part (a)? Explain.

(c) In the students’ application, the mean height of
the punches did not tell the whole story about
how they worked in the stamping machine.
Several of these punches had to be placed side
by side and used to stamp the same piece of
material. In this context, what other feature of
the height distribution is almost certainly of
practical importance?

3. Discuss, in the context of Exercise 2, part (a), the
potential difference between statistical significance
and practical importance.

4. In the context of the machine screw diameter study
of Exercise 4 of Section 6.1, suppose that the nom-
inal diameter of such screws is 4.70 mm. Use
the five-step significance-testing format and as-
sess the strength of the evidence provided by the
data that the long-run mean measured diameter dif-
fers from nominal. (You will want to begin with
H0: µ = 4.70 mm and use Ha: µ 6= 4.70 mm.)

5. Discuss, in the context of Exercise 4, the poten-
tial difference between statistical significance and
practical importance.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

6.3 One- and Two-Sample Inference for Means

Sections 6.1 and 6.2 introduced the basic concepts of confidence interval estimation
and significance testing. There are thousands of specific methods of these two types.
This book can only discuss a small fraction that are particularly well known and
useful to engineers. The next three sections consider the most elementary of these—
some of those that are applicable to one- and two-sample studies—beginning in this
section with methods of formal inference for means.

Inferences for a single mean, based not on the large samples of Sections 6.1 and
6.2 but instead on small samples, are considered first. In the process, it is necessary
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to introduce the so-called (Student) t probability distributions. Presented next are
methods of formal inference for paired data. The section concludes with discussions
of both large- and small-n methods for data-based comparison of two means based
on independent samples.

6.3.1 Small-Sample Inference for a Single Mean

The most important practical limitation on the use of the methods of the previous
two sections is the requirement that n must be large. That restriction comes from
the fact that without it, there is no way to conclude that

x̄ − µ

s√
n

(6.16)

is approximately standard normal. So if, for example, one mechanically uses the
large-n confidence interval formula

x̄ ± z
s√
n

(6.17)

with a small sample, there is no way of assessing what actual level of confidence
should be declared. That is, for small n, using z = 1.96 in formula (6.17) generally
doesn’t produce 95% confidence intervals. And without a further condition, there is
neither any way to tell what confidence might be associated with z = 1.96 nor any
way to tell how to choose z in order to produce a 95% confidence level.

There is one important special circumstance in which it is possible to reason in
a way parallel to the work in Sections 6.1 and 6.2 and arrive at inference methods
for means based on small sample sizes. That is the situation where it is sensible to
model the observations as iid normal random variables. The normal observations
case is convenient because although the variable (6.16) is not standard normal, it
does have a recognized, tabled distribution. This is the Student t distribution.

Definition 13 The (Student) t distribution with degrees of freedom parameter ν is a
continuous probability distribution with probability density

f (t) =
0

(
ν + 1

2

)
0

(ν

2

)√
πν

(
1 + t2

ν

)−(ν+1)/2

for all t (6.18)

If a random variable has the probability density given by formula (6.18), it is
said to have a t

ν
distribution.
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Figure 6.9 t Probability densities for ν = 1, 2, 5, and
11 and the standard normal density

The word Student in Definition 13 was the pen name of the statistician who first
came upon formula (6.18). Expression (6.18) is rather formidable looking. No direct
computations with it will actually be required in this book. But, it is useful to have
expression (6.18) available in order to sketch several t probability densities, to get a
feel for their shape. Figure 6.9 pictures the t densities for degrees of freedom ν = 1,
2, 5, and 11, along with the standard normal density.

The message carried by Figure 6.9 is that the t probability densities are bell
shaped and symmetric about 0. They are flatter than the standard normal density but
are increasingly like it as ν gets larger. In fact, for most practical purposes, for ν

larger than about 30, the t distribution with ν degrees of freedom and the standardt distributions
and the standard

normal distribution
normal distribution are indistinguishable.

Probabilities for the t distributions are not typically found using the density in
expression (6.18), as no simple antiderivative for f (t) exists. Instead, it is common
to use tables (or statistical software) to evaluate common t distribution quantiles
and to get at least crude bounds on the types of probabilities needed in significance
testing. Table B.4 is a typical table of t quantiles. Across the top of the table
are several cumulative probabilities. Down the left side are values of the degrees
of freedom parameter, ν. In the body of the table are corresponding quantiles.
Notice also that the last line of the table is a “ν = ∞” (i.e., standard normal)
line.

Example 7 Use of a Table of t Distribution Quantiles

Suppose that T is a random variable having a t distribution with ν = 5 degrees
of freedom. Consider first finding the .95 quantile of T ’s distribution, then seeing
what Table B.4 reveals about P[T < −1.9] and then about P[|T | > 2.3].
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Example 7
(continued )

First, looking at the ν = 5 row of Table B.4 under the cumulative proba-
bility .95, 2.015 is found in the body of the table. That is, Q(.95) = 2.015 or
(equivalently) P[T ≤ 2.015] = .95.

Then note that by symmetry,

P[T < −1.9] = P[T > 1.9] = 1 − P[T ≤ 1.9]

Looking at the ν = 5 row of Table B.4, 1.9 is between the .90 and .95 quantiles
of the t5 distribution. That is,

.90 < P[T ≤ 1.9] ≤ .95

so finally

.05 < P[T < −1.9] < .10

Lastly, again by symmetry,

P[|T | > 2.3] = P[T < −2.3] + P[T > 2.3] = 2P[T > 2.3]

= 2(1 − P[T ≤ 2.3])

Then, from the ν = 5 row of Table B.4, 2.3 is seen to be between the .95 and
.975 quantiles of the t5 distribution. That is,

.95 < P[T ≤ 2.3] < .975

so

.05 < P[|T | > 2.3] < .10

The three calculations of this example are pictured in Figure 6.10.
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2.015 = Q(.95)
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t5 Distribution

t5 Distribution

t5 Distribution

.05 < P[T < –1.9] < .10

1.476 = Q(.9)
1.9

2.015 = Q(.95)
–1.9

.05 < P[|T| > 2.3] < .10

2.015 = Q(.95)
2.3

2.571 = Q(.975)

P[T ≤ 2.015] = .95

Figure 6.10 Three t5 probability calculations for Example 7

The connection between expressions (6.18) and (6.16) that allows the develop-
ment of small-n inference methods for normal observations is that if an iid normal
model is appropriate,

T = x̄ − µ

s√
n

(6.19)

has the t distribution with ν = n − 1 degrees of freedom. (This is consistent with
the basic fact used in the previous two sections. That is, for large n, ν is large, so the
t
ν

distribution is approximately standard normal; and for large n, the variable (6.19)
has already been treated as approximately standard normal.)

Since the variable (6.19) can under appropriate circumstances be treated as a
tn−1 random variable, we are in a position to work in exact analogy to what was
done in Sections 6.1 and 6.2 to find methods for confidence interval estimation and
significance testing. That is, if a data-generating mechanism can be thought of as
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essentially equivalent to drawing independent observations from a single normal
distribution, a two-sided confidence interval for µ has endpoints

Normal distribution
confidence limits

for µ

x̄ ± t
s√
n

(6.20)

where t is chosen such that the tn−1 distribution assigns probability corresponding
to the desired confidence level to the interval between −t and t . Further, the null
hypothesis

H0: µ = #

can be tested using the statistic

Normal distribution
test statistic for µ

T = x̄ − #

s√
n

(6.21)

and a tn−1 reference distribution.
Operationally, the only difference between the inference methods indicated

here and the large-sample methods of the previous two sections is the exchange of
standard normal quantiles and probabilities for ones corresponding to the tn−1 distri-
bution. Conceptually, however, the nominal confidence and significance properties
here are practically relevant only under the extra condition of a reasonably normal
underlying distribution. Before applying either expression (6.20) or (6.21) in prac-
tice, it is advisable to investigate the appropriateness of a normal model assumption.

Example 8 Small-Sample Confidence Limits for a Mean Spring Lifetime

Part of a data set of W. Armstrong (appearing in Analysis of Survival Data by
Cox and Oakes) gives numbers of cycles to failure of ten springs of a particular
type under a stress of 950 N/mm2. These spring-life observations are given in
Table 6.4, in units of 1,000 cycles.

Table 6.4
Cycles to Failure of Ten
Springs under 950 N/mm2

Stress (103 cycles)

Spring Lifetimes

225, 171, 198, 189, 189
135, 162, 135, 117, 162
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Figure 6.11 Normal plot of spring lifetimes

An important question here might be “What is the average spring lifetime
under conditions of 950 N/mm2 stress?” Since only n = 10 observations are
available, the large-sample method of Section 6.1 is not applicable. Instead,
only the method indicated by expression (6.20) is a possible option. For it to be
appropriate, lifetimes must be normally distributed.

Without a relevant base of experience in materials, it is difficult to speculate
a priori about the appropriateness of a normal lifetime model in this context. But
at least it is possible to examine the data in Table 6.4 themselves for evidence
of strong departure from normality. Figure 6.11 is a normal plot for the data. It
shows that in fact no such evidence exists.

For the ten lifetimes, x̄ = 168.3 (× 103 cycles) and s = 33.1 (×103 cycles).
So to estimate the mean spring lifetime, these values may be used in expression
(6.20), along with an appropriately chosen value of t . Using, for example, a 90%
confidence level and a two-sided interval, t should be chosen as the .95 quantile
of the t distribution with ν = n − 1 = 9 degrees of freedom. That is, one uses
the t9 distribution and chooses t > 0 such that

P[−t < a t9 random variable < t] = .90

Consulting Table B.4, the choice t = 1.833 is in order. So a two-sided 90%
confidence interval for µ has endpoints

168.3 ± 1.833
33.1√

10

i.e.,

168.3 ± 19.2

i.e.,

149.1 × 103 cycles and 187.5 × 103 cycles
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As illustrated in Example 8, normal-plotting the data as a rough check on the
plausibility of an underlying normal distribution is a sound practice, and one that
is used repeatedly in this text. However, it is important not to expect more than
is justified from the method. It is certainly preferable to use it rather than making
an unexamined leap to a possibly inappropriate normal assumption. But it is also
true that when used with small samples, the method doesn’t often provide definitive
indications as to whether a normal model can be used. Small samples from normalWhat is a

“nonlinear”
normal plot?

distributions will often have only marginally linear-looking normal plots. At the
same time, small samples from even quite nonnormal distributions can often have
reasonably linear normal plots. In short, because of sampling variability, small
samples don’t carry much information about underlying distributional shape. About
all that can be counted on from a small-sample preliminary normal plot, like that in
Example 8, is a warning in case of gross departure from normality associated with
an underlying distributional shape that is much heavier in the tails than a normal
distribution (i.e., producing more extreme values than a normal shape would).

It is a good idea to make the effort to (so to speak) calibrate normal-plot
perceptions if they are going to be used as a tool for checking a model. One way to
do this is to use simulation and generate a number of samples of the size in question
from a standard normal distribution and normal-plot these. Then the shape of the
normal plot of the data in hand can be compared to the simulations to get some
feeling as to whether any nonlinearity it exhibits is really unusual. To illustrate,
Figure 6.12 shows normal plots for several simulated samples of size n = 10 from
the standard normal distribution. Comparing Figures 6.11 and 6.12, it is clear that
indeed the spring-life data carry no strong indication of nonnormality.

Example 8 shows the use of the confidence interval formula (6.20) but not
the significance testing method (6.21). Since the small-sample method is exactlySmall sample

tests for µ analogous to the large-sample method of Section 6.2 (except for the substitution of
the t distribution for the standard normal distribution), and the source from which
the data were taken doesn’t indicate any particular value of µ belonging naturally
in a null hypothesis, the use of the method indicated in expression (6.21) by itself
will not be illustrated at this point. (There is, however, an application of the testing
method to paired differences in Example 9.)

6.3.2 Inference for the Mean of Paired Differences

An important type of application of the foregoing methods of confidence interval
estimation and significance testing is to paired data. In many engineering problems,
it is natural to make two measurements of essentially the same kind, but differing
in timing or physical location, on a single sample of physical objects. The goal
in such situations is often to investigate the possibility of consistent differences
between the two measurements. (Review the discussion of paired data terminology
in Section 1.2.)
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Figure 6.12 Normal plots of samples of size n = 10 from a standard normal
distribution (data quantiles on the horizontal axes)
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Example 9 Comparing Leading-Edge and Trailing-Edge Measurements
on a Shaped Wood Product

Drake, Hones, and Mulholland worked with a company on the monitoring of
the operation of an end-cut router in the manufacture of a wood product. They
measured a critical dimension of a number of pieces of a particular type as they
came off the router. Both a leading-edge and a trailing-edge measurement were
made on each piece. The design for the piece in question specified that both
leading-edge and trailing-edge values were to have a target value of .172 in.
Table 6.5 gives leading- and trailing-edge measurements taken by the students
on five consecutive pieces.

Table 6.5
Leading-Edge and Trailing-Edge Dimensions for Five
Workpieces

Leading-Edge Trailing-Edge
Piece Measurement (in.) Measurement (in.)

1 .168 .169
2 .170 .168
3 .165 .168
4 .165 .168
5 .170 .169

In this situation, the correspondence between leading- and trailing-edge di-
mensions was at least as critical to proper fit in a later assembly operation as was
the conformance of the individual dimensions to the nominal value of .172 in.
This was thus a paired-data situation, where one issue of concern was the pos-
sibility of a consistent difference between leading- and trailing-edge dimensions
that might be traced to a machine misadjustment or unwise method of router
operation.

In situations like Example 9, one simple method of investigating the possibil-
ity of a consistent difference between paired data is to first reduce the two mea-
surements on each physical object to a single difference between them. Then the
methods of confidence interval estimation and significance testing studied thus far
may be applied to the differences. That is, after reducing paired data to differences
d1, d2, . . . , dn , if n (the number of data pairs) is large, endpoints of a confidence
interval for the underlying mean difference, µd , are

Large-sample
confidence

limits for µd

d̄ ± z
sd√

n
(6.22)
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where sd is the sample standard deviation of d1, d2, . . . , dn . Similarly, the null
hypothesis

H0: µd = # (6.23)

can be tested using the test statistic

Large-sample
test statistic

for µd

Z = d̄ − #

sd√
n

(6.24)

and a standard normal reference distribution.
If n is small, in order to come up with methods of formal inference, an underlying

normal distribution of differences must be plausible. If that is the case, a confidence
interval for µd has endpoints

Normal distribution
confidence limits

for µd

d̄ ± t
sd√

n
(6.25)

and the null hypothesis (6.23) can be tested using the test statistic

Normal distribution
test statistic for µd

T = d̄ − #

sd√
n

(6.26)

and a tn−1 reference distribution.

Example 9
(continued )

To illustrate this method of paired differences, consider testing the null hypothesis
H0: µd = 0 and making a 95% confidence interval for any consistent difference
between leading- and trailing-edge dimensions, µd , based on the data in Table
6.5.

Begin by reducing the n = 5 paired observations in Table 6.5 to differences

d = leading-edge dimension − trailing-edge dimension

appearing in Table 6.6. Figure 6.13 is a normal plot of the n = 5 differences
in Table 6.6. A little experimenting with normal plots of simulated samples of
size n = 5 from a normal distribution will convince you that the lack of linear-
ity in Figure 6.13 would in no way be atypical of normal data. This, together
with the fact that normal distributions are very often appropriate for describ-
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Example 9
(continued )

Table 6.6
Five Differences in Leading- and Trailing-Edge
Measurements

Piece d = Difference in Dimensions (in.)

1 −.001 (= .168 − .169)

2 .002 (= .170 − .168)

3 −.003 (= .165 − .168)

4 −.003 (= .165 − .168)

5 .001 (= .170 − .169)
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Figure 6.13 Normal plot of n = 5
differences

ing machined dimensions of mass-produced parts, suggests the conclusion that
the methods represented by expressions (6.25) and (6.26) are in order in this
example.

The differences in Table 6.6 have d̄ = −.0008 in. and sd = .0023 in. So,
first investigating the plausibility of a “no consistent difference” hypothesis in a
five-step significance testing format, gives the following:

1. H0: µd = 0.

2. Ha: µd 6= 0.
(There is a priori no reason to adopt a one-sided alternative hypothesis.)
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3. The test statistic will be

T = d̄ − 0

sd√
n

The reference distribution will be the t distribution with ν = n − 1 = 4
degrees of freedom. Large observed |t | will count as evidence against H0
and in favor of Ha.

4. The sample gives

t = −.0008

.0023√
5

= −.78

5. The observed level of significance is P[|a t4 random variable| ≥ .78],
which can be seen from Table B.4 to be larger than 2(.10) = .2. The data
in hand are not convincing in favor of a systematic difference between
leading- and trailing-edge measurements.

Consulting Table B.4 for the .975 quantile of the t4 distribution, t = 2.776
is the appropriate multiplier for use in expression (6.25) for 95% confidence.
That is, a two-sided 95% confidence interval for the mean difference between the
leading- and trailing-edge dimensions has endpoints

−.0008 ± 2.776
.0023√

5

i.e.,

−.0008 in. ± .0029 in. (6.27)

i.e.,

−.0037 in. and .0021 in.I
This confidence interval for µd implicitly says (since 0 is in the calculated

interval) that the observed level of significance for testing H0: µd = 0 is more
than .05 (= 1 − .95). Put slightly differently, it is clear from display (6.27) that
the imprecision represented by the plus-or-minus part of the expression is large
enough to make it believable that the perceived difference, d̄ = −.0008, is just a
result of sampling variability.
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Example 9 treats a small-sample problem. No example for large n is includedLarge-sample
inference for µd here, because after the taking of differences just illustrated, such an example would

reduce to a rehash of things in Sections 6.1 and 6.2. In fact, since for large n
the t distribution with ν = n − 1 degrees of freedom becomes essentially standard
normal, one could even imitate Example 9 for large n and get into no logical
problems. So at this point, it makes sense to move on from consideration of the
paired-difference method.

6.3.3 Large-Sample Comparisons of Two Means
(Based on Independent Samples)

One of the principles of effective engineering data collection discussed in Section 2.3
was comparative study. The idea of paired differences provides inference methods
of a very special kind for comparison, where one sample of items in some sense
provides its own basis for comparison. Methods that can be used to compare two
means where two different “unrelated” samples form the basis of inference are
studied next, beginning with large-sample methods.

Example 10 Comparing the Packing Properties of Molded
and Crushed Pieces of a Solid

A company research effort involved finding a workable geometry for molded
pieces of a solid. One comparison made was between the weight of molded
pieces of a particular geometry, that could be poured into a standard con-
tainer, and the weight of irregularly shaped pieces (obtained through crush-
ing), that could be poured into the same container. A series of 24 attempts
to pack both molded and crushed pieces of the solid produced the data (in
grams) that are given in Figure 6.14 in the form of back-to-back stem-and-leaf
diagrams.

Notice that although the same number of molded and crushed weights are
represented in the figure, there are two distinctly different samples represented.
This is in no way comparable to the paired-difference situation treated in Exam-
ple 9, and a different method of statistical inference is appropriate.

In situations like Example 10, it is useful to adopt subscript notation for both the
parameters and the statistics—for example, letting µ1 and µ2 stand for underlying
distributional means corresponding to the first and second conditions and x̄1 and x̄2
stand for corresponding sample means. Now if the two data-generating mechanisms
are conceptually essentially equivalent to sampling with replacement from two
distributions, Section 5.5 says that x̄1 has mean µ1 and variance σ 2

1 /n1, and x̄2 has
mean µ2 and variance σ 2

2 /n2.
The difference in sample means x̄1 − x̄2 is a natural statistic to use in comparing

µ1 and µ2. Proposition 1 in Chapter 5 (see page 307) implies that if it is reasonable
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Figure 6.14 Back-to-back stem-and-leaf plots of
packing weights for molded and crushed pieces

to think of the two samples as separately chosen/independent, the random variable
has

E(x̄1 − x̄2) = µ1 − µ2

and

Var(x̄1 − x̄2) = σ 2
1

n1

+ σ 2
2

n2

If, in addition, n1 and n2 are large (so that x̄1 and x̄2 are each approximately normal),
x̄1 − x̄2 is approximately normal—i.e.,

Z = x̄1 − x̄2 − (µ1 − µ2)√
σ 2

1

n1

+ σ 2
2

n2

(6.28)

has an approximately standard normal probability distribution.



376 Chapter 6 Introduction to Formal Statistical Inference

It is possible to begin with the fact that the variable (6.28) is approximately
standard normal and end up with confidence interval and significance-testing meth-
ods for µ1 − µ2 by using logic exactly parallel to that in the “known-σ” parts of
Sections 6.1 and 6.2. But practically, it is far more useful to begin instead with an
expression that is free of the parameters σ1 and σ2. Happily, for large n1 and n2, not
only is the variable (6.28) approximately standard normal but so is

Z = x̄1 − x̄2 − (µ1 − µ2)√
s2

1

n1

+ s2
2

n2

(6.29)

Then the standard logic of Section 6.1 shows that a two-sided large-sample confi-
dence interval for the difference µ1 − µ2 based on two independent samples has
endpoints

Large-sample
confidence limits

for µ1 − µ2
x̄1 − x̄2 ± z

√
s2

1

n1

+ s2
2

n2

(6.30)

where z is chosen such that the probability that the standard normal distribution
assigns to the interval between −z and z corresponds to the desired confidence. And
the logic of Section 6.2 shows that under the same conditions,

H0: µ1 − µ2 = #

can be tested using the statistic

Large-sample
test statistic
for µ1 − µ2

Z = x̄1 − x̄2 − #√
s2

1

n1

+ s2
2

n2

(6.31)

and a standard normal reference distribution.

Example 10
(continued )

In the molding problem, the crushed pieces were a priori expected to pack better
than the molded pieces (that for other purposes are more convenient). Consider
testing the statistical significance of the difference in mean weights and also
making a 95% one-sided confidence interval for the difference (declaring that the
crushed mean weight minus the molded mean weight is at least some number).

The sample sizes here (n1 = n2 = 24) are borderline for being called large.
It would be preferable to have a few more observations of each type. Lacking
them, we will go ahead and use the methods of expressions (6.30) and (6.31) but
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remain properly cautious of the results should they in any way produce a “close
call” in engineering or business terms.

Arbitrarily labeling “crushed” condition 1 and “molded” condition 2 and
calculating from the data in Figure 6.14 that x̄1 = 179.55 g, s1 = 8.34 g, x̄2 =
132.97 g, and s2 = 9.31 g, the five-step testing format produces the following
summary:

1. H0: µ1 − µ2 = 0.

2. Ha: µ1 − µ2 > 0.
(The research hypothesis here is that the crushed mean exceeds the molded
mean so that the difference, taken in this order, is positive.)

3. The test statistic is

Z = x̄1 − x̄2 − 0√
s2

1

n1

+ s2
2

n2

The reference distribution is standard normal, and large observed values
z will constitute evidence against H0 and in favor of Ha.

4. The samples give

z = 179.55 − 132.97 − 0√
(8.34)2

24
+ (9.31)2

24

= 18.3

5. The observed level of significance is P[a standard normal variable ≥
18.3] ≈ 0. The data present overwhelming evidence that µ1 − µ2 > 0—
i.e., that the mean packed weight of crushed pieces exceeds that of the
molded pieces.

Then turning to a one-sided confidence interval for µ1 − µ2, note that only
the lower endpoint given in display (6.30) will be used. So z = 1.645 will be
appropriate. That is, with 95% confidence, we conclude that the difference in
means (crushed minus molded) exceeds

(179.55 − 132.97) − 1.645

√
(8.34)2

24
+ (9.31)2

24

i.e., exceeds

46.58 − 4.20 = 42.38 g
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Example 10
(continued )

Or differently put, a 95% one-sided confidence interval for µ1 − µ2 is

(42.38,∞)I

Students are sometimes uneasy about the arbitrary choice involved in labeling
the two conditions in a two-sample study. The fact is that either one can be used. As
long as a given choice is followed through consistently, the real-world conclusions
reached will be completely unaffected by the choice. In Example 10, if the molded
condition is labeled number 1 and the crushed condition number 2, an appropriate
one-sided confidence for the molded mean minus the crushed mean is

(−∞,−42.38)

This has the same meaning in practical terms as the interval in the example.
The present methods apply where single measurements are made on each ele-

ment of two different samples. This stands in contrast to problems of paired data
(where there are bivariate observations on a single sample). In the woodworking
case of Example 9, the data were paired because both leading-edge and trailing-edge
measurements were made on each piece. If leading-edge measurements were taken
from one group of items and trailing-edge measurements from another, a two-sample
(not a paired difference) analysis would be in order.

6.3.4 Small-Sample Comparisons of Two Means (Based on
Independent Samples from Normal Distributions)

The last inference methods presented in this section are those for the difference in
two means in cases where at least one of n1 and n2 is small. All of the discussion
for this problem is limited to cases where observations are normal. And in fact, the
most straightforward methods are for cases where, in addition, the two underlying
standard deviations are comparable. The discussion begins with these.

A way of making at least a rough check on the plausibility of “normal distribu-Graphical check
on the plausibility

of the model
tions with a common variance” model assumptions in an application is to normal-plot
two samples on the same set of axes, checking not only for approximate linearity
but also for approximate equality of slope.

Example 8
(continued )

The data of W. Armstrong on spring lifetimes (appearing in the book by Cox
and Oakes) not only concern spring longevity at a 950 N/mm2 stress level but
also longevity at a 900 N/mm2 stress level. Table 6.7 repeats the 950 N/mm2 data
from before and gives the lifetimes of ten springs at the 900 N/mm2 stress level
as well.
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Table 6.7
Spring Lifetimes under Two Different Levels of Stress
(103 cycles)

950 N/mm2 Stress 900 N/mm2 Stress

225, 171, 198, 189, 189 216, 162, 153, 216, 225
135, 162, 135, 117, 162 216, 306, 225, 243, 189

St
an

da
rd

 n
or

m
al

 q
ua

nt
ile

1.0

100
Life-length quantile (103 cycles)

0

–1.0

200 300

950 N/mm2 data
900 N/mm2 data

Figure 6.15 Normal plots of spring lifetimes under
two different levels of stress

Figure 6.15 consists of normal plots for the two samples made on a single
set of axes. In light of the kind of variation in linearity and slope exhibited in
Figure 6.12 by the normal plots for samples of this size (n = 10) from a single
normal distribution, there is certainly no strong evidence in Figure 6.15 against
the appropriateness of an “equal variances, normal distributions” model for spring
lifetimes.

If the assumption that σ1 = σ2 is used, then the common value is called σ , and
it makes sense that both s1 and s2 will approximate σ . That suggests that they should
somehow be combined into a single estimate of the basic, baseline variation. As it
turns out, mathematical convenience dictates a particular method of combining or
pooling the individual s’s to arrive at a single estimate of σ .
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Definition 14 If two numerical samples of respective sizes n1 and n2 produce respective
sample variances s2

1 and s2
2 , the pooled sample variance, s2

P, is the weighted
average of s2

1 and s2
2 where the weights are the sample sizes minus 1. That is,

s2
P = (n1 − 1)s2

1 + (n2 − 1)s2
2

(n1 − 1) + (n2 − 1)
= (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
(6.32)

The pooled sample standard deviation, sP, is the square root of s2
P.

sP is a kind of average of s1 and s2 that is guaranteed to fall between the two
values s1 and s2. Its exact form is dictated more by considerations of mathematical
convenience than by obvious intuition.

Example 8
(continued )

In the spring-life case, making the arbitrary choice to call the 900 N/mm2 stress
level condition 1 and the 950 N/mm2 stress level condition 2, s1 = 42.9 (103

cycles) and s2 = 33.1 (103 cycles). So pooling the two sample variances via
formula (6.32) produces

s2
P = (10 − 1)(42.9)2 + (10 − 1)(33.1)2

(10 − 1) + (10 − 1)
= 1,468(103 cycles)2

Then, taking the square root,

sP =
√

1,468 = 38.3(103 cycles)

In the argument leading to large-sample inference methods for µ1 − µ2, the
quantity given in expression (6.28),

Z = x̄1 − x̄2 − (µ1 − µ2)√
σ 2

1

n1

+ σ 2
2

n2

was briefly considered. In the σ1 = σ2 = σ context, this can be rewritten as

Z = x̄1 − x̄2 − (µ1 − µ2)

σ

√
1

n1

+ 1

n2

(6.33)
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One could use the fact that expression (6.33) is standard normal to produce methods
for confidence interval estimation and significance testing. But for use, these would
require the input of the parameter σ . So instead of beginning with expression (6.28)
or (6.33), it is standard to replace σ in expression (6.33) with sP and begin with the
quantity

T = (x̄1 − x̄2) − (µ1 − µ2)

sP

√
1

n1

+ 1

n2

(6.34)

Expression (6.34) is crafted exactly so that under the present model assumptions,
the variable (6.34) has a well-known, tabled probability distribution: the t distribu-
tion with ν = (n1 − 1) + (n2 − 1) = n1 + n2 − 2 degrees of freedom. (Notice that
the n1 − 1 degrees of freedom associated with the first sample add together with
the n2 − 1 degrees of freedom associated with the second to produce n1 + n2 − 2
overall.) This probability fact, again via the kind of reasoning developed in Sec-
tions 6.1 and 6.2, produces inference methods for µ1 − µ2. That is, a two-sided
confidence interval for the difference µ1 − µ2, based on independent samples from
normal distributions with a common variance, has endpoints

Normal distributions
(σ1 = σ2) confidence

limits for µ1 − µ2

x̄1 − x̄2 ± tsP

√
1

n1

+ 1

n2

(6.35)

where t is chosen such that the probability that the tn1+n2−2 distribution assigns to
the interval between −t and t corresponds to the desired confidence. And under the
same conditions,

H0: µ1 − µ2 = #

can be tested using the statistic

Normal distributions
(σ1 = σ2) test

statistic for µ1 − µ2

T = x̄1 − x̄2 − #

sP

√
1

n1

+ 1

n2

(6.36)

and a tn1+n2−2 reference distribution.

Example 8
(continued )

We return to the spring-life case to illustrate small-sample inference for two
means. First consider testing the hypothesis of equal mean lifetimes with an
alternative of increased lifetime accompanying a reduction in stress level. Then
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Example 8
(continued )

consider making a two-sided 95% confidence interval for the difference in mean
lifetimes.

Continuing to call the 900 N/mm2 stress level condition 1 and the 950 N/mm2

stress level condition 2, from Table 6.7 x̄1 = 215.1 and x̄2 = 168.3, while (from
before) sP = 38.3. The five-step significance-testing format then gives the fol-
lowing:

1. H0: µ1 − µ2 = 0.

2. Ha: µ1 − µ2 > 0.
(The engineering expectation is that condition 1 produces the larger life-
times.)

3. The test statistic is T = x̄1 − x̄2 − 0

sP

√
1

n1

+ 1

n2

The reference distribution is t with 10 + 10 − 2 = 18 degrees of freedom,
and large observed t will count as evidence against H0.

4. The samples give

t = 215.1 − 168.3 − 0

38.3

√
1

10
+ 1

10

= 2.7

5. The observed level of significance is P[a t18 random variable ≥ 2.7],
which (according to Table B.4) is between .01 and .005. This is strong
evidence that the lower stress level is associated with larger mean spring
lifetimes.

Then, if the expression (6.35) is used to produce a two-sided 95% confidence
interval, the choice of t as the .975 quantile of the t18 distribution is in order.
Endpoints of the confidence interval for µ1 − µ2 are

(215.1 − 168.3) ± 2.101(38.3)

√
1

10
+ 1

10

i.e.,

46.8 ± 36.0

i.e.,

10.8 × 103 cycles and 82.8 × 103 cyclesI
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The data in Table 6.7 provide enough information to establish convincingly that
increased stress is associated with reduced mean spring life. But although the
apparent size of that reduction when moving from the 900 N/mm2 level (condition
1) to the 950 N/mm2 level (condition 2) is 46.8 × 103 cycles, the variability
present in the data is large enough (and the sample sizes small enough) that only
a precision of ±36.0 × 103 cycles can be attached to the figure 46.8 × 103 cycles.

There is no completely satisfactory answer to the question of how to do inferenceSmall-sample
inference for

µ1 − µ2 without
the σ1 = σ2
assumption

for µ1 − µ2 when it is not sensible to assume that σ1 = σ2. The most widely accepted
(but approximate) method for the problem is one due to Satterthwaite that is related to
the large-sample formula (6.30). That is, while endpoints (6.30) are not appropriate
when n1 or n2 is small (they don’t produce actual confidence levels near the nominal
one), a modification of them is appropriate. Let

Satterthwaite’s
“estimated degrees

of freedom”
ν̂ =

(
s2

1

n1

+ s2
2

n2

)2

s4
1

(n1 − 1)n2
1

+ s4
2

(n2 − 1)n2
2

(6.37)

and for a desired confidence level, suppose that t̂ is such that the t distribution with
ν̂ degrees of freedom assigns that probability to the interval between −t̂ and t̂ . Then
the two endpoints

Satterthwaite
(approximate)

normal distribution
confidence limits

for µ1 − µ2

x̄1 − x̄2 ± t̂

√
s2

1

n1

+ s2
2

n2

(6.38)

can serve as confidence limits for µ1 − µ2 with a confidence level approximating
the desired one. (One of the two limits (6.38) may be used as a single confidence
bound with the two-sided unconfidence level halved.)

Example 8
(continued )

Armstrong collected spring lifetime data at stress levels besides the 900 and 950
N/mm2 levels used thus far in this example. Ten springs tested at 850 N/mm2

had lifetimes with x̄ = 348.1 and s = 57.9 (both in 103 cycles) and a reasonably
linear normal plot. But taking the 850, 900, and 950 N/mm2 data together, there
is a clear trend to smaller and more consistent lifetimes as stress is increased. In
light of this fact, should mean lifetimes at the 850 and 950 N/mm2 stress levels
be compared, use of a constant variance assumption seems questionable.
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Example 8
(continued )

Consider then what the Satterthwaite method (6.38) gives for two-sided
approximate 95% confidence limits for the difference in 850 and 950 N/mm2

mean lifetimes. Equation (6.37) gives

ν̂ =

(
(57.9)2

10
+ (33.1)2

10

)2

(57.9)4

9(100)
+ (33.1)4

9(100)

= 14.3I

and (rounding “degrees of freedom” down) the .975 quantile of the t14 distribution
is 2.145. So the 95% limits (6.38) for the (850 N/mm2 minus 950 N/mm2)
difference in mean lifetimes (µ850 − µ950) are

348.1 − 168.3 ± 2.145

√
(57.9)2

10
+ (33.1)2

10

i.e.,

179.8 ± 45.2

i.e.,

134.6 × 103 cycles and 225.0 × 103 cyclesI

The inference methods represented by displays (6.35), (6.36), and (6.38) are
the last of the standard one- and two-sample methods for means. In the next two
sections, parallel methods for variances and proportions are considered. But before
leaving this section to consider those methods, a final comment is appropriate about
the small-sample methods.

This discussion has emphasized that, strictly speaking, the nominal properties
(in terms of coverage probabilities for confidence intervals and relevant p-value
declarations for significance tests) of the small-sample methods depend on the
appropriateness of exactly normal underlying distributions and (in the cases of the
methods (6.35) and (6.36)) exactly equal variances. On the other hand, when actually
applying the methods, rather crude probability-plotting checks have been used for
verifying (only) that the models are roughly plausible. According to conventional
statistical wisdom, the small-sample methods presented here are remarkably robust
to all but gross departures from the model assumptions. That is, as long as the model
assumptions are at least roughly a description of reality, the nominal confidence
levels and p-values will not be ridiculously incorrect. (For example, a nominally
90% confidence interval method might in reality be only an 80% method, but it will
not be only a 20% confidence interval method.) So the kind of plotting that has been
illustrated here is often taken as adequate precaution against unjustified application
of the small-sample inference methods for means.
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1. What is the practical consequence of using a “nor-
mal distribution” confidence interval formula when
in fact the underlying data-generating mechanism
cannot be adequately described using a normal dis-
tribution? Say something more specific/informa-
tive than “an error might be made,” or “the interval
might not be valid.” (What, for example, can be said
about the real confidence level that ought to be as-
sociated with a nominally 90% confidence interval
in such a situation?)

2. Consider again the situation of Exercise 3 of Sec-
tion 3.1. (It concerns the torques required to loosen
two particular bolts holding an assembly on a piece
of machinery.)
(a) What model assumptions are needed in order

to do inference for the mean top-bolt torque
here? Make a plot to investigate the necessary
distributional assumption.

(b) Assess the strength of the evidence in the data
that the mean top-bolt torque differs from a
target value of 100 ft lb.

(c) Make a two-sided 98% confidence interval for
the mean top-bolt torque.

(d) What model assumptions are needed in order
to compare top-bolt and bottom-bolt torques
here? Make a plot for investigating the neces-
sary distributional assumption.

(e) Assess the strength of the evidence that there
is a mean increase in required torque as one
moves from the top to the bottom bolts.

(f) Give a 98% two-sided confidence interval for
the mean difference in torques between the top
and bottom bolts.

3. The machine screw measurement study of DuToit,
Hansen, and Osborne referred to in Exercise 4 of
Section 6.1 involved measurement of diameters of
each of 50 screws with both digital and vernier-
scale calipers. For the student referred to in that
exercise, the differences in measured diameters
(digital minus vernier, with units of mm) had the
following frequency distribution:

Difference −.03 −.02 −.01 .00 .01 .02

Frequency 1 3 11 19 10 6

(a) Make a 90% two-sided confidence interval for
the mean difference in digital and vernier read-
ings for this student.

(b) Assess the strength of the evidence provided
by these differences to the effect that there is a
systematic difference in the readings produced
by the two calipers (at least when employed by
this student).

(c) Briefly discuss why your answers to parts (a)
and (b) of this exercise are compatible. (Dis-
cuss how the outcome of part (b) could easily
have been anticipated from the outcome of part
(a).)

4. B. Choi tested the stopping properties of various
bike tires on various surfaces. For one thing, he
tested both treaded and smooth tires on dry con-
crete. The lengths of skid marks produced in his
study under these two conditions were as follows
(in cm).

Treaded Smooth

365, 374, 376 341, 348, 349

391, 401, 402 355, 375, 391

(a) In order to make formal inferences about
µTreaded − µSmooth based on these data, what
must you be willing to use for model assump-
tions? Make a plot to investigate the reason-
ableness of those assumptions.

(b) Proceed under the necessary model assump-
tions to assess the strength of Choi’s evidence
of a difference in mean skid lengths.

(c) Make a 95% two-sided confidence interval for
µTreaded − µSmooth assuming that treaded and
smooth skid marks have the same variability.

(d) Use the Satterthwaite method and make an ap-
proximate 95% two-sided confidence interval
for µTreaded − µSmooth assuming only that skid
mark lengths for both types of tires are nor-
mally distributed.
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● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

6.4 One- and Two-Sample Inference for Variances

This text has repeatedly indicated that engineers must often pay close attention to
the measurement, the prediction, and sometimes the physical reduction of variability
associated with a system response. Accordingly, it makes sense to consider inference
for a single variance and inference for comparing two variances. In doing so, two
more standard families of probability distributions—the χ2 distributions and the F
distributions—will be introduced.

6.4.1 Inference for the Variance of a Normal Distribution

The key step in developing most of the formal inference methods discussed in this
chapter has been to find a random quantity involving both the parameter (or func-
tion of parameters) of interest and sample-based quantities that under appropriate
assumptions can be shown to have some well-known distribution. Inference methods
for a single variance rely on a type of continuous probability distribution that has
not yet been discussed in this book: the χ2 distributions.

Definition 15 The χ2 (Chi-squared) distribution with degrees of freedom parameter, ν,
is a continuous probability distribution with probability density

f (x) =


1

2ν/20
(ν

2

) x (ν/2)−1e−x/2 for x > 0

0 otherwise

(6.39)

If a random variable has the probability density given by formula (6.39), it is
said to have the χ2

ν distribution.

Form (6.39) is not terribly inviting, but neither is it unmanageable. For instance,
it is easy enough to use it to make the kind of plots in Figure 6.16 for comparing the
shapes of the χ2

ν distributions for various choices of ν.
The χ2

ν distribution has mean ν and variance 2ν. For ν = 2, it is exactly the
exponential distribution with mean 2. For large ν, the χ2

ν distributions look increas-
ingly bell-shaped (and can in fact be approximated by normal distributions with
matching means and variances). Rather than using form (6.39) to find χ2 probabil-
ities, it is more common to use tables of χ2 quantiles. Table B.5 is one such table.
Across the top of the table are several cumulative probabilities. Down the left side
of the table are values of the degrees of freedom parameter, ν. In the body of the
table are corresponding quantiles.
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Figure 6.16 χ2 probability densities for ν = 1, 2,
3, 5, and 8

Example 11 Use of a Table of χ2 Distribution Quantiles

Suppose that V is a random variable with a χ2
3 distribution. Consider first finding

the .95 quantile of V ’s distribution and then seeing what Table B.5 says about
P[V < .4] and P[V > 10.0].

First, looking at the ν = 3 row of Table B.5 under the cumulative probabilityUsing the χ2 table,
Table B.5 .95, one finds 7.815 in the body of the table. That is, Q(.95) = 7.815, or (equiv-

alently) P[V ≤ 7.815] = .95. Then note that again using the ν = 3 line of Table
B.5, .4 lies between the .05 and .10 quantiles of the χ2

3 distribution. Thus,

.05 < P[V < .4] < .10

Finally, since 10.0 lies between the (ν = 3 line) entries of the table corresponding
to cumulative probabilities .975 and .99 (i.e., the .975 and .99 quantiles of the χ2

3
distribution), one may reason that

.01 < P[V > 10.0] < .025

The χ2 distributions are of interest here because of a probability fact concerning
the behavior of the random variable s2 if the observations from which it is calculated
are iid normal random variables. Under such assumptions,

X2 = (n − 1)s2

σ 2 (6.40)
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has a χ2
n−1 distribution. This fact is what is needed to identify inference methods

for σ .
That is, given a desired confidence level concerning σ , one can choose χ2

quantiles (say, L and U ) such that the probability that a χ2
n−1 random variable will

take a value between L and U corresponds to that confidence level. (Typically, L
and U are chosen to “split the ‘unconfidence’ between the upper and lower χ2

n−1

tails”—for example, using the .05 and .95 χ2
n−1 quantiles for L and U , respectively,

if 90% confidence is of interest.) Then, because the variable (6.40) has a χ2
n−1

distribution, the probability that

L <
(n − 1)s2

σ 2 < U (6.41)

corresponds to the desired confidence level. But expression (6.41) is algebraically
equivalent to the eventuality that

(n − 1)s2

U
< σ 2 <

(n − 1)s2

L

This then means that when an engineering data-generating mechanism can be
thought of as essentially equivalent to random sampling from a normal distribu-
tion, a two-sided confidence interval for σ 2 has endpoints

Normal distribution
confidence limits

for σ 2

(n − 1)s2

U
and

(n − 1)s2

L
(6.42)

where L and U are such that the χ2
n−1 probability assigned to the interval (L , U )

corresponds to the desired confidence.
Further, there is an obvious significance-testing method for σ 2. That is, subject

to the same modeling limitations needed to support the confidence interval method,

H0: σ 2 = #

can be tested using the statistic

Normal distribution
test statistic for σ 2 X2 = (n − 1)s2

#
(6.43)

and a χ2
n−1 reference distribution.

One feature of the testing methodology that needs comment concerns the com-
puting of p-values in the case that the alternative hypothesis is of the form Ha:p-values for

testing
H0: σ 2 = #

σ 2 6= #. (p-values for the one-sided alternative hypotheses Ha: σ 2 < # and Ha:
σ 2 > # are, respectively, the left and right χ2

n−1 tail areas beyond the observed value
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of X2.) The fact that the χ2 distributions have no point of symmetry leaves some
doubt for two-sided significance testing as to how an observed value of X2 should
be translated into a (two-sided) p-value. The convention that will be used here is
as follows. If the observed value is larger than the χ2

n−1 median, the (two-sided)
p-value will be twice the χ2

n−1 probability to the right of the observed value. If the
observed value of X2 is smaller than the χ2

n−1 median, the (two-sided) p-value will
be twice the χ2

n−1 probability to the left of the observed value.
Knowing that display (6.42) gives endpoints for a confidence interval for σ 2Confidence

limits for
functions of σ 2

also leads to confidence intervals for functions of σ 2. The square roots of the values
in display (6.42) give endpoints for a confidence interval for the standard deviation,
σ . And six times the square roots of the values in display (6.42) could be used as
endpoints of a confidence interval for the “6σ” capability of a process.

Example 12 Inference for the Capability of a CNC Lathe

Cowan, Renk, Vander Leest, and Yakes worked with a manufacturer of high-
precision metal parts on a project involving a computer numerically controlled
(CNC) lathe. A critical dimension of one particular part produced on the lathe
had engineering specifications of the form

Nominal dimension ± .0020 in.

An important practical issue in such situations is whether or not the machine is
capable of meeting specifications of this type. One way of addressing this is to
collect data and do inference for the intrinsic machine short-term variability, rep-
resented as a standard deviation. Table 6.8 gives values of the critical dimension
measured on 20 parts machined on the lathe in question over a three-hour period.
The units are .0001 in. over nominal.

Table 6.8
Measurements of a Dimension on 20 Parts
Machined on a CNC Lathe

Measured Dimension
(.0001 in. over nominal) Frequency

8 1
9 1

10 10
11 4
12 3
13 1
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Example 12
(continued )
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Figure 6.17 Normal plot of measurements on 20 parts
machined on a CNC lathe

Suppose one takes the ±.0020 in. engineering specifications as a statement
of worst acceptable “±3σ” machine capability, accordingly uses the data in Table
6.8, and (since .0020

3 ≈ .0007) tests H0: σ = .0007. The relevance of the methods
represented by displays (6.42) and (6.43) depends on the appropriateness of a
normal distribution as a description of the critical dimension (as machined in the
three-hour period in question). In this regard, note that (after allowing for the
fact of the obvious discreteness of measurement introduced by gauging read to
.0001 in.) the normal plot of the data from Table 6.8 shown in Figure 6.17 is
not distressing in its departure from linearity. Further, at least over periods where
manufacturing processes like the one in question are physically stable, normal
distributions often prove to be quite adequate models for measured dimensions
of mass-produced parts. Other evidence available on the machining process in-
dicated that for practical purposes, the machining process was stable over the
three-hour period in question. So one may proceed to use the normal-based
methods, with no strong reason to doubt their relevance.

Direct calculation with the data of Table 6.8 shows that s = 1.1 × 10−4 in.
So, using the five-step significance-testing format produces the following:

1. H0: σ = .0007.

2. Ha: σ > .0007.
(The most practical concern is the possibility that the machine is not
capable of holding to the stated tolerances, and this is described in terms
of σ larger than standard.)

3. The test statistic is

X2 = (n − 1)s2

(.0007)2
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The reference distribution is χ2 with ν = (20 − 1) = 19 degrees of free-
dom, and large observed values x2 (resulting from large values of s2) will
constitute evidence against H0.

4. The sample gives

x2 = (20 − 1)(.00011)2

(.0007)2 = .5

5. The observed level of significance is P[a χ2
19 random variable ≥ .5]. Now

.5 is smaller than the .005 quantile of the χ2
19 distribution, so the p-value

exceeds .995. There is nothing in the data in hand to indicate that the
machine is incapable of holding to the given tolerances.

Consider, too, making a one-sided 99% confidence interval of the form
(0, #) for 3σ . According to Table B.5, the .01 quantile of the χ2

19 distribution is
L = 7.633. So using display (6.42), a 99% upper confidence bound for 3σ is

3

√
(20 − 1)(1.1 × 10−4 in.)2

7.633
= 5.0 × 10−4 in.I

When this is compared to the ±20 × 10−4 in. engineering requirement, it shows
that the lathe in question is clearly capable of producing the kind of precision
specified for the given dimension.

6.4.2 Inference for the Ratio of Two Variances (Based on
Independent Samples from Normal Distributions)

To move from inference for a single variance to inference for comparing two vari-
ances requires the introduction of yet another new family of probability distributions:
(Snedecor’s) F distributions.

Definition 16 The (Snedecor) F distribution with numerator and denominator degrees
of freedom parameters ν1 and ν2 is a continuous probability distribution
with probability density

f (x) =


0

(
ν1 + ν2

2

)(
ν1

ν2

)ν1/2

x (ν1/2)−1

0
(ν1

2

)
0

(ν2

2

)(
1 + ν1x

ν2

)(ν1+ν2)/2 for x > 0

0 otherwise

(6.44)
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If a random variable has the probability density given by formula (6.44), it is
said to have the F

ν1,ν2
distribution.

As Figure 6.18 reveals, the F distributions are strongly right-skewed distribu-
tions, whose densities achieve their maximum values at arguments somewhat less
than 1. Roughly speaking, the smaller the values ν1 and ν2, the more asymmetric
and spread out is the corresponding F distribution.

Direct use of formula (6.44) to find probabilities for the F distributions requires
numerical integration methods. For purposes of applying the F distributions in
statistical inference, the typical path is to instead make use of either statistical
software or some fairly abbreviated tables of F distribution quantiles. Tables B.6
are tables of F quantiles. The body of a particular one of these tables, for a single p,Using the F

distribution tables,
Tables B.6

gives the F distribution p quantiles for various combinations of ν1 (the numerator
degrees of freedom) and ν2 (the denominator degrees of freedom). The values of
ν1 are given across the top margin of the table and the values of ν2 down the left
margin.

Tables B.6 give only p quantiles for p larger than .5. Often F distribution
quantiles for p smaller than .5 are needed as well. Rather than making up tables of
such values, it is standard practice to instead make use of a computational trick. By
using a relationship between F

ν1,ν2
and F

ν2,ν1
quantiles, quantiles for small p can

be determined. If one lets Q
ν1,ν2

stand for the F
ν1,ν2

quantile function and Q
ν2,ν1

stand for the quantile function for the F
ν2,ν1

distribution,

Relationship between
F

ν1,ν2
and F

ν2,ν1
quantiles

Q
ν1,ν2

(p) = 1

Q
ν2,ν1

(1 − p)
(6.45)
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ν ν

ν ν
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Figure 6.18 Four different F probability densities
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Fact (6.45) means that a small lower percentage point of an F distribution may be
obtained by taking the reciprocal of a corresponding small upper percentage point
of the F distribution with degrees of freedom reversed.

Example 13 Use of Tables of F Distribution Quantiles

Suppose that V is an F3,5 random variable. Consider finding the .95 and .01
quantiles of V ’s distribution and then seeing what Tables B.6 reveal about P[V >

4.0] and P[V < .3].
First, a direct look-up in the p = .95 table of quantiles, in the ν1 = 3 column

and ν2 = 5 row, produces the number 5.41. That is, Q(.95) = 5.41, or (equiva-
lently) P[V < 5.41] = .95.

To find the p = .01 quantile of the F3,5 distribution, expression (6.45) must
be used. That is,

Q3,5(.01) = 1

Q5,3(.99)

so that using the ν1 = 5 column and ν2 = 3 row of the table of F .99 quantiles,
one has

Q3,5(.01) = 1

28.24
= .04

Next, considering P[V > 4.0], one finds (using the ν1 = 3 columns and
ν2 = 5 rows of Tables B.6) that 4.0 lies between the .90 and .95 quantiles of the
F3,5 distribution. That is,

.90 < P[V ≤ 4.0] < .95

so that

.05 < P[V > 4.0] < .10

Finally, considering P[V < .3], note that none of the entries in Tables B.6 is
less than 1.00. So to place the value .3 in the F3,5 distribution, one must locate its
reciprocal, 3.33(= 1/.3), in the F5,3 distribution and then make use of expression
(6.45). Using the ν1 = 5 columns and ν2 = 3 rows of Tables B.6, one finds that
3.33 is between the .75 and .90 quantiles of the F5,3 distribution. So by expression
(6.45), .3 is between the .1 and .25 quantiles of the F3,5 distribution, and

.10 < P[V < .3] < .25
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The extra effort required to find small F distribution quantiles is an artifact
of standard table-making practice, rather than being any intrinsic extra difficulty
associated with the F distributions. One way to eliminate the difficulty entirely is
to use standard statistical software or a statistical calculator to find F quantiles.

The F distributions are of use here because a probability fact ties the behavior of
ratios of independent sample variances based on samples from normal distributions
to the variances σ 2

1 and σ 2
2 of those underlying distributions. That is, when s2

1 and
s2

2 come from independent samples from normal distributions, the variable

F = s2
1

σ 2
1

· σ 2
2

s2
2

(6.46)

has an Fn1−1,n2−1 distribution. (s2
1 has n1 − 1 associated degrees of freedom and

is in the numerator of this expression, while s2
2 has n2 − 1 associated degrees of

freedom and is in the denominator, providing motivation for the language introduced
in Definition 16.)

This fact is exactly what is needed to produce formal inference methods for
the ratio σ 2

1 /σ 2
2 . For example, it is possible to pick appropriate F quantiles L

and U such that the probability that the variable (6.46) falls between L and U
corresponds to a desired confidence level. (Typically, L and U are chosen to “split
the ‘unconfidence’ ” between the upper and lower Fn1−1,n2−1 tails.) But

L <
s2

1

σ 2
1

· σ 2
2

s2
2

< U

is algebraically equivalent to

1

U
· s2

1

s2
2

<
σ 2

1

σ 2
2

<
1

L
· s2

1

s2
2

That is, when a data-generating mechanism can be thought of as essentially equiv-
alent to independent random sampling from two normal distributions, a two-sided
confidence interval for σ 2

1 /σ 2
2 has endpoints

Normal distributions
confidence limits

for σ 2
1 /σ 2

2

s2
1

U · s2
2

and
s2

1

L · s2
2

(6.47)

where L and U are (Fn1−1,n2−1 quantiles) such that the Fn1−1,n2−1 probability as-
signed to the interval (L , U ) corresponds to the desired confidence.
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In addition, there is an obvious significance-testing method for σ 2
1 /σ 2

2 . That
is, subject to the same modeling limitations as needed to support the confidence
interval method,

H0:
σ 2

1

σ 2
2

= # (6.48)

can be tested using the statistic

Normal
distributions
test statistic

for σ 2
1 /σ 2

2

F = s2
1/s2

2

#
(6.49)

and an Fn1−1,n2−1 reference distribution. (The choice of # = 1 in displays (6.48)
and (6.49), so that the null hypothesis is one of equality of variances, is the only
one commonly used in practice.) p-values for the one-sided alternative hypothesesp-values for

testing

H0:
σ2

1

σ2
2

= #

Ha: σ 2
1 /σ 2

2 < # and Ha: σ 2
1 /σ 2

2 > # are (respectively) the left and right Fn1−1,n2−1 tail
areas beyond the observed values of the test statistic. For the two-sided alternative
hypothesis Ha: σ 2

1 /σ 2
2 6= #, the standard convention is to report twice the Fn1−1,n2−1

probability to the right of the observed f if f > 1 and to report twice the Fn1−1,n2−1

probability to the left of the observed f if f < 1.

Example 14 Comparing Uniformity of Hardness Test Results for Two Types of Steel

Condon, Smith, and Woodford did some hardness testing on specimens of 4%
carbon steel. Part of their data are given in Table 6.9, where Rockwell hardness
measurements for ten specimens from a lot of heat-treated steel specimens and
five specimens from a lot of cold-rolled steel specimens are represented.

Consider comparing measured hardness uniformity for these two steel types
(rather than mean hardness, as might have been done in Section 6.3). Figure 6.19
shows side-by-side dot diagrams for the two samples and suggests that there
is a larger variability associated with the heat-treated specimens than with the
cold-rolled specimens. The two normal plots in Figure 6.20 indicate no obvious
problems with a model assumption of normal underlying distributions.

Table 6.9
Rockwell Hardness Measurements for Steel Specimens
of Two Types

Heat-Treated Cold-Rolled

32.8, 44.9, 34.4, 37.0, 23.6, 21.0, 24.5, 19.9, 14.8, 18.8
29.1, 39.5, 30.1, 29.2, 19.2
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Example 14
(continued )
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Figure 6.19 Dot diagrams of hardness for heat-treated and cold-rolled
steels
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Figure 6.20 Normal plots of hardness for
heat-treated and cold-rolled steels

Then, arbitrarily choosing to call the heat-treated condition number 1 and
the cold-rolled condition 2, s1 = 7.52 and s2 = 3.52, and a five-step significance
test of equality of variances based on the variable (6.49) proceeds as follows:

1. H0:
σ 2

1

σ 2
2

= 1.
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2. Ha:
σ 2

1

σ 2
2

6= 1.

(If there is any materials-related reason to pick a one-sided alternative
hypothesis here, the authors don’t know it.)

3. The test statistic is

F = s2
1

s2
2

The reference distribution is the F9,4 distribution, and both large observed
f and small observed f will constitute evidence against H0.

4. The samples give

f = (7.52)2

(3.52)2 = 4.6

5. Since the observed f is larger than 1, for the two-sided alternative, the
p-value is

2P[an F9,4 random variable ≥ 4.6]

From Tables B.6, 4.6 is between the F9,4 distribution .9 and .95 quantiles,
so the observed level of significance is between .1 and .2. This makes
it moderately (but not completely) implausible that the heat-treated and
cold-rolled variabilities are the same.

In an effort to pin down the relative sizes of the heat-treated and cold-rolled
hardness variabilities, the square roots of the expressions in display (6.47) may be
used to give a 90% two-sided confidence interval for σ1/σ2. Now the .95 quantile
of the F9,4 distribution is 6.0, while the .95 quantile of the F4,9 distribution is
3.63, implying that the .05 quantile of the F9,4 distribution is 1

3.63 . Thus, a 90%
confidence interval for the ratio of standard deviations σ1/σ2 has endpoints

√
(7.52)2

6.0(3.52)2 and

√
(7.52)2

(1/3.63)(3.52)2

That is,

.87 and 4.07I
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Example 14
(continued )

The fact that the interval (.87, 4.07) covers values both smaller and larger than 1
indicates that the data in hand do not provide definitive evidence even as to which
of the two variabilities in material hardness is larger.

One of the most important engineering applications of the inference methods
represented by displays (6.47) through (6.49) is in the comparison of inherent
precisions for different pieces of equipment and for different methods of operating
a single piece of equipment.

Example 15 Comparing Uniformities of Operation of Two Ream Cutters

Abassi, Afinson, Shezad, and Yeo worked with a company that cuts rolls of paper
into sheets. The uniformity of the sheet lengths is important, because the better
the uniformity, the closer the average sheet length can be set to the nominal value
without producing undersized sheets, thereby reducing the company’s giveaway
costs. The students compared the uniformity of sheets cut on a ream cutter
having a manual brake to the uniformity of sheets cut on a ream cutter that had an
automatic brake. The basis of that comparison was estimated standard deviations
of sheet lengths cut by the two machines—just the kind of information used to
frame formal inferences in this section. The students estimated σmanual/σautomatic
to be on the order of 1.5 and predicted a period of two years or less for the
recovery of the capital improvement cost of equipping all the company’s ream
cutters with automatic brakes.

The methods of this section are, strictly speaking, normal distribution methods.
It is worthwhile to ask, “How essential is this normal distribution restriction to the
predictable behavior of these inference methods for one and two variances?” There
is a remark at the end of Section 6.3 to the effect that the methods presented there for
means are fairly robust to moderate violation of the section’s model assumptions.
Unfortunately, such is not the case for the methods for variances presented here.

These are methods whose nominal confidence levels and p-values can be fairlyCaveats about
inferences for

variances
badly misleading unless the normal models are good ones. This makes the kind of
careful data scrutiny that has been implemented in the examples (in the form of
normal-plotting) essential to the responsible use of the methods of this section. And
it suggests that since normal-plotting itself isn’t typically terribly revealing unless
the sample size involved is moderate to large, formal inferences for variances will
be most safely made on the basis of moderate to large normal-looking samples.

The importance of the “normal distribution(s)” restriction to the predictable
operation of the methods of this section is not the only reason to prefer large sample
sizes for inferences on variances. A little experience with the formulas in this section
will convince the reader that (even granting the appropriateness of normal models)
small samples often do not prove adequate to answer practical questions about
variances. χ2 and F confidence intervals for variances and variance ratios based on
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small samples can be so big as to be of little practical value, and the engineer will
typically be driven to large sample sizes in order to solve variance-related real-world
problems. This is not in any way a failing of the present methods. It is simply a
warning and quantification of the fact that learning about variances requires more
data than (for example) learning about means.

Section 4 Exercises ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1. Return to data on Choi’s bicycle stopping distance
given in Exercise 4 of Section 6.3.
(a) Operating under the assumption that treaded

tires produce normally distributed stopping
distances, give a two-sided 95% confidence
interval for the standard deviation of treaded
tire stopping distances.

(b) Operating under the assumption that smooth
tires produce normally distributed stopping
distances, give a 99% upper confidence bound
for the standard deviation of smooth tire stop-
ping distances.

(c) Operating under the assumption that both
treaded and smooth tires produce normally dis-
tributed stopping distances, assess the strength
of Choi’s evidence that treaded and smooth
stopping distances differ in their variability.
(Use H0: σTreaded = σSmooth and Ha: σTreaded 6=
σSmooth and show the whole five-step format.)

(d) Operating under the assumption that both

treaded and smooth tires produce normally dis-
tributed stopping distances, give a 90% two-
sided confidence interval for the ratio σTreaded/

σSmooth.

2. Consider again the situation of Exercise 3 of Sec-
tion 3.1 and Exercise 2 of Section 6.3. (It concerns
the torques required to loosen two particular bolts
holding an assembly on a piece of machinery.)
(a) Operating under the assumption that top-bolt

torques are normally distributed, give a 95%
lower confidence bound for the standard devi-
ation of the top-bolt torques.

(b) Translate your answer to part (a) into a 95%
lower confidence bound on the “6σ process
capability” of the top-bolt tightening process.

(c) It is not appropriate to use the methods (6.47)
through (6.49) and the data given in Exercise
3 of Section 3.1 to compare the consistency of
top-bolt and bottom-bolt torques. Why?

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

6.5 One- and Two-Sample Inference
for Proportions

The methods of formal statistical inference in the previous four sections are useful in
the analysis of quantitative data. Occasionally, however, engineering studies produce
only qualitative data, and one is faced with the problem of making properly hedged
inferences from such data. This section considers how the sample fraction p̂ (defined
in Section 3.4) can be used as the basis for formal statistical inferences. It begins
with the use of p̂ from a single sample to make formal inferences about a single
system or population. The section then treats the use of sample proportions from
two samples to make inferences comparing two systems or populations.
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6.5.1 Inference for a Single Proportion

Recall from display (3.6) (page 104) that the notation p̂ is used for the fraction
of a sample that possesses a characteristic of engineering interest. A sample of
pellets produced by a pelletizing machine might prove individually conforming or
nonconforming, and p̂ could be the sample fraction conforming. Or in another case,
a sample of turned steel shafts might individually prove acceptable, reworkable, or
scrap; p̂ could be the sample fraction reworkable.

If formal statistical inferences are to be based on p̂, one must think of the
physical situation in such a way that p̂ is related to some parameter characterizing it.
Accordingly, this section considers scenarios where p̂ is derived from an independent
identical success/failure trials data-generating mechanism. (See again Section 5.1.4
to review this terminology.) Applications will include inferences about physically
stable processes, where p is a system’s propensity to produce an item with the
characteristic of interest. And they will include inferences drawn about population
proportions p in enumerative contexts involving large populations. For example,
the methods of this section can be used both to make inferences about the routine
operation of a physically stable pelletizing machine and also to make inferences
about the fraction of nonconforming machine parts contained in a specific lot of
10,000 such parts.

Review of the material on independent success/failure trials (and particularly
the binomial distributions) in Section 5.1.4 should convince the reader that

X = n p̂ = the number of items in the sample with the characteristic of interest

has the binomial (n, p) distribution. The sample fraction p̂ is just a scale change
away from X = n p̂, so facts about the distribution of X have immediate counterparts
regarding the distribution of p̂. For example, Section 5.1.4 stated that the mean and
variance for the binomial (n, p) distribution are (respectively) np and np(1 − p).
This (together with Proposition 1 in Chapter 5) implies that p̂ has

Mean of the
sample proportion

Ep̂ = E

(
X

n

)
= 1

n
EX = 1

n
· np = p (6.50)

and

Variance of the
sample proportion Var p̂ = Var

(
X

n

)
=

(
1

n

)2

Var X = np(1 − p)

n2 = p(1 − p)

n
(6.51)

Equations (6.50) and (6.51) provide a reassuring picture of the behavior of the statis-
tic p̂. They show that the probability distribution of p̂ is centered at the underlying
parameter p, with a variability that decreases as n increases.
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Example 16
(Example 3, Chapter 5,

revisited—page 234 )

Means and Standard Deviations of Sample Fractions
of Reworkable Shafts

Return again to the case of the performance of a process for turning steel shafts.
Assume for the time being that the process is physically stable and that the
likelihood that a given shaft is reworkable is p = .20. Consider p̂, the sample
fraction of reworkable shafts in samples of first n = 4 and then n = 100 shafts.

Expressions (6.50) and (6.51) show that for the n = 4 sample size,

Ep̂ = p = .2√
Var p̂ =

√
p(1 − p)

n
=

√
(.2)(.8)

4
= .2

Similarly, for the n = 100 sample size,

Ep̂ = p = .2√
Var p̂ =

√
(.2)(.8)

100
= .04

Comparing the two standard deviations, it is clear that the effect of a change
in sample size from n = 4 to n = 100 is to produce a factor of 5 (= √

100/4)

decrease in the standard deviation of p̂, while the distribution of p̂ is centered at
p for both sample sizes.

The basic new insight needed to provide large-sample inference methods based
on p̂ is the fact that for large n, the binomial (n, p) distribution (and therefore also
the distribution of p̂) is approximately normal. That is, for large n, approximateApproximate

normality of the
sample proportion

probabilities for X = n p̂ (or p̂) can be found using the normal distribution with
mean µ = np (or µ = p) and variance σ 2 = np(1 − p) (or σ 2 = p(1−p)

n ).

Example 16
(continued )

In the shaft-turning example, consider the probability that for a sample of n = 100
shafts, p̂ ≥ .25. Notice that p̂ ≥ .25 is equivalent here to the eventuality that
n p̂ ≥ 25. So in theory the form of the binomial probability function given in
Definition 9 of Chapter 5 could be used and the desired probability could be
evaluated exactly as

P[ p̂ ≥ .25] = P[X ≥ 25] = f (25) + f (26) + · · · + f (99) + f (100)

But instead of making such laborious calculations, it is common (and typically
adequate for practical purposes) to settle instead for a normal approximation to
probabilities such as this one.
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Example 16
(continued )

.15

Approximate
probability that
p ≥ .25

.2 .25

For n = 100, the approximate
distribution of p is normal with
mean .2 and standard deviation .04

Figure 6.21 Approximate probability distribution
for p̂

Figure 6.21 shows the normal distribution with mean µ = p = .2 and stan-
dard deviation σ = √

p(1 − p)/n = .04 and the corresponding probability as-
signed to the interval [.25,∞). Conversion of .25 to a z-value and then an
approximate probability proceeds as follows:

z = .25 − E p̂√
Var p̂

= .25 − .2

.04
= 1.25

so

P[ p̂ ≥ .25] ≈ 1 − 8(1.25) = .1056 ≈ .11

The exact value of P[ p̂ ≥ .25] (calculated to four decimal places using the
binomial probability function) is .1314. (This can, for example, be obtained
using the MINITAB routine under the “Calc/Probability Distributions/Binomial”
menu.)

The statement that for large n, the random variable p̂ is approximately normal
is actually a version of the central limit theorem. For a given n, the approximation
is best for moderate p (i.e., p near .5), and a common rule of thumb is to require
that both the expected number of successes and the expected number of failures
be at least 5 before making use of a normal approximation to the binomial (n, p)
distribution. This is a requirement that

np ≥ 5 and n(1 − p) ≥ 5

which amounts to a requirement that

Conditions for the
normal approximation

to the binomial
5 ≤ np ≤ n − 5 (6.52)

(Notice that in Example 16, np = 100(.2) = 20 and 5 ≤ 20 ≤ 95.)
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An alternative, and typically somewhat stricter rule of thumb (which comes
from a requirement that the mean of the binomial distribution be at least 3 standard
deviations from both 0 and n) is to require that

Another set of
conditions for the

normal approximation
to the binomial

9 ≤ (n + 9)p ≤ n (6.53)

before using the normal approximation. (Again in Example 16, (n + 9)p = (100 +
9)(.2) = 21.8 and 9≤ 21.8 ≤ 100.)

The approximate normality of p̂ for large n implies that for large n,

Z = p̂ − p√
p(1 − p)

n

(6.54)

is approximately standard normal. This and the reasoning of Section 6.2 then imply
that the null hypothesis

H0: p = #

can be tested using the statistic

Large-sample
test statistic

for p

Z = p̂ − #√
#(1 − #)

n

(6.55)

and a standard normal reference distribution. Further, reasoning parallel to that
in Section 6.1 (beginning with the fact that the variable (6.54) is approximately
standard normal), leads to the conclusion that an interval with endpoints

p̂ ± z

√
p(1 − p)

n
(6.56)

(where z is chosen such that the standard normal probability between −z and z
corresponds to a desired confidence) is a mathematically valid two-sided confidence
interval for p.

However, the endpoints indicated by expression (6.54) are of no practical use
as they stand, since they involve the unknown parameter p. There are two standard
ways of remedying this situation. One draws its motivation from the simple plot
of p(1 − p) shown in Figure 6.22. That is, from Figure 6.22 it is easy to see that
p(1 − p) ≤ (.5)2 = .25, so the plus-or-minus part of formula (6.56) has (for z > 0)

z

√
p(1 − p)

n
≤ z

1

2
√

n
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.10

p

p (1 – p)

.20

.5 1.0

Figure 6.22 Plot of p(1 − p) versus p

Thus, modifying the endpoints in formula (6.56) by replacing the plus-or-minus part
with ±z/2

√
n produces an interval that is guaranteed to be as wide as necessary to

give the desired approximate confidence level. That is, the interval with endpoints

Large-sample
conservative

confidence limits
for p

p̂ ± z
1

2
√

n
(6.57)

where z is chosen such that the standard normal probability between −z and z
corresponds to a desired confidence, is a practically usable large-n, two-sided,
conservative confidence interval for p. (Appropriate use of only one of the endpoints
in display (6.57) gives a one-sided confidence interval.)

The other common method of dealing with the fact that the endpoints in formula
(6.56) are of no practical use is to begin the search for a formula from a point other
than the approximate standard normal distribution of the variable (6.54). For large
n, not only is the variable (6.54) approximately standard normal, but so is

Z = p̂ − p√
p̂(1 − p̂)

n

(6.58)

And the denominator of the quantity (6.58) (which amounts to an estimated standard
deviation for p̂) is free of the parameter p. So when manipulations parallel to those
in Section 6.1 are applied to expression (6.58), the conclusion is that the interval
with endpoints

Large-sample
confidence limits

for p
p̂ ± z

√
p̂(1 − p̂)

n
(6.59)

can be used as a two-sided, large-n confidence interval for p with confidence level
corresponding to the standard normal probability assigned to the interval between
−z and z. (One-sided confidence limits are obtained in the usual way, using only
one of the endpoints in display (6.59) and appropriately adjusting the confidence
level.)
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Example 17 Inference for the Fraction of Dry Cells with Internal Shorts

The article “A Case Study of the Use of an Experimental Design in Preventing
Shorts in Nickel-Cadmium Cells” by Ophir, El-Gad, and Snyder (Journal of
Quality Technology, 1988) describes a series of experiments conducted to find
how to reduce the proportion of cells scrapped by a battery plant because of
internal shorts. At the beginning of the study, about 6% of the cells produced
were being scrapped because of internal shorts.

Among a sample of 235 cells made under a particular trial set of plant
operating conditions, 9 cells had shorts. Consider what formal inferences can be
drawn about the set of operating conditions based on such data. p̂ = 9

235 = .038,
so two-sided 95% confidence limits for p, are by expression (6.59)

.038 ± 1.96

√
(.038)(1 − .038)

235

i.e.,

.038 ± .025

i.e.,

.013 and .063 (6.60)I
Notice that according to display (6.60), although p̂ = .038 < .06 (and thus indi-
cates that the trial conditions were an improvement over the standard ones), the
case for this is not airtight. The data in hand allow some possibility that p for the
trial conditions even exceeds .06. And the ambiguity is further emphasized if the
conservative formula (6.57) is used in place of expression (6.59). Instead of 95%
confidence endpoints of .038 ± .025, formula (6.57) gives endpoints .038 ± .064.

To illustrate the significance-testing method represented by expression (6.55),
consider testing with an alternative hypothesis that the trial plant conditions are
an improvement over the standard ones. One then has the following summary:

1. H0: p = .06.

2. Ha: p < .06.

3. The test statistic is

Z = p̂ − .06√
(.06)(1 − .06)

n

The reference distribution is standard normal, and small observed values
z will count as evidence against H0.
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Example 17
(continued )

4. The sample gives

z = .038 − .06√
(.06)(1 − .06)

235

= −1.42

5. The observed level of significance is then

8(−1.42) = .08

This is strong but not overwhelming evidence that the trial plant conditions
are an improvement on the standard ones.

It needs to be emphasized again that these inferences depend for their practi-
cal relevance on the appropriateness of the “stable process/independent, identical
trials” model for the battery-making process and extend only as far as that de-
scription continues to make sense. It is important that the experience reported in
the article was gained under (presumably physically stable) regular production,
so there is reason to hope that a single “independent, identical trials” model can
describe both experimental and future process behavior.

Section 6.1 illustrated the fact that the form of the large-n confidence interval
for a mean can be used to guide sample-size choices for estimating µ. The same is
true regarding the estimation of p. If one (1) has in mind a desired confidence level,Sample size

determination
for estimating p

(2) plans to use expression (6.57) or has in mind a worst-case (largest) expectation
for p̂(1 − p̂) in expression (6.59), and (3) has a desired precision of estimation of
p, it is a simple matter to solve for a corresponding sample size. That is, suppose
that the desired confidence level dictates the use of the value z in formula (6.57) and
one wants to have confidence limits (or a limit) of the form p̂ ± 1. Setting

1 = z
1

2
√

n

and solving for n produces the requirement

n =
( z

21

)2

Example 17
(continued )

Return to the nicad battery case and suppose that for some reason a better fix on
the implications of the new operating conditions was desired. In fact, suppose
that p is to be estimated with a two-sided conservative 95% confidence interval,
and ±.01 (fraction defective) precision of estimation is desired. Then, using the
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plus-or-minus part of expression (6.57) (or equivalently, the plus-or-minus part
of expression (6.59) under the worst-case scenario that p̂ = .5), one is led to set

.01 = 1.96
1

2
√

n

From this, a sample size of

n ≈ 9,604

is required.
In most engineering contexts this sample size is impractically large. Rethink-

ing the calculation by planning the use of expression (6.59) and adopting the point
of view that, say, 10% is a worst-case expectation for p̂ (and thus .1(1 − .1) = .09
is a worst-case expectation for p̂(1 − p̂)), one might be led instead to set

.01 = 1.96

√
(.1)(1 − .1)

n

However, solving for n, one has

n ≈ 3,458

which is still beyond what is typically practical.
The moral of these calculations is that something has to give. The kind of large

confidence and somewhat precise estimation requirements set at the beginning
here cannot typically be simultaneously satisfied using a realistic sample size.
One or the other of the requirements must be relaxed.

The sample-size conclusions just illustrated are typical, and they justify twoCautions concerning
inference based on
sample proportions

important points about the use of qualitative data. First, qualitative data carry less
information than corresponding numbers of quantitative data (and therefore usually
require very large samples to produce definitive inferences). This makes measure-
ments generally preferable to qualitative observations in engineering applications.
Second, if inferences about p based on even large values of n are often disappoint-
ing in their precision or reliability, there is little practical motivation to consider
small-sample inference for p in a beginning text like this.

6.5.2 Inference for the Difference Between Two Proportions
(Based on Independent Samples)

Two separately derived sample proportions p̂1 and p̂2, representing different pro-
cesses or populations, can enable formal comparison of those processes or pop-
ulations. The logic behind those methods of inference concerns the difference
p̂1 − p̂2. If
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1. the “independent, identical success-failure trials” description applies sepa-
rately to the mechanisms that generate two samples,

2. the two samples are reasonably described as independent, and

3. both n1 and n2 are large,

a very simple approximate description of the distribution of p̂1 − p̂2 results.
Assuming p̂1 and p̂2 are independent, Proposition 1 in Chapter 5 and the

discussion in this section concerning the mean and variance of a single sample
proportion imply that p̂1 − p̂2 has

Mean of a
difference in

sample proportions
E( p̂1 − p̂2) = E p̂1 + (−1)E p̂2 = p1 − p2 (6.61)

and

Variance of a
difference in

sample proportions
Var( p̂1− p̂2) = (1)2 Var p̂1+(−1)2 Var p̂2 = p1(1 − p1)

n1

+ p2(1 − p2)

n2

(6.62)

Then the approximate normality of p̂1 and p̂2 for large sample sizes turns out toApproximate
normality of

p̂1 − p̂2

imply the approximate normality of the difference p̂1 − p̂2.

Example 16
(continued )

Consider again the turning of steel shafts, and imagine that two different, physi-
cally stable lathes produce reworkable shafts at respective rates of 20 and 25%.
Then suppose that samples of (respectively) n1 = 50 and n2 = 50 shafts pro-
duced by the machines are taken, and the reworkable sample fractions p̂1 and
p̂2 are found. Consider approximating the probability that p̂1 ≥ p̂2 (i.e., that
p̂1 − p̂2 ≥ 0).

Using expressions (6.61) and (6.62), the variable p̂1 − p̂2 has

E( p̂1 − p̂2) = .20 − .25 = −.05

and√
Var( p̂1 − p̂2) =

√
(.20)(1 − .20)

50
+ (.25)(1 − .25)

50
=

√
.00695 = .083

Figure 6.23 shows the approximately normal distribution of p̂1 − p̂2 and the area
corresponding to P[ p̂1 − p̂2 ≥ 0]. The z-value corresponding to p̂1 − p̂2 = 0 is

z = 0 − E( p̂1 − p̂2)√
Var( p̂1 − p̂2)

= 0 − (−.05)

.083
= .60

so that

P[ p̂1 − p̂2 ≥ 0] = 1 − 8(.60) = .27
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Approximate
probability that
p1 ≥  p2

The approximate distribution 
of p1 – p2 is normal with
mean –.05 and standard
deviation .083

–.20 –.10 0 .10

Figure 6.23 Approximate probability distribution for
p̂1 − p̂2

The large-sample approximate normality of p̂1 − p̂2 translates to the realization
that

Z = p̂1 − p̂2 − (p1 − p2)√
p1(1 − p1)

n1

+ p2(1 − p2)

n2

(6.63)

is approximately standard normal, and this observation forms the basis for inference
concerning p1 − p2. First consider confidence interval estimation for p1 − p2. The
familiar argument of Section 6.1 (beginning with the quantity (6.63)) shows

p̂1 − p̂2 ± z

√
p1(1 − p1)

n1

+ p2(1 − p2)

n2

(6.64)

to be a mathematically correct but practically unusable formula for endpoints of a
confidence interval for p1 − p2. Conservative modification of expression (6.64), via
replacement of both p1(1 − p1) and p2(1 − p2) with .25, shows that the two-sided
interval with endpoints

Large-sample
conservative

confidence limits
for p1 − p2

p̂1 − p̂2 ± z · 1

2

√
1

n1

+ 1

n2

(6.65)

is a large-sample, two-sided, conservative confidence interval for p1 − p2 with
confidence at least that corresponding to the standard normal probability between
−z and z. (One-sided intervals are obtained from expression (6.65) in the usual
way.)
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In addition, in by now familiar fashion, beginning with the fact that for large
sample sizes, the modification of the variable (6.63),

Z = p̂1 − p̂2 − (p1 − p2)√
p̂1(1 − p̂1)

n1

+ p̂2(1 − p̂2)

n2

(6.66)

is approximately standard normal leads to the conclusion that the interval with
endpoints

Large-sample
confidence limits

for p1 − p2

p̂1 − p̂2 ± z

√
p̂1(1 − p̂1)

n1

+ p̂2(1 − p̂2)

n2

(6.67)

is a large-sample, two-sided confidence interval for p1 − p2 with confidence cor-
responding to the standard normal probability assigned to the interval between −z
and z. (Again, use of only one of the endpoints in display (6.67) gives a one-sided
confidence interval.)

Example 18
(Example 14, Chapter 3,

revisited—page 111 )

Comparing Fractions Conforming for Two Methods
of Operating a Pelletizing Process

Greiner, Grim, Larson, and Lukomski studied a number of different methods of
running a pelletizing process. Two of these involved a mix with 20% reground
powder with respectively small (condition 1) and large (condition 2) shot sizes.
Of n1 = n2 = 100 pellets produced under these two sets of conditions, sam-
ple fractions p̂1 = .38 and p̂2 = .29 of the pellets conformed to specifications.
Consider making a 90% confidence interval for comparing the two methods of
process operation (i.e., an interval for p1 − p2).

Use of expression (6.67) shows that the interval with endpoints

.38 − .29 ± 1.645

√
(.38)(1 − .38)

100
+ (.29)(1 − .29)

100

i.e.,

.09 ± .109

i.e.,

−.019 and .199 (6.68)I
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is a 90% confidence interval for p1 − p2, the difference in long-run fractions
of conforming pellets that would be produced under the two sets of conditions.
Notice that although appearances are that condition 1 has the higher associated
likelihood of producing a conforming pellet, the case for this made by the data in
hand is not airtight. The interval (6.68) allows some possibility that p1 − p2 <

0—i.e., that p2 actually exceeds p1. (The conservative interval indicated by
expression (6.65) has endpoints of the form .09 ± .116 and thus tells a similar
story.)

The usual significance-testing method for p1 − p2 concerns the null hypothesis

H0: p1 − p2 = 0 (6.69)

i.e., the hypothesis that the parameters p1 and p2 are equal. Notice that if p1 = p2
and the common value is denoted as p, expression (6.63) can be rewritten as

Z = p̂1 − p̂2√
p(1 − p)

√
1

n1

+ 1

n2

(6.70)

The variable (6.70) cannot serve as a test statistic for the null hypothesis (6.69),
since it involves the unknown hypothesized common value of p1 and p2. What is
done to modify the variable (6.70) to arrive at a usable test statistic, is to replace p
with a sample-based estimate, obtained by pooling together the two samples. That
is, let

Pooled estimator
of a common p p̂ = n1 p̂1 + n2 p̂2

n1 + n2

(6.71)

( p̂ is the total number of items in the two samples with the characteristic of interest
divided by the total number of items in the two samples). Then a significance test
of hypothesis (6.69) can be carried out using the test statistic

Large-sample
test statistic for
H0: p1 − p2 = 0

Z =
p̂1 − p̂2√

p̂(1 − p̂)

√
1

n1

+ 1

n2

(6.72)

If H0: p1 − p2 = 0 is true, Z in equation (6.72) is approximately standard normal,
so a standard normal reference distribution is in order.
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Example 18
(continued )

As further confirmation of the fact that in the pelletizing problem sample fractions
of p̂1 = .38 and p̂2 = .29 based on samples of size n1 = n2 = 100 are not com-
pletely convincing evidence of a real difference in process performance for small
and large shot sizes, consider testing H0: p1 − p2 = 0 with Ha: p1 − p2 6= 0. As
a preliminary step, from expression (6.71),

p̂ = 100(.38) + 100(.29)

100 + 100
= 67

200
= .335I

Then the five-step summary gives the following:

1. H0: p1 − p2 = 0.

2. Ha: p1 − p2 6= 0.

3. The test statistic is

Z = p̂1 − p̂2√
p̂(1 − p̂)

√
1

n1

+ 1

n2

The reference distribution is standard normal, and large observed values
|z| will constitute evidence against H0.

4. The samples give

z = .38 − .29√
(.335)(1 − .335)

√
1

100
+ 1

100

= 1.35

5. The p-value is P[|a standard normal variable| ≥ 1.35]. That is, the p-
value is

8(−1.35) + (
1 − 8(1.35)

) = .18

The data furnish only fairly weak evidence of a real difference in long-run
fractions of conforming pellets for the two shot sizes.

The kind of results seen in Example 18 may take some getting used to. Even
with sample sizes as large as 100, sample fractions differing by nearly .1 are still
not necessarily conclusive evidence of a difference in p1 and p2. But this is just
another manifestation of the point that individual qualitative observations carry
disappointingly little information.

A final reminder of the large-sample nature of the methods presented here is in
order. The methods here all rely (for the agreement of nominal and actual confidence
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levels or the validity of their p-values) on the adequacy of normal approximations
to binomial distributions. The approximations are workable provided expression
(6.52) or (6.53) holds. When testing H0: p = #, it is easy to plug both n and # into
expression (6.52) or (6.53) before putting great stock in normal-based p-values.
But when estimating p or p1 − p2 or testing H0: p1 − p2 = 0, no parallel check is
obvious. So it is not completely clear how to screen potential applications for ones
where the nominal confidence levels or p-values are possibly misleading. What is
often done is to plug both n and p̂ (or both n1 and p̂1 and n2 and p̂2) into expression
(6.52) or (6.53) and verify that the inequalities hold before trusting nominal (normal-
based) confidence levels and p-values. Since these random quantities are only
approximations to the corresponding nonrandom quantities, one will occasionally
be misled regarding the appropriateness of the normal approximations by such
empirical checks. But they are better than automatic application, protected by no
check at all.

Section 5 Exercises ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1. Consider the situation of Example 14 of Chapter 3,
and in particular the results for the 50% reground
mixture.
(a) Make and interpret 95% one-sided and two-

sided confidence intervals for the fraction of
conforming pellets that would be produced us-
ing the 50% mixture and the small shot size.
(For the one-sided interval, give a lower con-
fidence bound.) Use both methods of dealing
with the fact that σ p̂ is not known and compare
the resulting pairs of intervals.

(b) If records show that past pelletizing perfor-
mance was such that 55% of the pellets pro-
duced were conforming, does the value in Table
3.20 constitute strong evidence that the condi-
tions of 50% reground mixture and small shot-
size provide an improvement in yield? Show
the five-step format.

(c) Compare the small and large shot-size condi-
tions using a 95% two-sided confidence inter-
val for the difference in fractions conforming.
Interpret the interval in the context of the ex-
ample.

(d) Assess the strength of the evidence given in
Table 3.20 that the shot size affects the fraction
of pellets conforming (when the 50% reground
mixture is used).

2. In estimating a proportion p, a two-sided interval
p̂ ± 1 is used. Suppose that 95% confidence and
1 ≤ .01 are desired. About what sample size will
be needed to guarantee this?

3. Specifications on the punch heights referred to in
Chapter Exercise 9 of Chapter 3 were .500 in. to
.505 in. In the sample of 405 punches measured
by Hyde, Kuebrick, and Swanson, there were only
290 punches meeting these specifications. Suppose
that the 405 punches can be thought of as a random
sample of all such punches manufactured by the
supplier under standard manufacturing conditions.
Give an approximate 99% two-sided confidence in-
terval for the standard fraction of nonconforming
punches of this type produced by the punch sup-
plier.

4. Consider two hypothetical machines producing a
particular widget. If samples of n1 = 25 and n2 =
25 widgets produced by the respective machines
have fractions nonconforming p̂1 = .2 and p̂2 =
.32, is this strong evidence of a difference in ma-
chine nonconforming rates? What does this suggest
about the kind of sample sizes typically needed in
order to reach definitive conclusions based on at-
tributes or qualitative data?
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6.6 Prediction and Tolerance Intervals

Methods of confidence interval estimation and significance testing concern the
problem of reasoning from sample information to statements about underlying pa-
rameters of the data generation, such as µ, σ , and p. These are extremely important
engineering tools, but they often fail to directly address the question of real interest.
Sometimes what is really needed as the ultimate product of a statistical analysis is
not a statement about a parameter but rather an indication of reasonable bounds on
other individual values generated by the process under study. For example, suppose
you are about to purchase a new car. For some purposes, knowing that “the mean
EPA mileage for this model is likely in the range 25 mpg ± .5 mpg” is not nearly as
useful as knowing that “the EPA mileage figure for the particular car you are order-
ing is likely in the range 25 mpg ± 3 mpg.” Both of these statements may be quite
accurate, but they serve different purposes. The first statement is one about a mean
mileage and the second is about an individual mileage. And it is only statements of
the first type that have been directly treated thus far.

This section indicates what is possible in the way of formal statistical in-
ferences, not for parameters but rather for individual values generated by a stable
data-generating mechanism. There are two types of formal inference methods aimed
in this general direction—statistical prediction interval methods and statistical tol-
erance interval methods—and both types will be discussed. The section begins with
prediction intervals for a normal distribution. Then tolerance intervals for a normal
distribution are considered. Finally, there is a discussion of how it is possible to use
minimum and/or maximum values in a sample to create prediction and tolerance
intervals for even nonnormal underlying distributions.

6.6.1 Prediction Intervals for a Normal Distribution

One fruitful way to phrase the question of inference for additional individual values
produced by a process is the following: How might data in hand, x1, x2, . . . , xn ,
be used to create a numerical interval likely to bracket one additional (as yet
unobserved) value, xn+1, from the same data-generating mechanism? How, for
example, might mileage tests on ten cars of a particular model be used to predict the
results of the same test applied to an eleventh?

If the underlying distribution is adequately described as normal with mean µ

and variance σ 2, there is a simple line of reasoning based on the random variable

x̄ − xn+1 (6.73)

that leads to an answer to this question. That is, the random variable in expression
(6.73) has, by the methods of Section 5.5 (Proposition 1 in particular),

E(x̄ − xn+1) = Ex̄ + (−1)Exn+1 = µ − µ = 0 (6.74)
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and

Var(x̄ − xn+1) = (1)2 Var x̄ + (−1)2 Var xn+1 = σ 2

n
+ σ 2 =

(
1 + 1

n

)
σ 2 (6.75)

Further, it turns out that the difference (6.73) is normally distributed, so the variable

Z = (x̄ − xn+1) − 0

σ

√
1 + 1

n

(6.76)

is standard normal. And taking one more step, if s2 is the usual sample variance of
x1, x2, . . . , xn , substituting s for σ in expression (6.76) produces a variable

T = (x̄ − xn+1) − 0

s

√
1 + 1

n

(6.77)

which has a t distribution with ν = n − 1 degrees of freedom.
Now (upon identifying xn+1 with µ and

√
1 + (1/n) with

√
1/n), the variable

(6.77) is formally similar to the t-distributed variable used to derive a small-sample
confidence interval for µ. In fact, algebraic steps parallel to those used in the first
part of Section 6.3 show that if t > 0 is such that the tn−1 distribution assigns, say,
.95 probability to the interval between −t and t , there is then .95 probability that

x̄ − ts

√
1 + 1

n
< xn+1 < x̄ + ts

√
1 + 1

n

This reasoning suggests in general that the interval with endpoints

Normal distribution
prediction limits for

a single additional
observation

x̄ ± ts

√
1 + 1

n
(6.78)

can be used as a two-sided interval to predict xn+1 and that the probability-based
reliability figure attached to the interval should be the tn−1 probability assigned to
the interval from −t to t . The interval (6.78) is a called a prediction interval with
associated confidence the tn−1 probability assigned to the interval from −t to t . In
general, the language indicated in Definition 17 will be used.
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Definition 17 A prediction interval for a single additional observation is a data-based
interval of numbers thought likely to contain the observation, possessing a
stated probability-based confidence or reliability.

It is the fact that a finite sample gives only a somewhat clouded picture of a
distribution that prevents the making of a normal distribution prediction interval
from being a trivial matter of probability calculations like those in Section 5.2. That
is, suppose there were enough data to “know” the mean, µ, and variance, σ 2, of
a normal distribution. Then, since 1.96 is the .975 standard normal quantile, the
interval with endpoints

µ − 1.96σ and µ + 1.96σ (6.79)

has a 95% chance of bracketing the next value generated by the distribution. The fact
that (when based only on small samples), the knowledge of µ and σ is noisy forces
expression (6.79) to be abandoned for an interval like (6.78). It is thus comforting that
for large n and 95% confidence, formula (6.78) produces an interval with endpoints
approximating those in display (6.79). That is, for large n and 95% confidence,
t ≈ 1.96,

√
1 + (1/n) ≈ 1, and one expects that typically x̄ ≈ µ and s ≈ σ , so that

expressions (6.78) and (6.79) will essentially agree. The beauty of expression (6.78)
is that it allows in a rational fashion for the uncertainties involved in the µ ≈ x̄ and
σ ≈ s approximations.

Example 19
(Example 8 revisited )

Predicting a Spring Lifetime

Recall from Section 6.3 that n = 10 spring lifetimes under 950 N/mm2 stress
conditions given in Table 6.4 (page 366) produced a fairly linear normal plot,
x̄ = 168.3 (×103 cycles) and s = 33.1 (×103 cycles). Consider now predicting
the lifetime of an additional spring of this type (under the same test conditions)
with 90% confidence.

Using ν = 10 − 1 = 9 degrees of freedom, the .95 quantile of the t distri-
bution is (from Table B.4) 1.833. So, employing expression (6.78), there are
two-sided 90% prediction limits for an additional spring lifetime

168.3 ± 1.833(33.1)

√
1 + 1

10

i.e.,

104.7 × 103 cycles and 231.9 × 103 cycles (6.80)I
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The interval indicated by display (6.80) is not at all the same as the confidence
interval for µ found in Example 8. The limits of

149.1 × 103 cycles and 187.5 × 103 cycles

found on page 367 apply to the mean spring lifetime, µ, not to an additional
observation x11 as the ones in display (6.80) do.

Example 20 Predicting the Weight of a Newly Minted Penny

The delightful book Experimentation and Measurement by W. J. Youden (pub-
lished as NBS Special Publication 672 by the U.S. Department of Commerce)
contains a data set giving the weights of n = 100 newly minted U.S. pennies
measured to 10−4 g but reported only to the nearest .02 g. These data are repro-
duced in Table 6.10. Figure 6.24 is a normal plot of these data and shows that a
normal distribution is a plausible model for weights of newly minted pennies.

Further, calculation with the values in Table 6.10 shows that for the penny
weights, x̄ = 3.108 g and s = .043 g. Then interpolation in Table B.4 shows
the .9 quantile of the t99 distribution to be about 1.290, so that using only the
“plus” part of expression (6.78), a one-sided 90% prediction interval of the form
(−∞, #) for the weight of a single additional penny has upper endpoint

3.108 + 1.290(.043)

√
1 + 1

100

i.e.,

3.164 g (6.81)I

Table 6.10
Weights of 100 Newly Minted U.S. Pennies

Penny Weight (g) Frequency Penny Weight (g) Frequency

2.99 1 3.11 24
3.01 4 3.13 17
3.03 4 3.15 13
3.05 4 3.17 6
3.07 7 3.19 2
3.09 17 3.21 1
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Example 20
(continued ) 3
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Figure 6.24 Normal plot of the penny weights

This example illustrates at least two important points. First, the two-sided
prediction limits in display (6.78) can be modified to get a one-sided limit exactly
as two-sided confidence limits can be modified to get a one-sided limit. Second,
the calculation represented by the result (6.81) is, because n = 100 is a fairly
large sample size, only marginally different from what one would get assuming
µ = 3.108 g exactly and σ = .043 g exactly. That is, since the .9 normal quantile
is 1.282, “knowing” µ and σ leads to an upper prediction limit of

µ + 1.282σ = 3.108 + (1.282)(.043) = 3.163 g (6.82)

The fact that the result (6.81) is slightly larger than the final result in display
(6.82) reflects the small uncertainty involved in the use of x̄ in place of µ and s
in place of σ .

The name “prediction interval” probably has some suggested meanings thatCautions about
“prediction” should be dismissed before going any further. Prediction suggests the future and

thus potentially different conditions. But no such meaning should be associated
with statistical prediction intervals. The assumption behind formula (6.78) is that
x1, x2, . . . , xn and xn+1 are all generated according to the same underlying distribu-
tion. If (for example, because of potential physical changes in a system during a time
lapse between the generation of x1, x2, . . . , xn and the generation of xn+1) no single
stable process model for the generation of all n + 1 observations is appropriate, then
neither is formula (6.78). Statistical inference is not a crystal ball for foretelling an
erratic and patternless future. It is rather a methodology for quantifying the extent
of knowledge about a pattern of variation existing in a consistent present. It has
implications in other times and at other places only if that same pattern of variation
can be expected to repeat itself in those conditions.
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It is also appropriate to comment on the meaning of the confidence or reliability
figure attached to a prediction interval. Since a prediction interval is doing a different
job than the confidence intervals of previous sections, the meaning of confidence
given in Definition 2 doesn’t quite apply here.

Prior to the generation of any of x1, x2, . . . , xn, xn+1, planned use of expression
(6.78) gives a guaranteed probability of success in bracketing xn+1. And after all of
x1, x2, . . . , xn, xn+1 have been generated, one has either been completely successful
or completely unsuccessful in bracketing xn+1. But it is not altogether obvious how
to think about “confidence” of prediction when x1, x2, . . . , xn are in hand, but prior
to the generation of xn+1. For example, in the context of Example 19, having used
sample data to arrive at the prediction limits in display (6.80)—i.e.,

104.7 × 103 cycles to 231.9 × 103 cycles

since x11 is a random variable, it would make sense to contemplate

P[104.7 × 103 ≤ x11 ≤ 231.9 × 103]

However, there is no guarantee on this probability nor any way to determine it. In
particular, it is not necessarily .9 (the confidence level associated with the prediction
interval). That is, there is no practical way to employ probability to describe the
likely effectiveness of a numerical prediction interval. One is thus left with the
interpretation of confidence of prediction given in Definition 18.

Definition 18
(Interpretation of a
Prediction Interval )

To say that a numerical interval (a, b) is (for example) a 90% prediction interval
for an additional observation xn+1 is to say that in obtaining it, methods of
data collection and calculation have been applied that would produce intervals
bracketing an (n + 1)th observation in about 90% of repeated applications of
the entire process of (1) selecting the sample x1, . . . , xn , (2) calculating an
interval, and (3) generating a single additional observation xn+1. Whether or
not xn+1 will fall into the numerical interval (a, b) is not known, and although
there is some probability associated with that eventuality, it is not possible to
evaluate it. And in particular, it need not be 90%.

When using a 90% prediction interval method, although some samples x1, . . . , xn
produce numerical intervals with probability less than .9 of bracketing xn+1 and oth-
ers produce numerical intervals with probability more than .9, the average for all
samples x1, . . . , xn does turn out to be .9. The practical problem is simply that with
data x1, . . . , xn in hand, you don’t know whether you are above, below, or at the .9
figure.
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6.6.2 Tolerance Intervals for a Normal Distribution

The emphasis, when making a prediction interval of the type just discussed, is on a
single additional observation beyond those n already in hand. But in some practical
engineering problems, many additional items are of interest. In such cases, one may
wish to declare a data-based interval likely to encompass most measurements from
the rest of these items.

Prediction intervals are not designed for the purpose of encompassing most of
the measurements from the additional items of interest. The paragraph following
Definition 18 argues that only on average is the fraction of a normal distribution
bracketed by a 90% prediction interval equal to 90%. So a crude analysis (identifying
the mean fraction bracketed with the median fraction bracketed) then suggests that
the probability that the actual fraction bracketed is at least 90% is only about .5.
That is, a 90% prediction interval is not constructed to be big enough for the present
purpose. What is needed instead is a statistical tolerance interval.

Definition 19 A statistical tolerance interval for a fraction p of an underlying distribu-
tion is a data-based interval thought likely to contain at least a fraction p and
possessing a stated (usually large) probability-based confidence or reliability.

The derivation of normal distribution tolerance interval formulas requires prob-
ability background well beyond what has been developed in this text. But results of
that work look about as would be expected. It is possible, for a desired confidence
level and fraction p of an underlying normal distribution, to find a corresponding
constant τ2 such that the two-sided interval with endpoints

Two-sided normal
distribution tolerance

limits
x̄ ± τ2s (6.83)

is a tolerance interval for a fraction p of the underlying distribution. The τ2 appear-
ing in expression (6.83) is, for common (large) confidence levels, larger than the
multiplier t

√
1 + (1/n) appearing in expression (6.78) for two-sided confidence of

prediction p. On the other hand, as n gets large, both τ2 from expression (6.83) and
t
√

1 + (1/n) from expression (6.78) tend to the ( 1+p
2 ) standard normal quantile.

Table B.7A gives some values of τ2 for 95% and 99% confidence and p = .9, .95,
and .99. (The use of this table will be demonstrated shortly.)

The factors τ2 are not used to make one-sided tolerance intervals. Instead,
another set of constants that will here be called τ1 values have been developed.
They are such that for a given confidence and fraction p of an underlying normal
distribution, both of the one-sided intervals

A one-sided
normal tolerance

interval
(−∞, x̄ + τ1s) (6.84)
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and
Another one-sided

normal tolerance
interval

(x̄ − τ1s,∞) (6.85)

are tolerance intervals for a fraction p of the distribution. τ1 appearing in inter-
vals (6.84) and (6.85) is, for common confidence levels, larger than the multiplier
t
√

1 + (1/n) appearing in expression (6.78) for one-sided confidence of prediction
p. And as n gets large, both τ1 from expression (6.84) or (6.85) and t

√
1 + (1/n)

from expression (6.78) tend to the standard normal p quantile. Table B.7B gives
some values of τ1.

Example 19
(continued )

Consider making a two-sided 95% tolerance interval for 90% of additional spring
lifetimes based on the data of Table 6.4. As earlier, for these data, x̄ = 168.3
(×103 cycles) and s = 33.1 (×103 cycles). Then consulting Table B.7A, since
n = 10, τ2 = 2.856 is appropriate for use in expression (6.83). That is, two-sided
95% tolerance limits for 90% of additional spring lifetimes are

168.3 ± 2.856 (33.1)

i.e.,

73.8 × 103 cycles and 262.8 × 103 cycles (6.86)I

It is obvious from comparing displays (6.80) and (6.86) that the effect of moving
from the prediction of a single additional spring lifetime to attempting to bracket
most of a large number of additional lifetimes is to increase the size of the
declared interval.

Example 20
(continued )

Consider again the new penny weights given in Table 6.10 and now the problem of
making a one-sided 95% tolerance interval of the form (−∞, #) for the weights of
90% of additional pennies. Remembering that for the penny weights, x̄ = 3.108 g
and s = .043 g, and using Table B.7B for n = 100, the desired upper tolerance
bound for 90% of the penny weights is

3.108 + 1.527(.043) = 3.174 gI

As expected, this is larger (more conservative) than the value of 3.164 g given in
display (6.81) as a one-sided 90% prediction limit for a single additional penny
weight.
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The correct interpretation of the confidence level for a tolerance interval should
be fairly easy to grasp. Prior to the generation of x1, x2, . . . , xn , planned use of
expression (6.83), (6.84), or (6.85) gives a guaranteed probability of success in
bracketing a fraction of at least p of the underlying distribution. But after observing
x1, . . . , xn and making a numerical interval, it is impossible to know whether the
attempt has or has not been successful. Thus the following interpretation:

Definition 20
(Interpretation of a
Tolerance Interval )

To say that a numerical interval (a, b) is (for example) a 90% tolerance in-
terval for a fraction p of an underlying distribution is to say that in obtaining
it, methods of data collection and calculation have been applied that would
produce intervals bracketing a fraction of at least p of the underlying distri-
bution in about 90% of repeated applications (of generation of x1, . . . , xn and
subsequent calculation). Whether or not the numerical interval (a, b) actually
contains at least a fraction p is unknown and not describable in terms of a
probability.

6.6.3 Prediction and Tolerance Intervals Based on Minimum
and/or Maximum Values in a Sample

Formulas (6.78), (6.83), (6.84), and (6.85) for prediction and tolerance limits are
definitely normal distribution formulas. So what if an engineering data-generation
process is stable but does not produce normally distributed observations? How,
if at all, can prediction or tolerance limits be made? Two kinds of answers to
these questions will be illustrated in this text. The first employs the transformation
idea presented in Section 4.4, and the second involves the use of minimum and/or
maximum sample values to establish prediction and/or tolerance bounds.

First (as observed in Section 4.4) if a response variable y fails to be normally
distributed, it may still be possible to find some transformation g (essentially speci-
fying a revised scale of measurement) such that g(y) is normal. Then normal-based
methods might be applied to g(y) and answers of interest translated back into
statements about y.

Example 21
(Example 11, Chapter 4,

revisited—page 192 )

Prediction and Tolerance Intervals for Discovery Times
Obtained Using a Transformation

Section 5.3 argued that the auto service discovery time data of Elliot, Kibby, and
Meyer given in Figure 4.31 (see page 192) are not themselves normal-looking,
but that their natural logarithms are. This, together with the facts that the n = 30
natural logarithms have x̄ = 2.46 and s = .68, can be used to make prediction or
tolerance intervals for log discovery times.
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For example, using expression (6.78) to make a two-sided 99% prediction
interval for an additional log discovery time produces endpoints

2.46 ± 2.756(.68)

√
1 + 1

30

i.e.,

.55 ln min and 4.37 ln min (6.87)

And using expression (6.83) to make, for example, a 95% tolerance interval for
99% of additional log discovery times produces endpoints

2.46 ± 3.355(.68)

i.e.,

.18 ln min and 4.74 ln min (6.88)

Then the intervals specified in displays (6.87) and (6.88) for log discovery times
have, via exponentiation, their counterparts for raw discovery times. That is,
exponentiation of the values in display (6.87) gives a 99% prediction interval for
another discovery time of from

1.7 min to 79.0 minI

And exponentiation of the values in display (6.88) gives a 95% tolerance interval
for 99% of additional discovery times of from

1.2 min to 114.4 minI

When it is not possible to find a transformation that will allow normal-based
methods to be used, prediction and tolerance interval formulas derived for other
standard families of distributions (e.g., the Weibull family) can sometimes be ap-
propriate. (The book Statistical Intervals: A Guide for Practitioners, by Hahn and
Meeker, is a good place to look for these methods.) What can be done here is to
point out that intervals from the smallest observation and/or to the largest value in
a sample can be used as prediction and/or tolerance intervals for any underlying
continuous distribution.
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That is, if x1, x2, . . . , xn are values in a sample and min(x1, . . . , xn) and
max(x1, . . . , xn) are (respectively) the smallest and largest values among x1,
x2, . . . , xn , consider the use of the intervals

Interval based on
the sample maximum (−∞,max(x1, . . . , xn)) (6.89)

and

Interval based on
the sample minimum

(min(x1, . . . , xn),∞) (6.90)

and

Interval based on
the sample minimum

and maximum
(min(x1, . . . , xn), max(x1, . . . , xn)) (6.91)

as prediction or tolerance intervals. Independent of exactly what underlying contin-
uous distribution is operating, if the generation of x1, x2, . . . , xn (and if relevant,
xn+1) can be described as a stable process, it is possible to evaluate the confidence
levels associated with intervals (6.89), (6.90), and (6.91).

Consider first intervals (6.89) or (6.90) used as one-sided prediction intervals
for a single additional observation xn+1. The associated confidence level is

Prediction confidence
for a one-sided interval One-sided prediction confidence level = n

n + 1
(6.92)

Then, considering interval (6.91) as a two-sided prediction interval for a single
additional observation xn+1, the associated confidence level is

Prediction confidence
for a two-sided interval Two-sided prediction confidence level = n − 1

n + 1
(6.93)

The confidence levels for intervals (6.89), (6.90), and (6.91) as tolerance in-
tervals must of necessity involve p, the fraction of the underlying distribution one
hopes to bracket. The fact is that using interval (6.89) or (6.90) as a one-sided toler-
ance interval for a fraction p of an underlying distribution, the associated confidence
level is

Confidence level for
a one-sided tolerance

interval
One-sided confidence level = 1 − pn (6.94)



6.6 Prediction and Tolerance Intervals 425

And when interval (6.91) is used as a tolerance interval for a fraction p of an
underlying distribution, the appropriate associated confidence is

Confidence level for
a two-sided tolerance

interval
Two-sided confidence level = 1 − pn − n(1 − p)pn−1 (6.95)

Example 19
(continued )

Return one more time to the spring-life scenario, and consider the use of interval
(6.91) as first a prediction interval and then a tolerance interval for 90% of
additional spring lifetimes. Notice in Table 6.4 (page 366) that the smallest and
largest of the observed spring lifetimes are, respectively,

min(x1, . . . , x10) = 117 × 103 cycles

and

max(x1, . . . , x10) = 225 × 103 cycles

so the numerical interval under consideration is the one with endpoints 117
(×103 cycles) and 225 (×103 cycles).

Then expression (6.93) means that this interval can be used as a prediction
interval with

Prediction confidence = 10 − 1

10 + 1
= 9

11
= 82%

And expression (6.95) says that as a tolerance interval for a fraction p = .9
of many additional spring lifetimes, the interval can be used with associated
confidence

Confidence = 1 − (.9)10 − 10(1 − .9)(.9)9 = 26%

Example 20
(continued )

Looking for a final time at the penny weight data in Table 6.10, consider the use
of interval (6.89) as first a prediction interval and then a tolerance interval for
99% of additional penny weights. Notice that in Table 6.10, the largest of the
n = 100 weights is 3.21 g, so

max(x1, . . . , x100) = 3.21 g
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Example 20
(continued )

Then expression (6.92) says that when used as an upper prediction limit for a
single additional penny weight, the prediction confidence associated with 3.21 g is

Prediction confidence = 100

100 + 1
= 99%

And expression (6.94) shows that as a tolerance interval for 99% of many addi-
tional penny weights, the interval (−∞, 3.21) has associated confidence

Confidence = 1 − (.99)100 = 63%

A little experience with formulas (6.92), (6.93), (6.94), and (6.95) will convince
the reader that the intervals (6.89), (6.90), and (6.91) often carry disappointingly
small confidence coefficients. Usually (but not always), you can do better in terms
of high confidence and short intervals if (possibly after transformation) the normal
distribution methods discussed earlier can be applied. But the beauty of intervals
(6.89), (6.90), and (6.91) is that they are both widely applicable (in even nonnormal
contexts) and extremely simple.

Prediction and tolerance interval methods are very useful engineering tools.
Historically, they probably haven’t been used as much as they should be for lack of
accessible textbook material on the methods. We hope the reader is now aware of the
existence of the methods as the appropriate form of formal inference when the focus
is on individual values generated by a process rather than on process parameters.
When the few particular methods discussed here don’t prove adequate for practical
purposes, the reader should look into the topic further, beginning with the book by
Hahn and Meeker mentioned earlier.

Section 6 Exercises ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1. Confidence, prediction, and tolerance intervals are
all intended to do different jobs. What are these
jobs? Consider the differing situations of an official
of the EPA, a consumer about to purchase a single
car, and a design engineer trying to equip a certain
model with a gas tank large enough that most cars
produced will have highway cruising ranges of at
least 350 miles. Argue that depending on the point
of view adopted, a lower confidence bound for a
mean mileage, a lower prediction bound for an in-
dividual mileage, or a lower tolerance bound for
most mileages would be of interest.

2. The 900 N/mm2 stress spring lifetime data in Table
6.7 used in Example 8 have a fairly linear normal
plot.

(a) Make a two-sided 90% prediction interval for
an additional spring lifetime under this stress.

(b) Make a two-sided 95% tolerance interval for
90% of all spring lifetimes under this stress.

(c) How do the intervals from (a) and (b) compare?
(Consider both size and interpretation.)

(d) There is a two-sided 90% confidence interval
for the mean spring lifetime under this stress
given in Example 8. How do your intervals
from (a) and (b) compare to the interval in
Example 8? (Consider both size and interpre-
tation.)

(e) Make a 90% lower prediction bound for an
additional spring lifetime under this stress.
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(f) Make a 95% lower tolerance bound for 90% of
all spring lifetimes under this stress.

3. The natural logarithms of the aluminum contents
discussed in Exercise 2 of Chapter 3 have a rea-
sonably bell-shaped relative frequency distribution.
Further, these 26 log aluminum contents have sam-
ple mean 4.9 and sample standard deviation .59.
Use this information to respond to the following:
(a) Give a two-sided 99% tolerance interval for

90% of additional log aluminum contents at
the Rutgers recycling facility. Then translate
this interval into a 99% tolerance interval for
90% of additional raw aluminum contents.

(b) Make a 90% prediction interval for one ad-
ditional log aluminum content and translate it

into a prediction interval for a single additional
aluminum content.

(c) How do the intervals from (a) and (b) compare?

4. Again in the context of Chapter Exercise 2 of Chap-
ter 3, if the interval from 30 ppm to 511 ppm
is used as a prediction interval for a single addi-
tional aluminum content measurement from the
study period, what associated prediction confi-
dence level can be stated? What confidence can
be associated with this interval as a tolerance in-
terval for 90% of all such aluminum content mea-
surements?
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1. Consider the breaking strength data of Table 3.6.
Notice that the normal plot of these data given as
Figure 3.18 is reasonably linear. It may thus be sen-
sible to suppose that breaking strengths for generic
towel of this type (as measured by the students) are
adequately modeled as normal. Under this assump-
tion,
(a) Make and interpret 95% two-sided and one-

sided confidence intervals for the mean break-
ing strength of generic towels (make a one-
sided interval of the form (#,∞)).

(b) Make and interpret 95% two-sided and one-
sided prediction intervals for a single addi-
tional generic towel breaking strength (for the
one-sided interval, give the lower prediction
bound).

(c) Make and interpret 95% two-sided and one-
sided tolerance intervals for 99% of generic
towel breaking strengths (for the one-sided in-
terval, give the lower tolerance bound).

(d) Make and interpret 95% two-sided and one-
sided confidence intervals for σ , the standard
deviation of generic towel breaking strengths.

(e) Put yourself in the position of a quality con-
trol inspector, concerned that the mean break-
ing strength not fall under 9,500 g. Assess the

strength of the evidence in the data that the
mean generic towel strength is in fact below
the 9,500 g target. (Show the whole five-step
significance-testing format.)

(f) Now put yourself in the place of a quality
control inspector concerned that the breaking
strength be reasonably consistent—i.e., that σ

be small. Suppose in fact it is desirable that σ

be no more than 400 g. Use the significance-
testing format and assess the strength of the
evidence given in the data that in fact σ ex-
ceeds the target standard deviation.

2. Consider the situation of Example 1 in Chapter 1.
(a) Use the five-step significance-testing format to

assess the strength of the evidence collected in
this study to the effect that the laying method
is superior to the hanging method in terms of
mean runouts produced.

(b) Make and interpret 90% two-sided and one-
sided confidence intervals for the improvement
in mean runout produced by the laying method
over the hanging method (for the one-sided
interval, give a lower bound for µhung − µlaid).

(c) Make and interpret a 90% two-sided confi-
dence interval for the mean runout for laid
gears.



428 Chapter 6 Introduction to Formal Statistical Inference

(d) What is it about Figure 1.1 that makes it ques-
tionable whether “normal distribution” predic-
tion and tolerance interval formulas ought to be
used to describe runouts for laid gears? Sup-
pose instead that you used the methods of Sec-
tion 6.6.3 to make prediction and tolerance in-
tervals for laid gear runouts. What confidence
could be associated with the largest observed
laid runout as an upper prediction bound for a
single additional laid runout? What confidence
could be associated with the largest observed
laid runout as an upper tolerance bound for
95% of additional laid gear runouts?

3. Consider the situation of Example 1 in Chapter 4.
In particular, limit attention to those densities ob-
tained under the 2,000 and 4,000 psi pressures.
(One can view the six corresponding densities as
two samples of size n1 = n2 = 3.)
(a) Assess the strength of the evidence that in-

creasing pressure increases the mean density
of the resulting cylinders. Use the five-step
significance-testing format.

(b) Give a 99% lower confidence bound for the
increase in mean density associated with the
change from 2,000 to 4,000 psi conditions.

(c) Assess the strength of the evidence (in the six
density values) that the variability in density
differs for the 2,000 and 4,000 psi conditions
(i.e., that σ2,000 6= σ4,000).

(d) Give a 90% two-sided confidence interval for
the ratio of density standard deviations for the
two pressures.

(e) What model assumptions stand behind the for-
mal inferences you made in parts (a) through
(d) above?

4. Simple counting with the data of Chapter Exercise 2
in Chapter 3 shows that 18 out of the 26 PET sam-
ples had aluminum contents above 100 ppm. Give
a two-sided approximate 95% confidence interval
for the fraction of all such samples with aluminum
contents above 100 ppm.

5. Losen, Cahoy, and Lewis measured the lengths of
some spanner bushings of a particular type pur-
chased from a local machine supply shop. The

lengths obtained by one of the students were as
follows (the units are inches):

1.1375, 1.1390, 1.1420, 1.1430, 1.1410, 1.1360,

1.1395, 1.1380, 1.1350, 1.1370, 1.1345, 1.1340,

1.1405, 1.1340, 1.1380, 1.1355

(a) If you were to, for example, make a confi-
dence interval for the population mean mea-
sured length of these bushings via the formu-
las in Section 6.3, what model assumption must
you employ? Make a probability plot to assess
the reasonableness of the assumption.

(b) Make a 90% two-sided confidence interval for
the mean measured length for bushings of this
type measured by this student.

(c) Give an upper bound for the mean length with
90% associated confidence.

(d) Make a 90% two-sided prediction interval for
a single additional measured bushing length.

(e) Make a 95% two-sided tolerance interval for
99% of additional measured bushing lengths.

(f) Consider the statistical interval derived from
the minimum and maximum sample values—
namely, (1.1340, 1.1430). What confidence
level should be associated with this interval
as a prediction interval for a single additional
bushing length? What confidence level should
be associated with this interval as a tolerance
interval for 99% of additional bushing lengths?

6. The study mentioned in Exercise 5 also included
measurement of the outside diameters of the 16
bushings. Two of the students measured each of
the bushings, with the results given here.

Bushing 1 2 3 4

Student A .3690 .3690 .3690 .3700

Student B .3690 .3695 .3695 .3695

Bushing 5 6 7 8

Student A .3695 .3700 .3695 .3690

Student B .3695 .3700 .3700 .3690
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Bushing 9 10 11 12

Student A .3690 .3695 .3690 .3690

Student B .3700 .3690 .3695 .3695

Bushing 13 14 15 16

Student A .3695 .3700 .3690 .3690

Student B .3690 .3695 .3690 .3690

(a) If you want to compare the two students’ aver-
age measurements, the methods of formulas
(6.35), (6.36), and (6.38) are not appropriate.
Why?

(b) Make a 95% two-sided confidence interval
for the mean difference in outside diameter
measurements for the two students.

7. Find the following quantiles using the tables of
Appendix B:
(a) the .90 quantile of the t5 distribution
(b) the .10 quantile of the t5 distribution
(c) the .95 quantile of the χ2

7 distribution
(d) the .05 quantile of the χ2

7 distribution
(e) the .95 quantile of the F distribution with

numerator degrees of freedom 8 and denom-
inator degrees of freedom 4

(f) the .05 quantile of the F distribution with
numerator degrees of freedom 8 and denom-
inator degrees of freedom 4

8. Find the following quantiles using the tables of
Appendix B:
(a) the .99 quantile of the t13 distribution
(b) the .01 quantile of the t13 distribution
(c) the .975 quantile of the χ2

3 distribution
(d) the .025 quantile of the χ2

3 distribution
(e) the .75 quantile of the F distribution with

numerator degrees of freedom 6 and denom-
inator degrees of freedom 12

(f) the .25 quantile of the F distribution with
numerator degrees of freedom 6 and denom-
inator degrees of freedom 12

9. Ho, Lewer, Peterson, and Riegel worked with the
lack of flatness in a particular kind of manufac-
tured steel disk. Fifty different parts of this type
were measured for what the students called “wob-
ble,” with the results that the 50 (positive) values

obtained had mean x̄ = .0287 in. and standard de-
viation s = .0119 in.
(a) Give a 95% two-sided confidence interval for

the mean wobble of all such disks.
(b) Give a lower bound for the mean wobble pos-

sessing a 95% confidence level.
(c) Suppose that these disks are ordered with the

requirement that the mean wobble not exceed
.025 in. Assess the strength of the evidence
in the students’ data to the effect that the re-
quirement is being violated. Show the whole
five-step format.

(d) Is the requirement of part (c) the same as an
upper specification of .025 in. on individual
wobbles? Explain. Is it possible for a lot with
many individual wobbles exceeding .025 in.
to meet the requirement of part (c)?

(e) Of the measured wobbles, 19 were .030 in.
or more. Use this fact and make an approx-
imate 90% two-sided confidence interval for
the fraction of all such disks with wobbles of
at least .030 in.

10. T. Johnson tested properties of several brands of
10 lb test monofilament fishing line. Part of his
study involved measuring the stretch of a fixed
length of line under a 3.5 kg load. Test results for
three pieces of two of the brands follow. The units
are cm.

Brand B Brand D

.86, .88, .88 1.06, 1.02, 1.04

(a) Considering first only Brand B, use “normal
distribution” model assumptions and give a
90% upper prediction bound for the stretch
of an additional piece of Brand B line.

(b) Again considering only Brand B, use “normal
distribution” model assumptions and give a
95% upper tolerance bound for stretch mea-
surements of 90% of such pieces of Brand B
line.

(c) Again considering only Brand B, use “nor-
mal distribution” model assumptions and give
90% two-sided confidence intervals for the
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mean and for the standard deviation of the
Brand B stretch distribution.

(d) Compare the Brand B and Brand D stan-
dard deviations of stretch using an appropriate
90% two-sided confidence interval.

(e) Compare the Brand B and Brand D mean
stretch values using an appropriate 90% two-
sided confidence interval. Does this interval
give clear indication of a difference in mean
stretch values for the two brands?

(f) Carry out a formal significance test of the hy-
pothesis that the two brands have the same
mean stretch values (use a two-sided alter-
native hypothesis). Does the conclusion you
reach here agree with your answer to part (e)?

11. The accompanying data are n = 10 daily mea-
surements of the purity (in percent) of oxygen be-
ing delivered by a certain industrial air products
supplier. (These data are similar to some given in
a November 1990 article in Chemical Engineer-
ing Progress and used in Chapter Exercise 10 of
Chapter 3.)

99.77 99.66 99.61 99.59 99.55
99.64 99.53 99.68 99.49 99.58

(a) Make a normal plot of these data. What does
the normal plot reveal about the shape of the
purity distribution? (“It is not bell-shaped” is
not an adequate answer. Say how its shape
departs from the normal shape.)

(b) What statistical “problems” are caused by
lack of a normal distribution shape for data
such as these?

As a way to deal with problems like those from
part (b), you might try transforming the original
data. Next are values of y′ = ln(y − 99.3) corre-
sponding to each of the original data values y,
and some summary statistics for the transformed
values.

− .76 −1.02 −1.17 −1.24 −1.39
−1.08 −1.47 − .97 −1.66 −1.27

ȳ′ = −1.203 and sy′ = .263

(c) Make a normal plot of the transformed values
and verify that it is very linear.

(d) Make a 95% two-sided prediction interval for
the next transformed purity delivered by this
supplier. What does this “untransform” to in
terms of raw purity?

(e) Make a 99% two-sided tolerance interval for
95% of additional transformed purities from
this supplier. What does this “untransform”
to in terms of raw purity?

(f) Suppose that the air products supplier ad-
vertises a median purity of at least 99.5%.
This corresponds to a median (and therefore
mean) transformed value of at least −1.61.
Test the supplier’s claim (H0: µy′ = −1.61)

against the possibility that the purity is sub-
standard. Show and carefully label all five
steps.

12. Chapter Exercise 6 of Chapter 3 contains a data
set on the lifetimes (in numbers of 24 mm deep
holes drilled in 1045 steel before tool failure) of 12
D952-II (8 mm) drills. The data there have mean
ȳ = 117.75 and s = 51.1 holes drilled. Suppose
that a normal distribution can be used to roughly
describe drill lifetimes.
(a) Give a 90% lower confidence bound for the

mean lifetime of drills of this type in this kind
of industrial application.

(b) Based on your answer to (a), do you think a
hypothesis test of H0: µ = 100 versus Ha: µ >

100 would have a large p-value or a small p-
value? Explain.

(c) Give a 90% lower prediction bound for the
next life length of a drill of this type in this
kind of industrial application.

(d) Give two-sided tolerance limits with 95%
confidence for 90% of all life lengths for
drills of this type in this kind of industrial
application.

(e) Give two-sided 90% confidence limits for the
standard deviation of life lengths for drills of
this type in this kind of industrial application.

13. M. Murphy recorded the mileages he obtained
while commuting to school in his nine-year-old
economy car. He kept track of the mileage for ten
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different tankfuls of fuel, involving gasoline of
two different octanes. His data follow.

87 Octane 90 Octane

26.43, 27.61, 28.71, 30.57, 30.91, 31.21,

28.94, 29.30 31.77, 32.86

(a) Make normal plots for these two samples of
size 5 on the same set of axes. Does the “equal
variances, normal distributions” model ap-
pear reasonable for describing this situation?

(b) Find sP for these data. What is this quantity
measuring in the present context?

(c) Give a 95% two-sided confidence interval for
the difference in mean mileages obtainable
under these circumstances using the fuels of
the two different octanes. From the nature of
this confidence interval, would you expect to
find a large p-value or a small p-value when
testing H0: µ87 = µ90 versus Ha: µ87 6= µ90?

(d) Conduct a significance test of H0: µ87 = µ90
against the alternative that the higher-octane
gasoline provides a higher mean mileage.

(e) Give 95% lower prediction bounds for the
next mileages experienced, using first 87 oc-
tane fuel and then 90 octane fuel.

(f) Give 95% lower tolerance bounds for 95% of
additional mileages experienced, using first
87 octane fuel and then 90 octane fuel.

14. Eastman, Frye, and Schnepf worked with a com-
pany that mass-produces plastic bags. They fo-
cused on start-up problems of a particular machine
that could be operated at either a high speed or a
low speed. One part of the data they collected con-
sisted of counts of faulty bags produced in the first
250 manufactured after changing a roll of plastic
feedstock. The counts they obtained for both low-
and high-speed operation of the machine were 147
faulty ( p̂H = 147

250 ) under high-speed operation and
12 faulty under low-speed operation ( p̂L = 12

250 ).
Suppose that it is sensible to think of the machine
as operating in a physically stable fashion during
the production of the first 250 bags after changing

a roll of plastic, with a constant probability (pH or
pL) of any particular bag produced being faulty.
(a) Give a 95% upper confidence bound for pH.
(b) Give a 95% upper confidence bound for pL.
(c) Compare pH and pL using an appropriate two-

sided 95% confidence interval. Does this in-
terval provide a clear indication of a differ-
ence in the effectiveness of the machine at
start-up when run at the two speeds? What
kind of a p-value (big or small) would you
expect to find in a test of H0: pH = pL versus
Ha: pH 6= pL?

(d) Use the five-step format and test H0: pH = pL
versus Ha: pH 6= pL.

15. Hamilton, Seavey, and Stucker measured resis-
tances, diameters, and lengths for seven copper
wires at two different temperatures and used these
to compute experimental resistivities for copper
at these two temperatures. Their data follow. The
units are 10−8 �m.

Wire 0.0◦C 21.8◦C

1 1.52 1.72

2 1.44 1.56

3 1.52 1.68

4 1.52 1.64

5 1.56 1.69

6 1.49 1.71

7 1.56 1.72

(a) Suppose that primary interest here centers on
the difference between resistivities at the two
different temperatures. Make a normal plot of
the seven observed differences. Does it appear
that a normal distribution description of the
observed difference in resistivities at these
two temperatures is plausible?

(b) Give a 90% two-sided confidence interval for
the mean difference in resistivity measure-
ments for copper wire of this type at 21.8◦C
and 0.0◦C.
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(c) Give a 90% two-sided prediction interval for
an additional difference in resistivity mea-
surements for copper wire of this type at
21.8◦C and 0.0◦C.

16. The students referred to in Exercise 15 also mea-
sured the resistivities for seven aluminum wires at
the same temperatures. The 21.8◦C measurements
that they obtained follow:

2.65, 2.83, 2.69, 2.73, 2.53, 2.65, 2.69

(a) Give a 99% two-sided confidence interval for
the mean resistivity value derived from such
experimental determinations.

(b) Give a 95% two-sided prediction interval for
the next resistivity value that would be derived
from such an experimental determination.

(c) Give a 95% two-sided tolerance interval for
99% of resistivity values derived from such
experimental determinations.

(d) Give a 95% two-sided confidence interval for
the standard deviation of resistivity values de-
rived from such experimental determinations.

(e) How strong is the evidence that there is a real
difference in the precisions with which the
aluminum resistivities and the copper resistiv-
ities can be measured at 21.8◦C? (Carry out
a significance test of H0: σcopper = σaluminum
versus Ha: σcopper 6= σaluminum using the data
of this problem and the 21.8◦C data of Exer-
cise 15.)

(f) Again using the data of this exercise and Ex-
ercise 15, give a 90% two-sided confidence
interval for the ratio σcopper/σaluminum.

17. (The Stein Two-Stage Estimation Procedure)
One of the most common of all questions faced
by engineers planning a data-based study is how
much data to collect. The last part of Example 3
illustrates a rather crude method of producing an
answer to the sample-size question when estima-
tion of a single mean is involved. In fact, in such
circumstances, a more careful two-stage proce-
dure due to Charles Stein can sometimes be used
to find appropriate sample sizes.

Suppose that one wishes to use an interval of
the form x̄ ± 1 with a particular confidence co-
efficient to estimate the mean µ of a normal dis-
tribution. If it is desirable to have 1 ≤ # for some
number # and one can collect data in two stages,
it is possible to choose an overall sample size to
satisfy these criteria as follows. After taking a
small or moderate initial sample of size n1 (n1
must be at least 2 and is typically at least 4 or
5), one computes the sample standard deviation
of the initial data—say, s1. Then if t is the ap-
propriate tn1−1 distribution quantile for producing
the desired (one- or two-sided) confidence, it is
necessary to find the smallest integer n such that

n ≥
(

ts1

#

)2

If this integer is larger than n1, then n2 = n −
n1 additional observations are taken. (Otherwise,
n2 = 0.) Finally, with x̄ the sample mean of all the
observations (from both the initial and any sub-
sequent sample), the formula x̄ ± ts1/

√
n1 + n2

(with t still based on n1 − 1 degrees of freedom)
is used to estimate µ.

Suppose that in estimating the mean resistance
of a production run of resistors, it is desirable to
have the two-sided confidence level be 95% and
the “± part” of the interval no longer than .5 �.
(a) If an initial sample of n1 = 5 resistors pro-

duces a sample standard deviation of 1.27 �,
how many (if any) additional resistors should
be sampled in order to meet the stated goals?

(b) If all of the n1 + n2 resistors taken together
produce the sample mean x̄ = 102.8 �, what
confidence interval for µ should be declared?

18. Example 15 of Chapter 5 concerns some data on
service times at a residence hall depot counter.
The data portrayed in Figure 5.21 are decidedly
nonnormal-looking, so prediction and tolerance
interval formulas based on normal distributions
are not appropriate for use with these data. How-
ever, the largest of the n = 65 observed service
times in that figure is 87 sec.
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(a) What prediction confidence level can be as-
sociated with 87 sec as an upper prediction
bound for a single additional service time?

(b) What confidence level can be associated with
87 sec as an upper tolerance bound for 95%
of service times?

19. Caliste, Duffie, and Rodriguez studied the pro-
cess of keymaking using a manual machine at a
local lumber yard. The records of two different
employees who made keys during the study pe-
riod were as follows. Employee 1 made a total of
54 different keys, 5 of which were returned as not
fitting their locks. Employee 2 made a total of 73
different keys, 22 of which were returned as not
fitting their locks.
(a) Give approximate 95% two-sided confidence

intervals for the long-run fractions of faulty
keys produced by these two different employ-
ees.

(b) Give an approximate 95% two-sided confi-
dence interval for the difference in long-run
fractions of faulty keys produced by these two
different employees.

(c) Assess the strength of the evidence provided
in these two samples of a real difference in
the keymaking proficiencies of these two em-
ployees. (Test H0: p1 = p2 using a two-sided
alternative hypothesis.)

20. The article “Optimizing Heat Treatment with Fac-
torial Design” by T. Lim (JOM, 1989) discusses
the improvement of a heat-treating process for
gears through the use of factorial experimenta-
tion. To compare the performance of the heat-
treating process under the original settings of pro-
cess variables to that using the “improved” set-
tings (identified through factorial experimenta-
tion), n1 = n2 = 10 gears were treated under both
sets of conditions. Then measures of flatness, y1
(in mm of distortion), and concentricity, y2 (again
in mm of distortion), were made on each of the
gears. The data shown were read from graphs in
the article (and may in some cases differ by per-
haps ±.002 mm from the original measurements).

Improved settings

Gear y1 (mm) y2 (mm)

1A .036 .050

2A .040 .054

3A .026 .043

4A .051 .071

5A .034 .043

6A .050 .058

7A .059 .061

8A .055 .048

9A .051 .060

10A .050 .033

Original settings

Gear y1 (mm) y2 (mm)

1B .056 .070

2B .064 .062

3B .070 .075

4B .037 .060

5B .054 .071

6B .060 .070

7B .065 .060

8B .060 .060

9B .051 .070

10B .062 .070

(a) What assumptions are necessary in order to
make inferences regarding the parameters of
the y1 (or y2) distribution for the improved
settings of the process variables?

(b) Make a normal plot for the improved settings’
y1 values. Does it appear that it is reasonable
to treat the improved settings’ flatness distri-
bution as normal? Explain.

(c) Suppose that the improved settings’ flatness
distribution is normal, and do the following:
(i) Give a 90% two-sided confidence interval
for the mean flatness distortion value for gears
of this type.
(ii) Give a 90% two-sided prediction interval
for an additional flatness distortion value.
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(iii) Give a 95% two-sided tolerance inter-
val for 90% of additional flatness distortion
values.
(iv) Give a 90% two-sided confidence inter-
val for the standard deviation of flatness dis-
tortion values for gears of this type.

(d) Repeat parts (b) and (c) using the improved
settings’ concentricity values, y2, instead of
flatness.

(e) Explain why it is not possible to base formal
inferences (tests and confidence intervals), for
comparing the standard deviations of the y1
and y2 distributions for the improved process
settings, on the sample standard deviations of
the y1 and y2 measurements from gears 1A
through 10A.

(f) What assumptions are necessary in order to
make comparisons between parameters of the
y1 (or y2) distributions for the original and
improved settings of the process variables?

(g) Make normal plots of the y1 data for the
original settings and for the improved set-
tings on the same set of axes. Does an “equal
variances, normal distributions” model ap-
pear tenable here? Explain.

(h) Supposing that the flatness distortion distri-
butions for the original and improved process
settings are adequately described as normal
with a common standard deviation, do the
following.
(i) Use an appropriate significance test to as-
sess the strength of the evidence in the data to
the effect that the improved settings produce
a reduction in mean flatness distortion.
(ii) Give a 90% lower confidence bound on
the reduction in mean flatness distortion pro-
vided by the improved process settings.

(i) Repeat parts (g) and (h) using the y2 values
and concentricity instead of flatness.

21. R. Behne measured air pressure in car tires in a
student parking lot. Shown here is one summary of
the data he reported. Any tire with pressure read-
ing more than 3 psi below its recommended value
was considered underinflated, while any tire with
pressure reading more than 3 psi above its recom-
mended value was considered overinflated. The

counts in the accompanying table are the num-
bers of cars (out of 25 checked) falling into the
four possible categories.

Underinflated
tires

At Least
None One Tire

Overinflated
tires

None 6 5

At Least One Tire 10 4

(a) Behne’s sample was in all likelihood a con-
venience sample (as opposed to a genuinely
simple random sample) of the cars in the large
lot. Does it make sense to argue in this case
that the data can be treated as if the sample
were a simple random sample? On what ba-
sis? Explain.

(b) Give a two-sided 90% confidence interval for
the fraction of all cars in the lot with at least
one underinflated tire.

(c) Give a two-sided 90% confidence interval for
the fraction of the cars in the lot with at least
one overinflated tire.

(d) Give a 90% lower confidence bound on the
fraction of cars in the lot with at least one
misinflated tire.

(e) Why can’t the data here be used with formula
(6.67) of Section 6.5 to make a confidence
interval for the difference in the fraction of
cars with at least one underinflated tire and
the fraction with at least one overinflated tire?

22. The article “A Recursive Partitioning Method for
the Selection of Quality Assurance Tests” by Raz
and Bousum (Quality Engineering, 1990) con-
tains some data on the fractions of torque convert-
ers manufactured in a particular facility failing a
final inspection (and thus requiring some rework).
For a particular family of four-element convert-
ers, about 39% of 442 converters tested were out
of specifications on a high-speed operation inlet
flow test.
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(a) If plant conditions tomorrow are like those
under which the 442 converters were man-
ufactured, give a two-sided 98% confidence
interval for the probability that a given con-
verter manufactured will fail the high-speed
inlet flow test.

(b) Suppose that a process change is instituted in
an effort to reduce the fraction of converters
failing the high-speed inlet flow test. If only
32 out of the first 100 converters manufac-
tured fail the high-speed inlet flow test, is this
convincing evidence that a real process im-
provement has been accomplished? (Give and
interpret a 90% two-sided confidence interval
for the change in test failure probability.)

23. Return to the situation of Chapter Exercise 1 in
Chapter 3 and the measured gains of 120 ampli-
fiers. The nominal/design value of the gain was
10.0 dB; 16 of the 120 amplifiers measured had
gains above nominal. Give a 95% two-sided con-
fidence interval for the fraction of all such ampli-
fiers with above-nominal gains.

24. The article “Multi-functional Pneumatic Gripper
Operating Under Constant Input Actuation Air
Pressure” by J. Przybyl (Journal of Engineering
Technology, 1988) discusses the performance of a
6-digit pneumatic robotic gripper. One part of the
article concerns the gripping pressure (measured
by manometers) delivered to objects of different
shapes for fixed input air pressures. The data given
here are the measurements (in psi) reported for
an actuation pressure of 40 psi for (respectively)
a 1.7 in. × 1.5 in. × 3.5 in. rectangular bar and a
circular bar of radius 1.0 in. and length 3.5 in.

Rectangular Bar Circular Bar

76 84

82 87

85 94

88 80

82 92

(a) Compare the variabilities of the gripping pres-
sures delivered to the two different objects
using an appropriate 98% two-sided confi-
dence interval. Does there appear to be much
evidence in the data of a difference between
these? Explain.

(b) Supposing that the variabilities of gripping
pressure delivered by the gripper to the two
different objects are comparable, give a 95%
two-sided confidence interval for the differ-
ence in mean gripping pressures delivered.

(c) The data here came from the operation of a
single prototype gripper. Why would you ex-
pect to see more variation in measured grip-
ping pressures than that represented here if
each measurement in a sample were made on
a different gripper? Strictly speaking, to what
do the inferences in (a) and (b) apply? To the
single prototype gripper or to all grippers of
this design? Discuss this issue.

25. A sample of 95 U-bolts produced by a small com-
pany has thread lengths with a mean of x̄ = 10.1
(.001 in. above nominal) and s = 3.2 (.001 in.).
(a) Give a 95% two-sided confidence interval for

the mean thread length (measured in .001 in.
above nominal). Judging from this interval,
would you expect a small or a large p-value
when testing H0: µ = 0 versus Ha: µ 6= 0?
Explain.

(b) Use the five-step format of Section 6.2 and
assess the strength of the evidence provided
by the data to the effect that the population
mean thread length exceeds nominal.

26. D. Kim did some crude tensile strength testing on
pieces of some nominally .012 in. diameter wire
of various lengths. Below are Kim’s measured
strengths (kg) for pieces of wire of lengths 25 cm
and 30 cm.

25 cm Lengths 30 cm Lengths

4.00, 4.65, 4.70, 4.50 4.10, 4.50, 3.80, 4.60

4.40, 4.50, 4.50, 4.20 4.20, 4.60, 4.60, 3.90



436 Chapter 6 Introduction to Formal Statistical Inference

(a) If one is to make a confidence interval for the
mean measured strength of 25 cm pieces of
this wire using the methods of Section 6.3,
what model assumption must be employed?
Make a probability plot useful in assessing
the reasonableness of the assumption.

(b) Make a 95% two-sided confidence interval for
the mean measured strength of 25 cm pieces
of this wire.

(c) Give a 95% lower confidence bound for the
mean measured strength of 25 cm pieces.

(d) Make a 95% two-sided prediction interval for
a single additional measured strength for a
25 cm piece of wire.

(e) Make a 99% two-sided tolerance interval for
95% of additional measured strengths of
25 cm pieces of this wire.

(f) Consider the statistical interval derived from
the minimum and maximum sample values
for the 25 cm lengths—namely, (4.00, 4.70).
What confidence should be associated with
this interval as a prediction interval for a sin-
gle additional measured strength? What con-
fidence should be associated with this interval
as a tolerance interval for 95% of additional
measured strengths for 25 cm pieces of this
wire?

(g) In order to make formal inferences about
µ25 − µ30 based on these data, what must
you be willing to use for model assumptions?
Make a plot useful for investigating the rea-
sonableness of those assumptions.

(h) Proceed under the assumptions discussed in
part (g) and assess the strength of the evi-
dence provided by Kim’s data to the effect
that an increase in specimen length produces
a decrease in measured strength.

(i) Proceed under the necessary model assump-
tions to give a 98% two-sided confidence in-
terval for µ25 − µ30.

27. The article “Influence of Final Recrystallization
Heat Treatment on Zircaloy-4 Strip Corrosion”
by Foster, Dougherty, Burke, Bates, and Worces-
ter (Journal of Nuclear Materials, 1990) reported
some summary statistics from the measurement of

the diameters of 821 particles observed in a bright
field TEM micrograph of a Zircaloy-4 specimen.
The sample mean diameter was x̄ = .055 µm, and
the sample standard deviation of the diameters
was s = .028 µm.
(a) The engineering researchers wished to es-

tablish from their observation of this single
specimen the impact of a certain combination
of specimen lot and heat-treating regimen on
particle size. Briefly discuss why data such as
the ones summarized have serious limitations
for this purpose. (Hints: The apparent “sam-
ple size” here is huge. But of what is there a
sample? How widely do the researchers want
their results to apply? Given this desire, is the
“real” sample size really so large?)

(b) Use the sample information and give a 98%
two-sided confidence interval for the mean di-
ameter of particles in this particular Zircaloy-
4 specimen.

(c) Suppose that a standard method of heat treat-
ing for such specimens is believed to produce
a mean particle diameter of .057 µm. Assess
the strength of the evidence contained in the
sample of diameter measurements to the ef-
fect that the specimen’s mean particle diam-
eter is different from the standard. Show the
whole five-step format.

(d) Discuss, in the context of part (c), the po-
tential difference between the mean diameter
being statistically different from .057 µm and
there being a difference between µ and .057
that is of practical importance.

28. Return to Kim’s tensile strength data given in Ex-
ercise 26.
(a) Operating under the assumption that mea-

sured tensile strengths of 25 cm lengths of
the wire studied are normally distributed, give
a two-sided 98% confidence interval for the
standard deviation of measured strengths.

(b) Operating under the assumption that mea-
sured tensile strengths of 30 cm lengths of the
wire studied are normally distributed, give a
95% upper confidence bound for the standard
deviation of measured strengths.
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(c) Operating under the assumption that both 25
and 30 cm lengths of the wire have normally
distributed measured tensile strengths, assess
the strength of Kim’s evidence that 25 and
30 cm lengths differ in variability of their
measured tensile strengths. (Use H0: σ25 =
σ30 and Ha: σ25 6= σ30 and show the whole
five-step format.)

(d) Operating under the assumption that both 25
and 30 cm lengths produce normally dis-
tributed tensile strengths, give a 98% two-
sided confidence interval for the ratio σ25/σ30.

29. Find the following quantiles:
(a) the .99 quantile of the χ2

4 distribution
(b) the .025 quantile of the χ2

4 distribution
(c) the .99 quantile of the F distribution with

numerator degrees of freedom 3 and denom-
inator degrees of freedom 15

(d) the .25 quantile of the F distribution with
numerator degrees of freedom 3 and denom-
inator degrees of freedom 15

30. The digital and vernier caliper measurements of
no. 10 machine screw diameters summarized in
Exercise 3 of Section 6.3 are such that for 19 out
of 50 of the screws, there was no difference in
the measurements. Based on these results, give a
95% confidence interval for the long-run fraction
of such measurements by the student technician
that would produce agreement between the digital
and vernier caliper measurements.

31. Duren, Leng, and Patterson studied the drilling of
holes in a miniature metal part using electrical dis-
charge machining. Blueprint specifications on a
certain hole called for diameters of .0210 ± .0003
in. The diameters of this hole were measured on 50
parts with plug gauges and produced x̄ = .02046
and s = .00178. Assume that the holes the stu-
dents measured were representative of the output
of a physically stable drilling process.
(a) Give a 95% two-sided confidence interval for

the mean diameter of holes drilled by this
process.

(b) Give a 95% lower confidence bound for the
mean diameter of the holes drilled by this
process. (Find a number, #, so that (#,∞)

is a 95% confidence interval.) How does this
number compare to the lower end point of
your interval from (a)?

(c) Repeat (a) using 90% confidence. How does
this interval compare with the one from (a)?

(d) Repeat (b) using 90% confidence. How does
this bound compare to the one found in (b)?

(e) Interpret your interval from (a) for someone
with little statistical background. (Speak in
the context of the drilling study and use the
“authorized interpretation” of confidence as
your guide.)

(f) Based on your confidence intervals, would
you expect the p-value in a test of H0: µ =
.0210 versus Ha: µ 6= .0210 to be small? Ex-
plain.

(g) Based on your confidence intervals, would
you expect the p-value in a test of H0: µ =
.0210 versus Ha: µ > .0210 to be small? Ex-
plain.

(h) Consider again your answer to part (a). A col-
league sees your calculations and says, “Oh,
so 95% of the measured diameters would be
in that range?” What do you say to this per-
son?

(i) Use the five step significance-testing format
of Section 6.2 and assess the strength of the
evidence provided by the data to the effect
that the process mean diameter differs from
the mid-specification of .0210. (Begin with
H0: µ = .0210 and use Ha: µ 6= .0210.

(j) Thus far in this exercise, inference for the
mean hole diameter has been of interest. Ex-
plain why in practice the variability of di-
ameters is also important. The methods of
Sections 6.1 are not designed for analyzing
distributional spread. Where in Chapter 6 can
you find inference methods for this feature?

32. Return to Babcock’s fatigue life testing data in
Chapter Exercise 18 of Chapter 3 and for now
focus on the fatigue life data for heat 1.
(a) In order to do inference based on this small

sample, what model assumptions must you
employ? What does a normal plot say about
the appropriateness of these assumptions?
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(b) Give a 90% two-sided confidence interval for
the mean fatigue life of such specimens from
this heat.

(c) Give a 90% lower confidence bound for the
mean fatigue life of such specimens from this
heat.

(d) If you are interested in quantifying the vari-
ability in fatigue lives produced by this heat
of steel, inference for σ becomes relevant.
Give a 95% two-sided confidence interval for
σ based on display (6.42) of the text.

(e) Make a 90% two-sided prediction interval for
a single additional fatigue life for a specimen
from this heat.

(f) Make a 95% two-sided tolerance interval for
90% of additional fatigue lives for specimens
from this heat. How does this interval com-
pare to your interval from (e)?

(g) Now consider the statistical interval derived
from the minimum and maximum sample val-
ues from heat 1, namely (11, 548). What con-
fidence should be associated with this interval
as a prediction interval for a single additional
fatigue life from this heat? What confidence
should be associated with the interval as a tol-
erance interval for 90% of additional fatigue
lives?

Now consider both the data for heat 1 and the data
for heat 3.
(h) In order to make formal inferences about

µ1 − µ3 based on these data, what must be
assumed about fatigue lives for specimens
from these two heats? Make a plot useful for
investigating the reasonableness of these as-
sumptions.

(i) Under the appropriate assumptions (state
them), give a 95% two-sided confidence in-
terval for µ1 − µ3.

33. Consider the Notch/Dial Bore and Notch/Air
Spindler measurements on ten servo sleeves re-
corded in Chapter Exercise 19 in Chapter 3.
(a) If one wishes to compare the dial bore gauge

and the air spindler gauge measurements, the
methods of formulas (6.35), (6.36), and (6.38)
are not appropriate. Why?

(b) What assumption must you make in order to
do formal inference on the mean difference
in dial bore and air spindler gauge measure-
ments? Make a plot useful for assessing the
reasonableness of this assumption. Comment
on what it indicates in this problem.

(c) Make the necessary assumptions about the
dial bore and air spindler measurements and
assess the strength of the evidence in the data
of a systematic difference between the two
gauges.

(d) Make a 95% two-sided confidence interval
for the mean difference in dial bore and air
spindler measurements.

(e) Briefly discuss how your answers for parts (c)
and (d) of this problem are consistent.

34. Chapter Exercise 20 in Chapter 3 concerned the
drilling of holes in miniature metal parts using
laser drilling and electrical discharge machining.
Return to that problem and consider first only the
EDM values.
(a) In order to use the methods of inference of

Section 6.3 with these data, what model as-
sumptions must be made? Make a plot useful
for investigating the appropriateness of those
assumptions. Comment on the shape of that
plot and what it says about the appropriate-
ness of the model assumptions.

(b) Give a 99% two-sided confidence interval for
the mean angle produced by the EDM drilling
of this hole.

(c) Give a 99% upper confidence bound for the
mean angle produced by the EDM drilling of
this hole.

(d) Give a 95% two-sided confidence interval for
the standard deviation of angles produced by
the EDM drilling of this hole.

(e) Make a 99% two-sided prediction interval
for the next measured angle produced by the
EDM drilling of this hole.

(f) Make a 95% two-sided tolerance interval for
99% of angles produced by the EDM drilling
of this hole.

(g) Consider the statistical interval derived from
the minimum and maximum sample EDM
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values, namely (43.2, 46.1). What confidence
should be associated with this interval as
a prediction interval for a single additional
measured angle? What confidence should be
associated with this interval as a tolerance in-
terval for 99% of additional measured angles?

Now consider both the EDM and initial set of
Laser values in Chapter Exercise 20 of Chapter 3
(two sets of 13 parts).
(h) In order to make formal inferences about

µLaser − µEDM based on these data, what must
you be willing to use for model assumptions?
Make a plot useful for investigating the rea-
sonableness of those assumptions.

(i) Proceed under appropriate assumptions to as-
sess the strength of the evidence provided by
the data that there is a difference in the mean
angles produced by the two drilling methods.

(j) Give a 95% two-sided confidence interval for
µLaser − µEDM.

(k) Give a 90% two-sided confidence interval for
comparing the standard deviations of angles
produced by Laser and EDM drilling of this
hole.

Now consider both sets of Laser measurements
given in Chapter Exercise 20 of Chapter 3. (Holes
A and B are on the same 13 parts.)
(l) If you wished to compare the mean angle

measurements for the two holes, the formulas
used in (i) and (j) are not appropriate. Why?

(m) Make a 90% two-sided confidence interval
for the mean difference in angles for the two
holes made with the laser equipment.

(n) Assess the strength of the evidence provided
by these data that there is a systematic differ-
ence in the angles of the holes made with the
laser equipment.

(o) Briefly discuss why your answers to parts (m)
and (n) of this exercise are compatible. (Dis-
cuss how the outcome of part (n) could have
been anticipated from the outcome of part
(m).)

35. A so-called “tilttable” test was run in order to
determine the angles at which certain vehicles ex-
perience lift-off of one set of wheels and begin to

roll over on their sides. “Tilttable ratios” (which
are the tangents of the angles at which lift-off
occurred) were measured for two minivans of dif-
ferent makes four times each with the following
results.

Van 1 Van 2

1.096, 1.093, .962, .970,

1.090, 1.093 .967, .966

(a) If you were to make a confidence interval
for the long-run mean measured tilttable ratio
for Van 1 (under conditions like those expe-
rienced during the testing) using the methods
of Section 6.3, what model assumption must
be made?

(b) Make a 95% two-sided confidence interval for
the mean measured tilttable ratio for Van 1 un-
der conditions like those experienced during
the testing.

(c) Give a 95% lower confidence bound for the
mean measured tilttable ratio for Van 1.

(d) Give a 95% lower confidence bound for the
standard deviation of tilttable ratios for Van 1.

(e) Make a 95% two-sided prediction interval for
a single additional measured tilttable ratio for
Van 1 under conditions such as those experi-
enced during testing.

(f) Make a 99% two-sided tolerance interval for
95% of additional measured tilttable ratios for
Van 1.

(g) Consider the statistical interval derived from
the minimum and maximum sample values
for Van 1, namely (1.090, 1.096). What con-
fidence should be associated with this inter-
val as a prediction interval for a single ad-
ditional measured tilttable ratio? What confi-
dence should be associated with this interval
as a tolerance interval for 95% of additional
tilttable test results for Van 1?

Now consider the data for both vans.
(h) In order to make formal inferences about

µ1 − µ2 based on these data, what must you
be willing to use for model assumptions?
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(i) Proceed under the necessary assumptions to
assess the strength of the evidence provided
by the data that there is a difference in mean
measured tilttable ratios for the two vans.

(j) Proceed under the necessary model assump-
tions to give a 90% two-sided confidence in-
terval for µ1 − µ2.

(k) Proceed under the necessary model assump-
tions to give a 90% two-sided confidence in-
terval for σ1/σ2.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Chapter 6 Summary Tables

The methods presented in Chapter 6 can seem overwhelming in their variety. It is
sometimes helpful to have a summary of them. The tables here give such a summary
and can be used to help you locate methods appropriate in a particular problem or
application.

Table 1
Inference Methods for Individual Values

Inference For Assumptions Interval Section

xn+1 (a single additional value) (min(x1, . . . , xn), max(x1, . . . , xn))

or (min(x1, . . . , xn),∞) 6.6
or (−∞, max(x1, . . . , xn))

observations normal x̄ ± ts

√
1 + 1

n
6.6

most of the distribution (min(x1, . . . , xn), max(x1, . . . , xn))

or (min(x1, . . . , xn),∞) 6.6
or (−∞, max(x1, . . . , xn))

observations normal x̄ ± τ2s
or (x̄ − τ1s,∞) 6.6
or (−∞, x̄ + τ1s)
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Table 2
Inference Methods for One and Two Means

Inference For Sample Size Assumptions H0, Test Stat, Reference Interval Section

µ (one mean) large n H0 : µ = # x̄ ± z
s√
n

6.1, 6.2

Z = x̄ − #

s/
√

n
standard normal

small n observations
normal

H0 : µ = # x̄ ± t
s√
n

6.3

T = x̄ − #

s/
√

n
t with ν = n − 1

µ1 − µ2
(difference
in means)

large n1, n2 independent
samples

H0 : µ1 − µ2 = # x̄1 − x̄2 ± z

√
s2

1

n1

+ s2
2

n2

6.3

Z = x̄1 − x̄2 − #√
s2
1

n1
+ s2

2
n2

standard normal

small n1 or n2 independent
normal samples

H0 : µ1 − µ2 = # x̄1 − x̄2 ± tsP

√
1

n1

+ 1

n2

6.3

σ1 = σ2 T = x̄1 − x̄2 − #

sP

√
1

n1
+ 1

n2

t with ν = n1 + n2 − 2

possibly σ1 6= σ2 x̄1 − x̄2 ± t̂

√
s2

1

n1

+ s2
2

n2
use random ν̂ given in (6.37)

6.3

µd
(mean
difference)

large n (paired data) H0 : µd = # d̄ ± z
sd√

n
6.3

Z = d̄ − #

sd/
√

n
standard normal

small n (paired data) H0 : µd = # d̄ ± t
sd√

n
6.3

normal
differences

T = d̄ − #

sd/
√

n

t with ν = n − 1
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Table 3
Inference Methods for Variances

Inference For Assumptions H0, Test Stat, Reference Interval Section

σ 2 (one variance) observations normal H0 : σ 2 = #

X2 = (n − 1)s2

#

(n − 1)s2

U
and/or

(n − 1)s2

L
6.4

χ2 with ν = n − 1

σ 2
1 /σ 2

2 (variance ratio) observations normal
independent samples

H0 :
σ 2

1

σ 2
2

= #

F = s2
1/s2

2

#

s2
1

U · s2
2

and/or
s2

1

L · s2
2

6.4

F with ν1 = n1 − 1
and ν2 = n2 − 1

Table 4
Inference Methods for Proportions

Inference Sample H0, Test Stat,
For Size Assumptions Reference Interval Section

p (one
proportion)

large n H0 : p = #

Z = p̂ − #√
#(1 − #)

n

p̂ ± z

√
p̂(1 − p̂)

n
6.5

standard normal or p̂ ± z
1

2
√

n

p1 − p2
difference
in proportions

large
n1, n2

H0 : p1 − p2 = 0

independent
samples

Z = p̂1 − p̂2√
p̂(1− p̂)

√
1

n1
+ 1

n2

use p̂ given in (6.71)

p̂1 − p̂2 ± z

√
p̂1(1 − p̂1)

n1

+ p̂2(1 − p̂2)

n2

standard normal or p̂1 − p̂2 ± z · 1

2

√
1

n1

+ 1

n2

6.5




