Introduction to
Formal Statistical
Inference

Formal statistical inference uses probability theory to quantify the reliability of
data-based conclusions. Thischapter introducesthelogic involved in several general
types of formal statistical inference. Then the most common specific methods for
one- and two-sample statistical studies are discussed.

The chapter beginswith an introduction to confidence interval estimation, using
the important case of large-sample inference for a mean. Then the topic of signif-
icance testing is considered, again using the case of large-sample inference for a
mean. With the general notions in hand, successive sections treat the standard one-
and two-sample confidence interval and significance-testing methods for means,
then variances, and then proportions. Finaly, the important topics of tolerance and
prediction intervals are introduced.

6.1 Large-Sample Confidence Intervals for a Mean

Many important engineering applications of statistics fit the following standard
mold. Values for parameters of a data-generating process are unknown. Based on
data, the object is

1. identify an interval of values likely to contain an unknown parameter (or a
function of one or more parameters) and
2. quantify “how likely” the interval isto cover the correct value.

For example, a piece of equipment that dispenses baby food into jars might
produce an unknown mean fill level, u. Determining a data-based interval likely to
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contain u and an evaluation of the reliability of the interval might be important. Or
a machine that puts threads on U-bolts might have an inherent variation in thread
lengths, describable in terms of astandard deviation, . The point of data collection
might then be to produce aninterval of likely valuesfor o, together with a statement
of how reliable the interval is. Or two different methods of running a pelletizing
machine might have different unknown propensities to produce defective pellets,
(say, p; and p,). A data-based interval for p, — p,, together with an associated
statement of reliability, might be needed.

The type of formal statistical inference designed to deal with such problemsis
called confidence interval estimation.

A confidenceinterval for aparameter (or function of one or more parameters)
isadata-based interval of numbers thought likely to contain the parameter (or
function of one or more parameters) possessing a stated probability-based
confidence or reliability.

This section discusses how basic probability facts lead to simple large-sample
formulasfor confidenceintervalsfor amean, n.. The unusual casewherethe standard
deviation o isknown istreated first. Then parallél reasoning produces aformulafor
the much more common situation where o is not known. The section closes with
discussions of three practical issuesin the application of confidence intervals.

A Large-n Confidence Interval for x Involving o

Thefinal examplein Section 5.5 involved a physically stable filling process known
to have anet weight standard deviation of o = 1.6 g. Since, for large n, the sample
mean of iid random variables is approximately normal, Example 26 of Chapter 5
argued that for n = 47 and

X = the sample mean net fill weight of 47 jarsfilled by the process (g)

there is an approximately 80% chance that X is within .3 gram of x. Thisfact is
pictured again in Figure 6.1.

We need to interrupt for a moment to discuss notation. In Chapter 5, capital
letters were carefully used as symbols for random variables and corresponding
lowercase lettersfor their possible or observed values. But here alowercase symbol,
X, has been used for the sample mean random variable. This is fairly standard
statistical usage, and it isin keeping with the kind of convention used in Chapters 3
and 4. We are thus going to now abandon strict adherence to the capitalization
convention introduced in Chapter 5. Random variables will often be symbolized
using lowercase letters and the same symbols used for their observed values. The
Chapter 5 capitalization convention is especially helpful in learning the basics of
probability. But once those basics are mastered, it is common to abuse notation and
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Example 1

P[u—-3<X<u+.3 =38

/ For n = 47, the approximate
distribution of X has standard

deviation X = 23¢

| | |
H-3 H H+.3

Figure 6.1  Approximate probability distribution for x based on
n=47

to determine from context whether arandom variable or its observed value is being
discussed.

The most common way of thinking about a graphic like Figure 6.1 is to think
of the possihility that

uw—3<X<pu+.3 (6.2)

in terms of whether or not X fallsin an interval of length 2(.3) = .6 centered at u.
But the equivalent is to consider whether or not an interval of length .6 centered at
x fallsontop of u. Algebraically, inequality (6.1) is equivalent to

X—3<u<Xx+.3 (6.2)

which shifts attention to this second way of thinking. The fact that expression (6.2)
has about an 80% chance of holding true anytime asample of 47 fill weightsistaken
suggests that the random interval

(X —.3,X+.3) (6.3)

might be used as a confidence interval for w, with 80% associated reliability or
confidence.

A Confidence Interval for a Process Mean Fill Weight

Suppose a sample of n = 47 jars produces X = 138.2 g. Then expression (6.3)
suggests that the interval with endpoints

13829+ .39

(i.e., theinterval from 137.9 g to 138.5 g) be used as an 80% confidence interval
for the process mean fill weight.
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Itisnot hard to generalize the logic that led to expression (6.3). Anytime an iid
model is appropriate for the elements of a large sample, the central limit theorem
implies that the sample mean X is approximately normal with mean . and standard
deviation o /i/n. Then, if for p > .5, z is the p quantile of the standard normal
distribution, the probability that

,uv—Zi<)_(<uv—|—Zi (6.4

Vn vn

isapproximately 1 — 2(1 — p). But inequality (6.4) can be rewritten as

)‘(—Zi<,u<)_(—|—zi (6.5)

Vn VN

and thought of as the eventuality that the random interval with endpoints

_ (o2
X+ z% (6.6)

brackets the unknown . So an interval with endpoints (6.6) is an approximate
confidence interval for u (with confidence level 1 — 2(1 — p)).

In an application, z in equation (6.6) is chosen so that the standard normal
probability between —z and z corresponds to a desired confidence level. Table
3.10 (of standard normal quantiles) on page 89 or Table B.3 (of standard normal
cumulative probabilities) can be used to verify the appropriateness of the entriesin
Table 6.1. (Thistable gives values of z for usein expression (6.6) for some common
confidence levels.)

Table 6.1
Z's for Use in Two-sided
Large-n Intervals for u

Desired
Confidence z
80% 1.28
90% 1.645
95% 1.96
98% 2.33

99% 2.58
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Example 2

6.1.2

Confidence Interval for the Mean Deviation
from Nominal in a Grinding Operation

Dib, Smith, and Thompson studied a grinding process used in the rebuilding
of automobile engines. The natural short-term variability associated with the
diameters of rod journals on engine crankshafts ground using the process was
on the order of o = .7 x 10~* in. Suppose that the rod journal grinding process
can be thought of as physically stable over runs of, say, 50 journals or less. Then
if 32 consecutive rod journal diameters have mean deviation from nominal of
X = —.16 x 10~*in., itispossibleto apply expression (6.6) to make aconfidence
interval for the current process mean deviation from nominal. Consider a 95%
confidence level. Consulting Table 6.1 (or otherwise, realizing that 1.96 is the
p =.975 quantile of the standard normal distribution), z = 1.96 is called for in
formula(6.6) (since.95 = 1 — 2(1 — .975)). Thus, a95% confidence interval for
the current process mean deviation from nominal journal diameter has endpoints

Tx107%
— 16 x 1074+ (1.96) = —
V32
that is, endpoints
> —40 x 107*in. and .08 x 10~*in.

Aninterval like this one could be of engineering importance in determining
the advisability of making an adjustment to the processaim. Theinterval includes
both positive and negative values. So although X < 0, the information in hand
doesn’t provide enough precision to tell with any certainty in which direction the
grinding process should be adjusted. This, coupled with the fact that potential
machine adjustments are probably much coarser than the best-guess misadjust-
ment of X = —.16 x 10~%in., speaks strongly against making a change in the
process aim based on the current data.

A Generally Applicable Large-n Confidence Interval for u

Although expression (6.6) providesamathematically correct confidenceinterval, the
appearanceof o intheformulaseverely limitsitspractical usefulness. Itisunusual to
haveto estimate amean . when the corresponding o isknown (and can therefore be
pluggedinto aformula). Thesesituationsoccur primarily in manufacturing situations
like those of Examples 1 and 2. Considerable past experience can sometimes give
a sensible value for o, while physical process drifts over time can put the current
value of u in question.

Happily, modification of the line of reasoning that led to expression (6.6) pro-
duces aconfidenceinterval formulafor x that depends only on the characteristics of
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a sample. The argument leading to formula (6.6) depends on the fact that for large
n, X is approximately normal with mean u and standard deviation o /,/n—i.e., that

(6.7)

is approximately standard normal. The appearance of o in expression (6.7) is what
leads to its appearance in the confidence interval formula (6.6). But a slight gener-
alization of the central limit theorem guarantees that for large n,

(6.9)

is aso approximately standard normal. And the variable (6.8) doesn’t involve o.

Beginning with the fact that (when an iid model for observations is appropriate
and n islarge) the variable (6.8) is approximately standard normal, the reasoning is
much as before. For a positive z,

X—

-z<

Jn

isequivalent to

S _ S
W—Z—= < X< U+Z—

VN v

which in turn is equivalent to

_ S _ S
X—Z— <pu<X+z2—

Vn vn

Thus, the interval with random center X and random length 2zs/,/n—i.e., with
random endpoints

%+ z% 6.9)

can be used as an approximate confidence interval for . For adesired confidence,
z should be chosen such that the standard normal probability between —z and z
corresponds to that confidence level.
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Example 3

Breakaway Torques and Hard Disk Failures

F. Willett, in the article “The Case of the Derailed Disk Drives’ (Mechanical
Engineering, 1988), discusses a study done to isolate the cause of “blink code
A failure” in amodel of Winchester hard disk drive. Included in that article are
the datagivenin Figure 6.2. These are breakaway torques (units are inch ounces)
required to loosen the drive's interrupter flag on the stepper motor shaft for 26
disk drives returned to the manufacturer for blink code A failure. For these data,
X =115in.0zands = 5.1in. oz.

o U1 ©O N O
g O 0N
D O 0 W
» = ©
~N 2 ©
~N N
~N N
[(I\V]

N N P P O O

Figure 6.2 Torques required to
loosen 26 interrupter flags

If the disk drives that produced the data in Figure 6.2 are thought of as
representing the population of drives subject to blink code A failure, it seems
reasonableto use aniid model and formula (6.9) to estimate the population mean
breakaway torque. Choosing to make a90% confidenceinterval for u, z = 1.645
isindicated in Table 6.1. And using formula (6.9), endpoints

115+ 1.645E

V26

(i.e., endpoints 9.9 in. oz and 13.1 in. 0z) are indicated.

The interval shows that the mean breakaway torque for drives with blink
code A failure was substantially below the factory’s 33.5 in. oz target value.
Recognizing this turned out to be key in finding and eliminating a design flaw in
the drives.

6.1.3 Some Additional Comments Concerning

Confidence Intervals

Formulas (6.6) and (6.9) have been used to make confidence statements of the type
“u isbetweena and b.” But often astatement like“ u isat least ¢” or “ . isno more
than d” would be of more practical value. For example, an automotive engineer
might wish to state, “The mean NO emission for this engine is a most 5 ppm.”
Or a civil engineer might want to make a statement like “the mean compressive
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strength for specimens of thistype of concreteisat least 4188 psi.” That is, practical
engineering problems are sometimes best addressed using one-sided confidence
intervals.

Thereisno real problem in coming up with formulas for one-sided confidence
intervals. If you have aworkable two-sided formula, all that must be doneisto

1. replace the lower limit with —oo or the upper limit with +o0o0 and

2. adjust the stated confidence level appropriately upward (this usually means
dividing the “unconfidence level” by 2).

This prescription works not only with formulas (6.6) and (6.9) but also with the rest
of the two-sided confidence intervals introduced in this chapter.

For the mean breakaway torque for defective disk drives, consider making a one-
sided 90% confidence interval for u of the form (—oo, #), for # an appropriate
number. Put slightly differently, consider finding a 90% upper confidence bound
for u, (say, #).

Beginning with atwo-sided 80% confidenceinterval for w, thelower limit can
be replaced with —oo and a one-sided 90% confidence interval determined. That
is, using formula (6.9), a 90% upper confidence bound for the mean breakaway
torqueis

S 51
> X+128— =115+128—— =128in.0z
Jn V26

Equivalently, a 90% one-sided confidence interval for u is (—oo, 12.8).

The 12.8 in. oz figure hereis less than (and closer to the sample mean than)
the 13.1 in. oz upper limit from the 90% two-sided interval found earlier. In the
one-sided case, —oo is declared as alower limit so thereis no risk of producing
an interval containing only numbers larger than the unknown w. Thus an upper
limit smaller than that for a corresponding two-sided interval can be used.

A second issuein the application of confidenceintervalsisacorrect understand-
ing of the technical meaning of the term confidence. Unfortunately, there are many
possible misunderstandings. So it isimportant to carefully lay out what confidence
does and doesn’t mean.

Prior to selecting a sample and plugging into a formula like (6.6) or (6.9), the
meaning of a confidence level is obvious. Choosing a (two-sided) 90% confidence
level and thusz = 1.645 for usein formula(6.9), before the fact of sample selection
and calculation, “there is about a 90% chance of winding up with an interval that
brackets w.” In symboals, this might be expressed as

S S
P[)‘(—l.645—n<u<>'<+1.645—

NG ﬁ} =90
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Definition 2
(Interpretation of a
Confidence Interval)

Sample sizes
for estimating u

But how to think about a confidence level after sample selection? Thisisan entirely
different matter. Once numbers have been plugged into aformulalike (6.6) or (6.9),
the die has already been cast, and the numerical interva is either right or wrong.
The practical difficulty is that while which is the case can’t be determined, it no
longer makes logical sense to attach a probability to the correctness of the interval.
For example, it would make no sense to look again at the two-sided interval found
in Example 3 and try to say something like “there is a 90% probability that
is between 9.9 in. oz and 13.1 in. 0z w is not a random variable. It is a fixed
(although unknown) quantity that either is or is not between 9.9 and 13.1. Thereis
no probability left in the situation to be discussed.

So what does it mean that (9.9, 13.1) is a 90% confidence interval for u? Like
it or not, the phrase “90% confidence” refers more to the method used to obtain
the interval (9.9, 13.1) than to the interval itself. In coming up with the interval,
methodology has been used that would produce numerical intervals bracketing « in
about 90% of repeated applications. But the effectiveness of the particular interval
in this application is unknown, and it is not quantifiable in terms of a probability. A
person who (in the course of alifetime) makes many 90% confidence intervals can
expect to have a “lifetime success rate” of about 90%. But the effectiveness of any
particular application will typically be unknown.

A short statement summarizing this discussion as “the authorized interpretation
of confidence” will be useful.

To say that a numerical interval (a, b) is (for example) a 90% confidence
interval for a parameter isto say that in obtaining it, one has applied methods
of data collection and calculation that would produce intervals bracketing the
parameter in about 90% of repeated applications. Whether or not the particul ar
interval (a, b) bracketsthe parameter is unknown and not describablein terms
of a probability.

The reader may feel that the statement in Definition 2 is arather weak meaning
for the reliability figure associated with a confidence interval. Nevertheless, the
statement in Definition 2 isthe correct interpretation and is all that can be rationally
expected. And despite the fact that the correct interpretation may initially seem
somewhat unappealing, confidence interval methods have proved themselves to be
of great practical use.

As afina consideration in this introduction to confidence intervals, note that
formulas like (6.6) and (6.9) can give some crude quantitative answers to the ques-
tion, “How big must n be?’ Using formula (6.9), for example, if you have in mind
(1) adesired confidence level, (2) aworst-case expectation for the sample standard
deviation, and (3) a desired precision of estimation for w, it is a simple matter to
solve for a corresponding sample size. That is, suppose that the desired confidence
level dictates the use of the value z in formula (6.9), s is some likely worst-case
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value for the sample standard deviation, and you want to have confidence limits (or
alimit) of theform X £ A. Setting

A=1z

S
NG

and solving for n produces the requirement

7S\2

n= (A)
Suppose that in the disk drive problem, engineers plan to follow up the analysis
of the data in Figure 6.2 with the testing of a number of new drives. This will
be done after subjecting them to accel erated (high) temperature conditions, in an
effort to understand the mechanism behind the creation of low breakaway torques.
Further suppose that the mean breakaway torque for temperature-stressed drives
is to be estimated with a two-sided 95% confidence interval and that the torque
variability expected in the new temperature-stressed drives is no worse than the
s = 5.1in. oz figure obtained from the returned drives. A +1in. oz precision of
estimation is desired. Then using the plus-or-minus part of formula (6.9) and
remembering Table 6.1, the requirement is

1- 19622
n

which, when solved for n, gives

1

2

A study involving in the neighborhood of n = 100 temperature-stressed
new disk drives is indicated. If this figure is impractical, the calculations at
least indicate that dropping below this sample size will (unless the variability
associated with the stressed new drives is less than that of the returned drives)
force a reduction in either the confidence or the precision associated with the
fina interval.

For two reasons, the kind of cal culationsin the previous exampl e give somewhat
less than an ironclad answer to the question of sample size. The first is that they
are only as good as the prediction of the sample standard deviation, s. If s is
underpredicted, an n that is not really large enough will result. (By the same token,
if oneis excessively conservative and overpredicts s, an unnecessarily large sample
size will result.) The second issue is that expression (6.9) remains a large-sample
formula. If calculationslike the preceding ones produce n smaller than, say, 25 or 30,
the value should be increased enough to guarantee that formula (6.9) can be applied.
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their data are recorded here. Given in the small
freguency table are the measurements obtained on
50 screws by one of the students using the digital

1. Interpret the statement, “The interval from 6.3 to
7.9 is a 95% confidence interval for the mean u.”

2. In Chapter Exercise 2 of Chapter 3, there is a

data set consisting of the aluminum contents of

26 bihourly samples of recycled PET plastic from

a recycling facility. Those 26 measurements have

y = 142.7 ppm and s &~ 98.2 ppm. Use these facts

to respond to the following. (Assume that n = 26

is large enough to permit the use of large-sample

formulasin this case.)

(8) Make a90% two-sided confidence interval for
the mean aluminum content of such specimens
over the 52-hour study period.

(b) Make a 95% two-sided confidence interval for
the mean aluminum content of such specimens
over the 52-hour study period. How does this
compare to your answer to part (a)?

(c) Make a 90% upper confidence bound for the
mean aluminum content of such samples over
the 52-hour study period. (Find # such that
(—o00, #) is a 90% confidence interval.) How
does this value compare to the upper endpoint
of your interval from part (a)?

(d) Make a 95% upper confidence bound for the
mean aluminum content of such samples over
the 52-hour study period. How does this value
compare to your answer to part (¢)?

(e) Interpret your interval from (a) for someone
with little statistical background. (Speak in the
context of the recycling study and use Defini-
tion 2 asyour guide.)

. Returnto the context of Exercise 2. Supposethat in
order to monitor for possible process changes, fu-
ture samplesof PET will betaken. If itisdesirable
to estimate the mean aluminum content with +20
ppm precision and 90% confidence, what future
sample size do you recommend?

. DuToit, Hansen, and Osborne measured the diam-
eters of some no. 10 machine screws with two dif-
ferent calipers (digital and vernier scale). Part of

caipers.

Diameter (mm)  Frequency

452 1
4.66 4
4.67 7
4.68 7
4.69 14
4.70

471 4
4.72 4

(8 Compute the sample mean and standard devi-
ation for these data.

(b) Use your sample values from (a) and make
a 98% two-sided confidence interval for the
mean diameter of such screws as measured by
this student with these calipers.

(c) Repeat part (b) using 99% confidence. How
does this interval compare with the one from
(b)?

(d) Useyour valuesfrom (@) and find a98% lower
confidence bound for the mean diameter. (Find
a number # such that (#, co) is a 98% confi-
dence interval.) How does this value compare
to thelower endpoint of your interval from (b)?

() Repeat (d) using 99% confidence. How does
the value computed here compare to your an-
swer to (d)?

(f) Interpret your interval from (b) for someone
with little statistical background. (Speak in the
context of the diameter measurement study and
use Definition 2 as your guide.)
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6.2 Large-Sample Significance Tests for a Mean

The goal of
significance
testing

6.2.1

Thelast sectionillustrated how probability can enableconfidenceinterval estimation.
This section makes a parallel introduction of significance testing.

Significance testing amounts to using data to quantitatively assess the plausi-
bility of atrial value of a parameter (or function of one or more parameters). This
trial value typically embodies a status quo/* pre-data” view. For example, a process
engineer might employ significance testing to assess the plausibility of an ideal
value of 138 g as the current process mean fill level of baby food jars. Or two dif-
ferent methods of running a pelletizing machine might have unknown propensities
to produce defective pellets, (say, p, and p,), and significance testing could be used
to assess the plausibility of p, — p, = 0—i.e,, that the two methods are equally
effective.

This section describes how basic probability facts lead to simple large-sample
significance tests for a mean, w. It introduces significance testing terminology in
the case where the standard deviation o is known. Next, a five-step format for
summarizing significance testing is presented. Then the more common situation of
significance testing for 1 where o is not known is considered. The section closes
with two discussions about practical issuesin the application of significance-testing
logic.

Large-n Significance Tests for i Involving o

Recall once more Example 26 in Chapter 5, where aphysically stablefilling process
is known to have o = 1.6 g for net weight. Suppose further that with a declared
(label) weight of 135 g, process engineers have set a target mean net fill weight
at 135+ 30 = 139.8 g. Finally, suppose that in a routine check of filling-process
performance, intended to detect any change of the process mean from its target
value, asample of n = 25 jars produces X = 139.0 g. What does this value have to
say about the plausibility of the current process mean actually being at the target of
139.8g?

The central limit theorem can be called on here. If indeed the current process
mean is at 139.8 g, X has an approximately normal distribution with mean 139.8 g
and standard deviation o /y/n = 1.6//25 = .32 g, as pictured in Figure 6.3 along
with the observed value of X = 139.0 g.

Figure 6.4 showsthe standard normal picturethat correspondsto Figure6.3. Itis
based on thefact that if the current process mean ison target at 139.8 g, then the fact
that X is approximately normal with mean w and standard deviation o /i/n = .32 g
implies that

_ Xx—1398 Xx-—1398
N o B .32

NG

z

(6.10)



346

Chapter 6

Introduction to Formal Statistical Inference

/ If u =139.8, the approximate
distribution of X is normal with
mean 139.8 and standard
deviation .32

Observed X

|
139.0 139.8

Figure 6.3  Approximate probability distribution for X if
u = 139.8, and the observed value of x = 139.0

is approximately standard normal. The observed X = 139.0g in Figure 6.3 has
corresponding observed z = —2.5in Figure 6.4.

It is obvious from either Figure 6.3 or Figure 6.4 that if the process mean
is on target at 139.8 g (and thus the figures are correct), a fairly extreme/rare X,
or equivaently z, has been observed. Of course, extreme/rare things occasionally
happen. But the nature of the observed X (or z) might instead be considered as
making the possibility that the processis on target implausible.

Thefigureseven suggest away of quantifying their ownimplausibility—through
calculating a probability associated with values of X (or Z) at least as extreme as
the one actually observed. Now “at least as extreme” must be defined in relation
to the original purpose of data collection—to detect either a decrease of v below
target or an increase above target. Not only are values X < 139.0g (z < —2.5) as
extreme as that observed but so also are values X > 140.6 g (z > 2.5). (The first
kind of X suggests a decrease in w, and the second suggests an increase.) That is,
the implausibility of being on target might be quantified by noting that if this were
so, only afraction

d(-25 + (1- ®(25) = .01

of all samples would produce a value of X (or Z) as extreme as the one actually
observed. Put in those terms, the data seem to speak rather convincingly against the
process being on target.

If u =139.8, the approximate

distribution of Z = %

V25

is standard normal

Figure 6.4 The standard normal picture corresponding to
Figure 6.3
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The argument that has just been made is an application of typical significance-
testing logic. In order to make the pattern of thought obvious, it is useful to isolate
some elements of it in definition form. This is done next, beginning with a formal
restatement of the overall purpose.

Statistical significancetesting isthe use of datain the quantitative assessment
of the plausibility of some trial value for a parameter (or function of one or
more parameters).

Logicaly, significance testing begins with the specification of the trial or hy-
pothesized value. Special jargon and notation exist for the statement of this value.

A null hypothesisis a statement of the form
Parameter = #
or
Function of parameters = #
(for some number, #) that forms the basis of investigation in a significance
test. A null hypothesis is usualy formed to embody a status quo/* pre-data”

view of the parameter (or function of the parameter(s)). It istypically denoted
asH,.

The notion of a null hypothesis is so central to significance testing that it is
common to use the term hypothesis testing in place of significance testing. The
“null” part of the phrase “null hypothesis’ refersto the fact that null hypotheses are
statements of no difference, or equality. For example, in the context of the filling
operation, standard usage would be to write

Ho: o = 139.8 (6.12)
meaning that there is no difference between u and the target value of 139.8 g.

After formulating a null hypothesis, what kinds of departures from it are of
interest must be specified.

An alter native hypothesis is a statement that stands in opposition to the null
hypothesis. It specifies what forms of departure from the null hypothesis are
of concern. An alternative hypothesis is typically denoted as H,. It is of the
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Definition 6

Definition 7

same form as the corresponding null hypothesis, except that the equality sign
isreplaced by #, >, or <.

Often, the aternative hypothesis is based on an investigator’s suspicions and/or
hopes about the true state of affairs, amounting to a kind of research hypothesis
that the investigator hopes to establish. For example, if an engineer tests what is
intended to be a device for improving automotive gas mileage, a null hypothesis
expressing “no mileage change” and an alternative hypothesis expressing “ mileage
improvement” would be appropriate.

Definitions 4 and 5 together imply that for the case of testing about a single
mean, the three possible pairs of null and alternative hypotheses are

Hyun=# Hyn=# Hyn=*#
Hin># Hipn <# Hyow ##

In the example of thefilling operation, thereisaneed to detect both the possibility of
consistently underfilled (u < 139.8 g) and the possibility of consistently overfilled
(n > 139.8 g) jars. Thus, an appropriate aternative hypothesisis

H,: o # 139.8 (6.12)

Once null and alternative hypotheses have been established, it is necessary
to lay out carefully how the data will be used to evaluate the plausibility of the
null hypothesis. This involves specifying a statistic to be calculated, a probability
distribution appropriatefor itif thenull hypothesisistrue, and what kinds of observed
values will make the null hypothesis seem implausible.

A test statistic is the particular form of numerical data summarization used
in a significance test. The formula for the test statistic typically involves the
number appearing in the null hypothesis.

A reference (or null) distribution for atest statistic is the probability dis-
tribution describing the test statistic, provided the null hypothesis is in fact
true.

The values of the test statistic considered to cast doubt on the validity of the
null hypothesis are specified after looking at the form of the alternative hypothesis.
Roughly speaking, valuesareidentified that are morelikely to occur if the alternative
hypothesisis true than if the null hypothesis holds.
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The discussion of the filling process scenario has vacillated between using X
and its standardized version Z given in equation (6.10) for atest statistic. Equation
(6.10) is a specialized form of the general (large-n, known o) test statistic for ,

(6.13)

for the present scenario, where the hypothesized value of 1 is 139.8, n = 25, and
o = 1.6. It ismost convenient to think of the test statistic for this kind of problem
in the standardized form shown in equation (6.13) rather than as X itself. Using
form (6.13), the reference distribution will always be the same—namely, standard
normal.

Continuing with the filling example, note that if instead of the null hypothesis
(6.11), the alternative hypothesis (6.12) is operating, observed X’'s much larger or
much smaller than 139.8 will tend to result. Such X’swill then, via equation (6.13),
trandate respectively to large or small (that is, large negative numbers in this case)
observed values of Z—i.e., large values |z|. Such observed values render the null
hypothesis implausible.

Having specified how data will be used to judge the plausibility of the null
hypothesis, it remains to collect them, plug them into the formula for the test
statistic, and (using the calculated value and the reference distribution) arrive at a
quantitative assessment of the plausibility of H,. There is jargon for the form this
will take.

The observed level of significance or p-value in a significance test is the
probability that the reference distribution assigns to the set of possible values
of the test statistic that are at |east as extreme as the one actually observed (in
terms of casting doubt on the null hypothesis).

The smaller the observed level of significance, the stronger the evidence against
the validity of the null hypothesis. In the context of the filling operation, with an
observed value of the test statistic of

z=-25
the p-value or observed level of significanceis

P(-2.5 + (1- ®(25) =.01

which gives fairly strong evidence against the possibility that the process mean is
on target.
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Example 4

A Five-Step Format for Summarizing Significance Tests

Itishelpful tolay down astep-by-step format for organizing write-upsof significance
tests. The one that will be used in this text includes the following five steps:

Step 1 State the null hypothesis.
Step 2 State the adternative hypothesis.
Step 3 State the test criteria. That is, give the formula for the test statistic

(plugging in only a hypothesized value from the null hypothesis,
but not any sample information) and the reference distribution. Then
state in general terms what observed values of the test statistic will
congtitute evidence against the null hypothesis.

Step 4  Show the sample-based calculations.

Step 5 Report an observed level of significance and (to the extent possible)

state its implications in the context of the real engineering problem.

A Significance Test Regarding a Process Mean Fill Level

The five-step significance-testing format can be used to write up the preceding
discussion of thefilling process.

1.
2.
3.

Ho: i = 139.8.
H, u # 139.8.
Thetest statistic is
7 _ X —139.8
2
J/n

The reference distribution is standard normal, and large observed values
|z| will constitute evidence against H,.

. The sample gives

,_ 13901398 _
- 1.6 -

+/100

—-25

. The observed level of significanceis

P[astandard normal variable < —2.5]

+ P[a standard normal variable > 2.5]
P [lastandard normal variable| > 2.5]
.01
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This is reasonably strong evidence that the process mean fill level is not
on target.

Generally Applicable Large-n Significance Tests for u

The significance-testing method used to carry the discussion thus far is easy to
discuss and understand but of limited practical use. The problem with it is that
statistic (6.13) involves the parameter o. Asremarked in Section 6.1, there are few
engineering contexts where one needs to make inferences regarding n but knows
the corresponding o. Happily, because of the same probability fact that made it
possible to produce alarge-sample confidence interval formulafor i freeof o, itis
also possible to do large-n significance testing for w without having to supply o.

For observations that are describable as essentially equivalent to random selec-
tions with replacement from a single population with mean 1 and variance o2, if n
islarge,

is approximately standard normal. This means that for large n, to test
Hyn=#

awidely applicable method will simply be to use the logic already introduced but
with the statistic

(6.14)

in place of statistic (6.13).

Significance Testing and Hard Disk Failures

Consider again the problem of disk drive blink code A failure. Breakaway torques
set at the factory on the interrupter flag connection to the stepper motor shaft
averaged 33.5 in. 0z, and there was suspicion that blink code A failure was
associated with reduced breakaway torque. Recall that a sample of n = 26 failed
drives had breakaway torques (given in Figure 6.2) with X = 11.5in. oz and
s=>5.11in. 0z

Consider the situation of an engineer wishing to judge the extent to which the
datain hand debunk the possibility that drives experiencing blink code A failure
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have mean breakaway torque equal to the factory-set mean value of 33.5in. oz.
The five-step significance-testing format can be used.

1. Hy:u = 335.

2. Hp < 335.
(Here the aternative hypothesis is directional, amounting to a research
hypothesis based on the engineer’s suspicions about the relationship be-
tween drive failure and breakaway torque.)

3. Thetest statisticis

% — 335
z=12
S

n

The reference distribution is standard normal, and small observed values
zwill congtitute evidence against the validity of H,. (Meanslessthan 33.5
will tend to produce X’ s of the same nature and therefore small—i.e., large
negative—z's.)

4. The sample gives

L 11.5— 335
- 5.1

V26

=-220

5. The observed level of significanceis
P[astandard normal variable < —22.0] ~ 0

The sample provides overwhelming evidence that failed drives have a
mean breakaway torque below the factory-set level.

It is important not to make too much of alogical jump here to an incorrect
conclusion that thiswork constitutes the complete solution to thereal engineering
problem. Drives returned for blink code A failure have substandard breakaway
torques. But in the absence of evidence to the contrary, it is possible that they
are no different in that respect from nonfailing drives currently in the field. And
even if reduced breakaway torqueis at fault, a real-world fix of the drive failure
problem requires the identification and prevention of the physical mechanism
producing it. Thisis not to say the significance test lacks importance, but rather
to remind the reader that it is but one of many tools an engineer usesto do ajaob.
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Significance Testing and Formal Statistical
Decision Making (Optional)

The basic logic introduced in this section is sometimes applied in a decision-making
context, where data are being counted on to provide guidance in choosing between
two rival courses of action. In such cases, a decision-making framework is often
built into the formal statistical analysis in an explicit way, and some additional
terminology and patterns of thought are standard.

In some decision-making contexts, it is possible to conceive of two different
possible decisions or courses of action as being related to a null and an aternative
hypothesis. For example, in the filling-process scenario, H,: .« = 139.8 might cor-
respond to the course of action “leave the process alone,” and H,: v # 139.8 could
correspond to the course of action “ adjust the process.” When such acorrespondence
holds, two different errors are possible in the decision-making process.

When significance testing is used in a decision-making context, deciding in
favor of H, wheninfact H, istrueiscaled atypel error.

When significance testing is used in a decision-making context, deciding in
favor of H, wheninfact H_ istrueiscaled atypell error.

The content of these two definitions is represented in the 2 x 2 table pictured in
Figure 6.5. In the filling-process problem, a type | error would be adjusting an
on-target process. A type Il error would be failing to adjust an off-target process.
Significance testing is harnessed and used to come to a decision by choosing
acritical value and, if the observed level of significance is smaller than the critical
value (thus making the null hypothesis correspondingly implausible), deciding in
favor of H,. Otherwise, the course of action corresponding to H is followed. The
critical value for the observed level of significance ends up being the a priori

The ultimate decision isin favor of:
HO Ha

H Typel
Thetruestate  ° error
of affairsis

described by:
y b | Typell

error

Figure 6.5 Four potential outcomes in a
decision problem
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Definition 12

Example 4
(continued)

probability the decision maker runs of deciding in favor of H,, calculated supposing
H, to be true. There is special terminology for this concept.

When significance testing is used in a decision-making context, a critical
value separating those large observed levels of significance for which H, will
be accepted from those small observed levels of significance for which H,
will be rejected in favor of H, is called the type | error probability or the
significance level. The symbol « is usualy used to stand for the type | error
probability.

It isstandard practice to use small numbers, like .1, .05, or even .01, for «. This
puts some inertiain favor of H,, into the decision-making process. (Such a practice
guarantees that type | errors won't be made very often. But at the same time, it
creates an asymmetry in the treatment of H, and H,, that is not always justified.)

Definition 10 and Figure 6.5 make it clear that type | errors are not the only
undesirable possibility. The possibility of type Il errors must also be considered.

When significance testing is used in a decision-making context, the prob-
ability—calculated supposing a particular parameter value described by H,
holds—that the observed level of significance is bigger than « (i.e., H, is not
rejected) iscalled atypell error probability. The symbol g isusually used
to stand for atype |l error probability.

For most of the testing methods studied in this book, calculation of g’sis more
than the limited introduction to probability given in Chapter 5 will support. But the

job can be handled for the simple known-o situation that was used to introduce the

topic of significance testing. And making afew such calculationswill provide some
intuition consistent with what, qualitatively at least, holdsin general.

Again consider the filling process and testing H,: © = 139.8 vs. H_: u # 139.8.
Thistimesupposethat significancetesting based onn = 25will be used tomorrow
to decide whether or not to adjust the process. Type Il error probabilities, calcu-
lated supposing © = 139.5 and © = 139.2 for tests using « = .05 and o = .2,
will be compared.

First consider a = .05. The decision will be made in favor of H,, if the p-
value exceeds .05. That is, the decision will bein favor of the null hypothesis if
the observed value of Z given in equation (6.10) (generalized in formula (6.13))
is such that

z| < 1.96
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i.e,if
139.8 — 1.96(.32) < X < 139.8 + 1.96(.32)
i.e,if
139.2 < X < 1404 (6.15)

Now if 1 described by H, given in display (6.12) is the true process mean, X is
not approximately normal with mean 139.8 and standard deviation .32, but rather
approximately normal with mean . and standard deviation .32. So for such a u,
expression (6.15) and Definition 12 show that the corresponding g will be the
probability the corresponding normal distribution assigns to the possibility that
139.2 < X < 140.4. Thisis pictured in Figure 6.6 for the two means © = 139.5
and u = 139.2.

It is an easy matter to calculate z-values corresponding to X = 139.2 and
X = 140.4 using means of 139.5 and 139.2 and a standard deviation of .32 and to
consult a standard normal table in order to verify the correctness of the two 8’s
marked in Figure 6.6.

Parallel reasoning for the situation with o = .2 is as follows. The decision
will be in favor of H, if the p-value exceeds .2. That is, the decision will bein
favor of H, if |z| < 1.28—i.e,, if

139.4 < X < 140.2

/ The approximate distribution
of X if p =139.5 hasmean 139.5
and standard deviation .32

|
139.2 1395 139.8 140.4

The approximate distribution
of X if yu =139.2 hasmean 139.2
and standard deviation .32

I I I I
139.2 1395 1398 1404

Figure 6.6  Approximate probability distributions for x for two
different values of 1 described by H, and the corresponding gs,
when o« = .05
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If  described by H_ is the true process mean, X is approximately normal with
mean u and standard deviation .32. So the corresponding 8 will bethe probability
this normal distribution assigns to the possibility that 139.4 < X < 140.2. This
is pictured in Figure 6.7 for the two means = 139.5 and © = 139.2, having
corresponding type Il error probabilities 8 = .61 and 8 = .27.

The calculations represented by the two figures are collected in Table 6.2.
Notice two features of the table. First, the g values for « = .05 are larger than
those for o = .2. If one wants to run only a 5% chance of (incorrectly) deciding
to adjust an on-target process, the priceto be paid isalarger probability of failure
to recognize an off-target condition. Secondly, the g values for © = 139.2 are
smaller than the g values for u = 139.5. The further the filling process is from
being on target, the less likely it is that the off-target condition will fail to be
detected.

/ The approximate distribution
of X if g =139.5hasmean 139.5
and standard deviation .32

B = .61

[ |
139.4 1395 1398 140.2

/ The approximate distribution
of X if g =139.2 hasmean 139.2
and standard deviation .32
|

139.2139.4 139.8 140.2

Figure 6.7 Approximate probability distributions for x for two
different values of u described by H, and the corresponding 8,
when o = .2

Table 6.2
n = 25 type Il error
probabilities (8)

n
139.2 1395

.05 .50 .83
2 27 .61
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Thestory told by Table 6.2 appliesin qualitative termsto all uses of significance
testing in decision-making contexts. The further H, is from being true, the smaller
the corresponding 8. And small «’simply large 8’s and vice versa.

Thereisone other element of thisgeneral picturethat plays animportant rolein
the determination of error probabilities. That isthe matter of samplesize. If asample
size can be increased, for agiven «, the corresponding ’s can be reduced. Redo the
calculations of the previous example, this time supposing that n = 100 rather than
25. Table 6.3 showsthetypell error probabilities that should result, and comparison
with Table 6.2 servesto indicate the sample-size effect in thefilling-process exampl e.

An analogy helpful in understanding the standard logic applied when signifi-
cance testing is employed in decision-making involves thinking of the process of
coming to adecision asasort of legal proceeding, likeacriminal trial. In acriminal
tria, there are two opposing hypotheses, namely

H,: The defendant is innocent
H,: The defendant is guilty

Evidence, playing arole similar to the data used in testing, is gathered and used to
decide between the two hypotheses. Two types of potential error exist in a criminal
tria: the possibility of convicting an innocent person (parallel to the type | error)
and the possibility of acquitting a guilty person (similar to the type Il error). A
criminal trial is a situation where the two types of error are definitely thought of as
having differing consequences, and the two hypotheses are treated asymmetrically.
The a priori presumption in a criminal trial is in favor of H,, the defendant’s
innocence. In order to keep the chance of a false conviction small (i.e., keep «
small), overwhelming evidence is required for conviction, in much the same way
that if small « is used in testing, extreme values of the test statistic are needed in
order to indicate rejection of H,. One consequence of this method of operation in
criminal trials is that there is a substantial chance that a guilty individua will be
acquitted, in the same way that small «’s produce big 8’s in testing contexts.

This significance testing/criminal trial parallel is useful, but do not make more
of it than isjustified. Not all significance-testing applications are properly thought
of in this light. And few engineering scenarios are simple enough to reduce to a
“decide between H, and H,” choice. Sensible applications of significancetesting are

Table 6.3
n = 100 Type Il Error
Probabilities (8)

"
139.2 1395

.05 .04 .53
2 .01 .28
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often only steps of “evidence evaluation” in a many-faceted, data-based detective
job necessary to solve an engineering problem. And even when areal problem can
be reduced to a simple “ decide between H, and H,” framework, it need not be the
case that the “choose a small «” logic is appropriate. In some engineering contexts,
the practical consequences of atype Il error are such that rational decision-making
strikes a balance between the opposing goals of small « and small 8’s.

Some Comments Concerning Significance
Testing and Estimation

Confidence interval estimation and significance testing are the two most commonly
used forms of formal statistical inference. These having been introduced, it is ap-
propriate to offer some comparative comments about their practical usefulness and,
in the process, admit to an estimation orientation that will be reflected in much of
the rest of this book’s treatment of formal inference.

More often than not, engineers need to know “What is the value of the pa
rameter?’ rather than “Is the parameter equal to some hypothesized value?’ And
it is confidence interval estimation, not significance testing, that is designed to an-
swer the first question. A confidence interval for a mean breakaway torque of from
9.9in. 0zto 13.1in. 0z says what values of 1 seem plausible. A tiny observed level
of significancein testing H,: © = 33.5 says only that the data speak clearly against
the possibility that i = 33.5, but it doesn’t give any clue to the likely value of .

Thefact that significance testing doesn’t produce any useful indication of what
parameter values are plausible is sometimes obscured by careless interpretation of
semistandard jargon. For example, it iscommon in some fieldsto term p-valuesless
than .05 “satistically significant” and ones less than .01 “highly significant.” The
danger inthiskind of usageisthat “significant” can beincorrectly heard to mean “ of
great practical consequence” and the p-valueincorrectly interpreted as ameasure of
how much a parameter differs from avalue stated in a null hypothesis. One reason
this interpretation doesn't follow is that the observed level of significance in atest
depends not only on how far H, appears to be from being correct but on the sample
size as well. Given alarge enough sample size, any departure from H,, whether of
practical importance or not, can be shown to be “highly significant.”

Statistical Significance and Practical Importance
in a Regulatory Agency Test

A good example of the previous points involves the newspaper article in Figure
6.8. Apparently the Pass M aster manufacturer did enough physical mileagetesting
(used a large enough n) to produce a p-value less than .05 for testing a null
hypothesis of no mileage improvement. That is, a“ statistically significant” result
was obtained.

But the size of the actual mileage improvement reported is only “small
but real,” amounting to about .8 mpg. Whether or not this improvement is of
practical importance is a matter largely separate from the significance-testing
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WASHINGTON (AP)—A gadget that cuts off a car’s air conditioner when the
vehicle accelerates has become the first product aimed at cutting gasoline
consumption to win government endorsement.

The device, marketed under the name “Pass Master,” can provide a
“small but real fuel economy benefit,” the Environmental Protection Agency
said Wednesday.

Motorists could realize up to 4 percent fuel reduction while using their air
conditioners on cars equipped with the device, the agency said. That would
translate into .8-miles-per-gallon improvement for a car that normally gets 20
miles to the gallon with the air conditioner on.

The agency cautioned that the 4 percent figure was a maximum amount
and could be less depending on a motorist’s driving habits, the type of car and

the type of air conditioner.

But still the Pass Master, which sells for less than $15, is the first of 40
products to pass the EPA's tests as making any “statistically significant”
improvement in a car's mileage.

359

Figure 6.8 Article from The Lafayette Journal and Courier, Page D-3, August 28, 1980.

Reprinted by permission of the Associated Press. © 1980 the Associated Press.

result. And an engineer equipped with aconfidence interval for the mean mileage
improvement isin a better position to judge this than is one who knows only that

the p-value was less than .05.

To illustrate the effect that sample size has on observed level of significance,
return to the breakaway torque problem and consider two hypothetical samples,
one based on n = 25 and the other on n = 100 but both giving X = 32.5in. 0z

ands =5.1in. oz

For testing H,: u = 33.5 with H_: u < 33.5, the first hypothetical sample

gives
S 325-335 _ _ o3
51
V25
with associated observed level of significance
d(—.98) = .16
The second hypothetical sample gives
- 325-335 106
51

/100
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with corresponding p-value
®(—1.96) = .02

Because the second sample size is larger, the second sample gives stronger
evidence that the mean breakaway torque is below 33.5 in. oz. But the best data-
based guess at the difference between 1 and 33.5isX — 33.5=—1.0in. 0z in
both cases. And it is the size of the difference between u and 33.5 that is of
primary engineering importance.

Itisfurther useful torealizethat in addition to doing its primary job of providing
an interval of plausible values for a parameter, a confidence interval itself also pro-
vides some significance-testing information. For example, a95% confidenceinterval
for a parameter contains all those values of the parameter for which significance
tests using the datain hand would produce p-values bigger than 5%. (Those values
not covered by the interval would have associated p-values smaller than 5%.)

Recall from Section 6.1 that a 90% one-sided confidence interval for the mean
breakaway torque for failed drivesis (—oo, 12.8). This meansthat for any value,
#, larger than 12.8 in. oz, asignificance test of H,: u = #with H_: 1 < #would
produce a p-value less than .1. So clearly, the observed level of significance
corresponding to the null hypothesis H,: u = 33.5islessthan .1. (In fact, as
was seen earlier in this section, the p-valueis 0 to two decimal places.) Put more
loosdly, the interval (—oo, 12.8) is along way from containing 33.5 in. oz and
therefore makes such avalue of v quite implausible.

The discussion here could well raise the question “What practical role remains
for significance testing?’ Some legitimate answers to this question are

1. Inanamost negative way, p-values can help an engineer gauge the extent to
which data in hand are inconclusive. When observed levels of significance
are large, more information is needed in order to arrive a any definitive
judgment.

2. Sometimes legal requirements force the use of significance testing in a
compliance or effectiveness demonstration. (Thiswasthe casein Figure 6.8,
wherebeforethe PassMaster could be marketed, some mileageimprovement
had to be legally demonstrated.)

3. There are cases where the use of significance testing in a decision-making
framework is necessary and appropriate. (An example is acceptance sam-
pling: Based on information from a sample of items from a large lot, one
must determine whether or not to receive shipment of the lot.)
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So, properly understood and handled, significance testing does have its place in
engineering practice. Thus, although the rest of this book features estimation over
significance testing, methods of significance testing will not be completely ignored.

1. In the auminum contamination study discussed in

Exercise 2 of Section 6.1 and in Chapter Exer-
cise 2 of Chapter 3, it was desirable to have mean
aluminum content for samples of recycled plas-
tic below 200 ppm. Use the five-step significance-
testing format and determine the strength of the
evidencein the data that in fact this contamination
goal hasbeenviolated. (Youwill want to beginwith
Hy: o = 200 ppm and use H,: v > 200 ppm.)

. Heyde, Kuebrick, and Swanson measured the

heights of 405 steel punches of a particular type.

Thesewereall from asingle manufacturer and were

supposed to have heights of .500 in. (The stamping

machine in which these are used is designed to use

.500in. punches.) The students’ measurements had

X =.5002 in. and s = .0026 in. (The raw data are

given in Chapter Exercise 9 of Chapter 3.)

() Usethefive-step format and test the hypothesis
that the mean height of such punches is “on
spec” (i.e., is.500in.).

(b) Make a98% two-sided confidence interval for
the mean height of such punches produced by
this manufacturer under conditions similar to
those existing when the students’ puncheswere
manufactured. Is your interval consistent with
the outcome of the test in part (a)? Explain.

(c) Inthestudents' application, the mean height of
the punches did not tell the whole story about
how they worked in the stamping machine.
Several of these punches had to be placed side
by side and used to stamp the same piece of
material. In this context, what other feature of
the height distribution is ailmost certainly of
practical importance?

3. Discuss, in the context of Exercise 2, part (), the

potential difference between statistical significance
and practical importance.

. Inthe context of the machine screw diameter study

of Exercise 4 of Section 6.1, suppose that the nom-
inal diameter of such screws is 4.70 mm. Use
the five-step significance-testing format and as-
sess the strength of the evidence provided by the
datathat the long-run mean measured diameter dif-
fers from nominal. (You will want to begin with
Ho: it =470 mmand use H,: i # 4.70 mm.)

. Discuss, in the context of Exercise 4, the poten-

tial difference between statistical significance and
practical importance.

6.3 One- and Two-Sample Inference for Means

Sections 6.1 and 6.2 introduced the basic concepts of confidence interval estimation
and significancetesting. There are thousands of specific methods of these two types.
This book can only discuss a small fraction that are particularly well known and
useful to engineers. The next three sections consider the most elementary of these—
some of those that are applicable to one- and two-sample studies—beginning in this
section with methods of formal inference for means.

Inferencesfor asingle mean, based not on the large samples of Sections 6.1 and
6.2 but instead on small samples, are considered first. In the process, it is necessary
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6.3.1

Definition 13

to introduce the so-called (Student) t probability distributions. Presented next are
methods of formal inferencefor paired data. The section concludes with discussions
of both large- and small-n methods for data-based comparison of two means based
on independent samples.

Small-Sample Inference for a Single Mean

The most important practical limitation on the use of the methods of the previous
two sections is the requirement that n must be large. That restriction comes from
the fact that without it, there is no way to conclude that

(6.16)

is approximately standard normal. So if, for example, one mechanically uses the
large-n confidence interval formula

_ s
X + Zﬁ (6.17)

with a small sample, there is no way of assessing what actual level of confidence
should be declared. That is, for small n, using z = 1.96 in formula (6.17) generally
doesn’t produce 95% confidence intervals. And without afurther condition, thereis
neither any way to tell what confidence might be associated with z = 1.96 nor any
way to tell how to choose z in order to produce a 95% confidence level.

Thereis oneimportant special circumstance in which it is possible to reason in
away parallel to the work in Sections 6.1 and 6.2 and arrive at inference methods
for means based on small sample sizes. That is the situation where it is sensible to
model the observations as iid normal random variables. The normal observations
case is convenient because athough the variable (6.16) is not standard normal, it
does have arecognized, tabled distribution. Thisisthe Student t distribution.

The (Student) t distribution with degrees of freedom parameter v is a
continuous probability distribution with probability density

1
r <v—£ ) 2 —(v+1)/2
— <1+ —) forallt (6.18)
r <5> NZ 2 v

If arandom variable has the probability density given by formula (6.18), itis
said to have at distribution.

f(t) =
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f(1) Standard normal
/ v =11

Figure 6.9 t Probability densities forv =1, 2, 5, and
11 and the standard normal density

The word Sudent in Definition 13 was the pen name of the statistician who first
came upon formula (6.18). Expression (6.18) israther formidablelooking. No direct
computations with it will actually be required in this book. But, it is useful to have
expression (6.18) available in order to sketch several t probability densities, to get a
feel for their shape. Figure 6.9 picturesthet densitiesfor degrees of freedomv = 1,
2,5, and 11, along with the standard normal density.

The message carried by Figure 6.9 is that the t probability densities are bell
shaped and symmetric about 0. They are flatter than the standard normal density but
are increasingly like it as v gets larger. In fact, for most practical purposes, for v
larger than about 30, thet distribution with v degrees of freedom and the standard
normal distribution are indistinguishable.

Probabilities for the t distributions are not typically found using the density in
expression (6.18), as no simple antiderivative for f (t) exists. Instead, it is common
to use tables (or statistical software) to evaluate common t distribution quantiles
and to get at least crude bounds on the types of probabilities needed in significance
testing. Table B.4 is a typical table of t quantiles. Across the top of the table
are several cumulative probabilities. Down the left side are values of the degrees
of freedom parameter, v. In the body of the table are corresponding quantiles.
Notice aso that the last line of the table is a “v = 00" (i.e., standard normal)
line.

Use of a Table of t Distribution Quantiles

Suppose that T is arandom variable having at distribution with v = 5 degrees
of freedom. Consider first finding the .95 quantile of T’sdistribution, then seeing
what Table B.4 reveals about P[T < —1.9] and then about P[|T| > 2.3].
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Example 7 First, looking at the v = 5 row of Table B.4 under the cumulative proba-
(continued) bility .95, 2.015 is found in the body of the table. That is, Q(.95) = 2.015 or
(equivalently) P[T < 2.015] = .95.

Then note that by symmetry,

P[T <—-1.9 = P[T > 19 =1— P[T < 19]

Looking at the v = 5 row of Table B.4, 1.9 is between the .90 and .95 quantiles
of thet; distribution. That is,

90 < P[T <19 <.95

so finally

.05 < P[T <-19] < .10

Lastly, again by symmetry,

P[IT| > 23] = P[T < —2.3] + P[T > 2.3] = 2P[T > 2.3]
=2(1— P[T <23)

Then, from the v = 5 row of Table B.4, 2.3 is seen to be between the .95 and
.975 quantiles of thet; distribution. That is,

95 < P[T <23] <.975

.05 < P[|IT| > 23] <.10

The three calculations of this example are pictured in Figure 6.10.
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/- t5 Distribution

P[T<2015] = .95

\ 2.015=Q(.95)

’/- t5 Distribution

05<P[T<-19]<.10

Ll | l L
_251,9 N 1-47(? = Q(.9)1J;9/A &2.015 = Q(.95)

.05<P[|T|>23]<.10 t; Distribution

| | | Il
—2 -1 0 1
2.015=Q(.95) j2 3/: \ 2.571=Q(.975)

Figure 6.10 Three t, probability calculations for Example 7

The connection between expressions (6.18) and (6.16) that allows the devel op-
ment of small-n inference methods for normal observationsisthat if an iid normal
model is appropriate,

(6.19)

has the t distribution with v = n — 1 degrees of freedom. (This is consistent with
the basic fact used in the previous two sections. That is, for largen, v islarge, so the
t, distribution is approximately standard normal; and for large n, the variable (6.19)
has already been treated as approximately standard normal.)

Since the variable (6.19) can under appropriate circumstances be treated as a
t, , random variable, we are in a position to work in exact analogy to what was
donein Sections 6.1 and 6.2 to find methods for confidence interval estimation and
significance testing. That is, if a data-generating mechanism can be thought of as
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Normal distribution
confidence limits
for u

Normal distribution
test statistic for p

Example 8

essentially equivalent to drawing independent observations from a single normal
distribution, atwo-sided confidence interval for i has endpoints

_ S
X 4 o= (6.20)

where t is chosen such that thet, ; distribution assigns probability corresponding
to the desired confidence level to the interval between —t and t. Further, the null
hypothesis

HOZ w=*#
can be tested using the statistic
X —#
T= (6.21)
S
J/n

andat,_, reference distribution.

Operationally, the only difference between the inference methods indicated
here and the large-sample methods of the previous two sections is the exchange of
standard normal quantiles and probabilitiesfor ones corresponding tothet, _, distri-
bution. Conceptually, however, the nominal confidence and significance properties
here are practically relevant only under the extra condition of a reasonably normal
underlying distribution. Before applying either expression (6.20) or (6.21) in prac-
tice, it isadvisableto investigate the appropriateness of anormal model assumption.

Small-Sample Confidence Limits for a Mean Spring Lifetime

Part of a data set of W. Armstrong (appearing in Analysis of Survival Data by
Cox and Oakes) gives numbers of cycles to failure of ten springs of a particular
type under a stress of 950 N/mm?. These spring-life observations are given in
Table 6.4, in units of 1,000 cycles.

Table 6.4

Cycles to Failure of Ten
Springs under 950 N/mm?
Stress (10° cycles)

Spring Lifetimes

225,171, 198, 189, 189

135, 162, 135, 117, 162
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Figure 6.11 Normal plot of spring lifetimes

An important question here might be “What is the average spring lifetime
under conditions of 950 N/mm? stress?” Since only n = 10 observations are
available, the large-sample method of Section 6.1 is not applicable. Instead,
only the method indicated by expression (6.20) is a possible option. For it to be
appropriate, lifetimes must be normally distributed.

Without a relevant base of experience in materias, it is difficult to speculate
apriori about the appropriateness of anormal lifetime model in this context. But
at least it is possible to examine the data in Table 6.4 themselves for evidence
of strong departure from normality. Figure 6.11 is a normal plot for the data. It
shows that in fact no such evidence exists.

For the ten lifetimes, X = 168.3 (x 103 cycles) and s = 33.1 (x 10° cycles).
S0 to estimate the mean spring lifetime, these values may be used in expression
(6.20), along with an appropriately chosen value of t. Using, for example, a 90%
confidence level and atwo-sided interval, t should be chosen as the .95 quantile
of thet distribution with v = n — 1 = 9 degrees of freedom. That is, one uses
the t, distribution and choosest > 0 such that

P[-t < aty random variable < t] = .90

Consulting Table B.4, the choice t = 1.833 is in order. So a two-sided 90%
confidence interval for u has endpoints

331
168.3+ 1.833——
V10
i.e.,
168.3+ 19.2
i.e,

149.1 x 10% cycles and 187.5 x 10° cycles
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What is a
“nonlinear”
normal plot?

Small sample
tests for

6.3.2

Asillustrated in Example 8, normal-plotting the data as a rough check on the
plausibility of an underlying normal distribution is a sound practice, and one that
is used repeatedly in this text. However, it is important not to expect more than
is justified from the method. It is certainly preferable to use it rather than making
an unexamined leap to a possibly inappropriate normal assumption. But it is aso
true that when used with small samples, the method doesn’t often provide definitive
indications as to whether a normal model can be used. Small samples from normal
distributions will often have only marginally linear-looking normal plots. At the
same time, small samples from even quite nonnormal distributions can often have
reasonably linear normal plots. In short, because of sampling variability, small
samplesdon’t carry much information about underlying distributional shape. About
all that can be counted on from a small-sample preliminary normal plot, like that in
Example 8, isawarning in case of gross departure from normality associated with
an underlying distributional shape that is much heavier in the tails than a normal
distribution (i.e., producing more extreme val ues than a normal shape would).

It is a good idea to make the effort to (so to speak) calibrate normal-plot
perceptions if they are going to be used as atool for checking a model. One way to
do thisisto use simulation and generate a number of samples of the sizein question
from a standard normal distribution and normal-plot these. Then the shape of the
normal plot of the data in hand can be compared to the simulations to get some
feeling as to whether any nonlinearity it exhibits is really unusual. To illustrate,
Figure 6.12 shows normal plots for several simulated samples of size n = 10 from
the standard normal distribution. Comparing Figures 6.11 and 6.12, it is clear that
indeed the spring-life data carry no strong indication of nonnormality.

Example 8 shows the use of the confidence interval formula (6.20) but not
the significance testing method (6.21). Since the small-sample method is exactly
anal ogous to the large-sample method of Section 6.2 (except for the substitution of
the t distribution for the standard normal distribution), and the source from which
the data were taken doesn’t indicate any particular value of u belonging naturally
in a null hypothesis, the use of the method indicated in expression (6.21) by itself
will not be illustrated at this point. (Thereis, however, an application of the testing
method to paired differencesin Example 9.)

Inference for the Mean of Paired Differences

An important type of application of the foregoing methods of confidence interval
estimation and significance testing isto paired data. In many engineering problems,
it is natural to make two measurements of essentially the same kind, but differing
in timing or physical location, on a single sample of physical objects. The goal
in such situations is often to investigate the possibility of consistent differences
between the two measurements. (Review the discussion of paired data terminology
in Section 1.2.)
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Example 9

Large-sample
confidence
limits for 14

Comparing Leading-Edge and Trailing-Edge Measurements
on a Shaped Wood Product

Drake, Hones, and Mulholland worked with a company on the monitoring of
the operation of an end-cut router in the manufacture of a wood product. They
measured a critical dimension of a number of pieces of a particular type as they
came off the router. Both a leading-edge and a trailing-edge measurement were
made on each piece. The design for the piece in question specified that both
leading-edge and trailing-edge values were to have a target value of .172 in.
Table 6.5 gives leading- and trailing-edge measurements taken by the students
on five consecutive pieces.

Table 6.5
Leading-Edge and Trailing-Edge Dimensions for Five
Workpieces
Leading-Edge Trailing-Edge

Piece Measurement (in.)  Measurement (in.)

1 .168 169

2 170 .168

3 165 .168

4 165 .168

5 170 169

In this situation, the correspondence between leading- and trailing-edge di-
mensionswas at least as critical to proper fit in alater assembly operation as was
the conformance of the individual dimensions to the nominal value of .172 in.
This was thus a paired-data situation, where one issue of concern was the pos-
sibility of a consistent difference between leading- and trailing-edge dimensions
that might be traced to a machine misadjustment or unwise method of router
operation.

In situations like Example 9, one simple method of investigating the possibil-

ity of a consistent difference between paired data is to first reduce the two mea-
surements on each physical object to a single difference between them. Then the
methods of confidence interval estimation and significance testing studied thus far
may be applied to the differences. That is, after reducing paired data to differences
d;,d,,...,d, if n (the number of data pairs) is large, endpoints of a confidence

» ¥n?

interval for the underlying mean difference, .4, are

d+ z% (6.22)
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Example 9
(continued)
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where s, is the sample standard deviation of d,,d,, ..., d . Similarly, the null
hypothesis

Ho: ity = # (6.23)

can be tested using the test statistic

(6.24)

and a standard normal reference distribution.

If nissmall, in order to come up with methods of formal inference, an underlying
normal distribution of differences must be plausible. If that isthe case, a confidence
interval for ., has endpoints

d+ t% (6.25)

and the null hypothesis (6.23) can be tested using the test statistic

(6.26)

w
5l

and at,_, reference distribution.

Toillustrate thismethod of paired differences, consider testing the null hypothesis
Ho: 1y = 0 and making a 95% confidence interval for any consistent difference
between leading- and trailing-edge dimensions, w4, based on the data in Table
6.5.

Begin by reducing the n = 5 paired observationsin Table 6.5 to differences

d = leading-edge dimension — trailing-edge dimension

appearing in Table 6.6. Figure 6.13 is a normal plot of the n = 5 differences
in Table 6.6. A little experimenting with normal plots of simulated samples of
sizen = 5 from anormal distribution will convince you that the lack of linear-
ity in Figure 6.13 would in no way be atypical of normal data. This, together
with the fact that normal distributions are very often appropriate for describ-
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Example 9
(continued)

Table 6.6

Five

Differences in Leading- and Trailing-Edge

Measurements

Piece d = Differencein Dimensions(in.)

1 —.001 (=.168— .169)
2 002 (=.170 - .168)
3 —.003 (=.165-.168)
4 —.003 (=.165-.168)
5 .001 (=.170 - .169)
1.0

o
‘g [ [ ]
&
£
s O ’
©
®
© -
g .
n

10l

) S N N M R B
—-003 0.000 .003

Difference quantile (in.)

Figure 6.13 Normal plotof n =5
differences

ing machined dimensions of mass-produced parts, suggests the conclusion that
the methods represented by expressions (6.25) and (6.26) are in order in this

example.

The differences in Table 6.6 have d = —.0008 in. and s, = .0023 in. So,
first investigating the plausibility of a*“no consistent difference” hypothesisin a
five-step significance testing format, gives the following:

1. Hypuy =0.

2. Hypg #0.

(Thereisapriori no reason to adopt a one-sided alternative hypothesis.)
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3. Thetest statistic will be

_d-0

= s
J/n

The reference distribution will be thet distribution withv =n—-1=14
degrees of freedom. Large observed |t| will count as evidence against H,
and in favor of H,.

T

4. The sample gives

—.0008
t — —

.0023

V5

5. The observed level of significance is P[|at, random variable| > .78],
which can be seen from Table B.4 to be larger than 2(.10) = .2. The data
in hand are not convincing in favor of a systematic difference between
leading- and trailing-edge measurements.

Consuiting Table B.4 for the .975 quantile of the t, distribution, t = 2.776
is the appropriate multiplier for use in expression (6.25) for 95% confidence.
That is, atwo-sided 95% confidence interval for the mean difference between the
leading- and trailing-edge dimensions has endpoints

—.0008 + 2.776%
i.e,

—.0008 in. & .0029 in. (6.27)
i.e.,

—.0037in. and .0021in.

This confidence interval for u, implicitly says (since O is in the calculated
interval) that the observed level of significance for testing H,: 1, = 0 is more
than .05 (= 1 — .95). Put dightly differently, it is clear from display (6.27) that
the imprecision represented by the plus-or-minus part of the expression is large
enough to make it believable that the perceived difference, d = —.0008, isjust a
result of sampling variability.
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Large-sample
inference for p

6.3.3

Example 10

Example 9 treats a small-sample problem. No example for large n is included
here, because after the taking of differences just illustrated, such an example would
reduce to a rehash of things in Sections 6.1 and 6.2. In fact, since for large n
the t distribution with v = n — 1 degrees of freedom becomes essentially standard
normal, one could even imitate Example 9 for large n and get into no logical
problems. So at this point, it makes sense to move on from consideration of the
paired-difference method.

Large-Sample Comparisons of Two Means
(Based on Independent Samples)

Oneof the principlesof effective engineering datacollection discussedin Section 2.3
was comparative study. The idea of paired differences provides inference methods
of a very specia kind for comparison, where one sample of items in some sense
provides its own basis for comparison. Methods that can be used to compare two
means where two different “unrelated” samples form the basis of inference are
studied next, beginning with large-sample methods.

Comparing the Packing Properties of Molded
and Crushed Pieces of a Solid

A company research effort involved finding a workable geometry for molded
pieces of a solid. One comparison made was between the weight of molded
pieces of a particular geometry, that could be poured into a standard con-
tainer, and the weight of irregularly shaped pieces (obtained through crush-
ing), that could be poured into the same container. A series of 24 attempts
to pack both molded and crushed pieces of the solid produced the data (in
grams) that are given in Figure 6.14 in the form of back-to-back stem-and-leaf
diagrams.

Notice that although the same number of molded and crushed weights are
represented in the figure, there are two distinctly different samples represented.
Thisisin no way comparable to the paired-difference situation treated in Exam-
ple 9, and adifferent method of statistical inference is appropriate.

Insituationslike Example 10, it isuseful to adopt subscript notation for both the
parameters and the statistics—for example, letting ., and ., stand for underlying
distributional means corresponding to the first and second conditions and X, and X,
stand for corresponding sample means. Now if the two data-generating mechanisms
are conceptually essentially equivalent to sampling with replacement from two
distributions, Section 5.5 says that X, has mean ., and variance o2/n,, and X,, has
mean ., and variance o3 /n,.

Thedifferencein samplemeans X, — X, isanatural statistic to usein comparing
w, and p,. Proposition 1 in Chapter 5 (see page 307) impliesthat if it is reasonable
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Molded Crushed

79|11
45,36,12 |12
9.8,89,7971,61,57,51 |12
23,13,0.0|13
8.0,7.0,65,6.3,6.2 |13
22,0114
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21,12,02|15
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16 | 1.8
16 [ 5.8,9.6
171 13,20,24,33,34,3.7
171 6.6,9.8
18(0.2,0.9,33,38,49
18 |55,65,7.1,73,9.1,98
19(0.0,10
19

Figure 6.14 Back-to-back stem-and-leaf plots of
packing weights for molded and crushed pieces

to think of the two samples as separately chosen/independent, the random variable
has

EXy = X5) = uy — ity

and
I
Var(X; — X,) = — + —=
n n

If, inaddition, n, and n, arelarge (so that X, and X, are each approximately normal),
X, — X, is approximately normal—i.e.,

Xy = Xp = (g — 14p)

7 = (6.28)
of o3
n n

has an approximately standard normal probability distribution.
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Large-sample
confidence limits
for w, — i,

Large-sample
test statistic
for ju, — i,

Example 10
(continued)

It is possible to begin with the fact that the variable (6.28) is approximately
standard normal and end up with confidence interval and significance-testing meth-
ods for w, — u, by using logic exactly paralel to that in the “known-o” parts of
Sections 6.1 and 6.2. But practically, it is far more useful to begin instead with an
expression that is free of the parameters o, and o,. Happily, for large n, and n,, not
only isthe variable (6.28) approximately standard normal but sois

Pt Sk U ) (6.29)

g, 2

n N,

Then the standard logic of Section 6.1 shows that a two-sided large-sample confi-
dence interval for the difference , — u, based on two independent samples has

endpoints
2 2
%, — X,z |L 42 (6.30)
n m

where z is chosen such that the probability that the standard normal distribution
assignsto theinterval between —z and z correspondsto the desired confidence. And
the logic of Section 6.2 shows that under the same conditions,

Hoymg —u,=#

can be tested using the statistic

X, — X, — #
z=-"1_22 (6.31)
2
2.2
n n

and a standard normal reference distribution.

In the molding problem, the crushed pieces were a priori expected to pack better
than the molded pieces (that for other purposes are more convenient). Consider
testing the statistical significance of the difference in mean weights and also
making a 95% one-sided confidence interval for the difference (declaring that the
crushed mean weight minus the molded mean weight is at least some number).
The sample sizes here (n, = n, = 24) are borderline for being called large.
It would be preferable to have a few more observations of each type. Lacking
them, we will go ahead and use the methods of expressions (6.30) and (6.31) but
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remain properly cautious of the results should they in any way produce a“ close
call” in engineering or business terms.

Arbitrarily labeling “crushed” condition 1 and “molded” condition 2 and
calculating from the data in Figure 6.14 that X, = 179.55¢9, s, =8.349, X, =
132.97 g, and s, = 9.31 g, the five-step testing format produces the following
summary:

1.
2.

Ho g —, =0.

Hywq —py, > 0.
(Theresearch hypothesishereisthat the crushed mean exceedsthe mol ded
mean so that the difference, taken in this order, is positive.)

. Thetest statisticis

The reference distribution is standard normal, and large observed values
z will constitute evidence against H,, and in favor of H,,.

The samples give
179.55 — 132.97 —
S 9.55 — 132.9 O=18.3
(8.34)? N (9.31)2
24 24

. The observed level of significance is P[astandard normal variable >

18.3] ~ 0. The data present overwhelming evidence that ., — p, > 0—
i.e., that the mean packed weight of crushed pieces exceeds that of the
molded pieces.

Then turning to a one-sided confidence interval for 1, — u,, note that only
the lower endpoint given in display (6.30) will be used. So z = 1.645 will be
appropriate. That is, with 95% confidence, we conclude that the difference in
means (crushed minus molded) exceeds

(8.34)2 N (9.31)?
24 24

(179.55 — 132.97) — 1.645\/

i.e., exceeds

46.58 — 4.20 = 42.38 ¢
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Example 10
(continued)

6.3.4

Graphical check
on the plausibility
of the model

Example 8
(continued)

Or differently put, a 95% one-sided confidence interval for pu, — ., is

(42.38, 00)

Students are sometimes uneasy about the arbitrary choice involved in labeling
the two conditionsin atwo-sample study. The fact isthat either one can be used. As
long as a given choice is followed through consistently, the real-world conclusions
reached will be completely unaffected by the choice. In Example 10, if the molded
condition is labeled number 1 and the crushed condition number 2, an appropriate
one-sided confidence for the molded mean minus the crushed mean is

(—00, —42.38)

This has the same meaning in practical terms as the interval in the example.

The present methods apply where single measurements are made on each ele-
ment of two different samples. This stands in contrast to problems of paired data
(where there are bivariate observations on a single sample). In the woodworking
case of Example 9, the datawere paired because both |eading-edge and trailing-edge
measurements were made on each piece. If leading-edge measurements were taken
from onegroup of itemsand trailing-edge measurementsfrom another, atwo-sample
(not a paired difference) analysis would bein order.

Small-Sample Comparisons of Two Means (Based on
Independent Samples from Normal Distributions)

The last inference methods presented in this section are those for the difference in
two means in cases where at least one of n, and n, is small. All of the discussion
for this problem islimited to cases where observations are normal. Andin fact, the
most straightforward methods are for cases where, in addition, the two underlying
standard deviations are comparable. The discussion begins with these.

A way of making at least arough check on the plausibility of “normal distribu-
tionswithacommon variance” model assumptionsin an applicationisto normal-plot
two samples on the same set of axes, checking not only for approximate linearity
but also for approximate equality of slope.

The data of W. Armstrong on spring lifetimes (appearing in the book by Cox
and Oakes) not only concern spring longevity at a 950 N/mm? stress level but
alsolongevity at 2900 N/mm? stresslevel. Table 6.7 repeats the 950 N/mm? data
from before and gives the lifetimes of ten springs at the 900 N/mm? stress level
aswell.
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Table 6.7

Spring Lifetimes under Two Different Levels of Stress
(103 cycles)

950 N/mm? Stress 900 N/mm? Stress

225,171, 198, 189, 189 216, 162, 153, 216, 225
135, 162, 135, 117, 162 216, 306, 225, 243, 189

° <o

o 10F . °
= A e 950 N/mm? data
§ - © 900 N/mm2 data
o o <o
R
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o ° o
_Eg -
8 ¢ ¢
B 10 o
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100 200 300

Life-length quantile (103 cycles)

Figure 6.15 Normal plots of spring lifetimes under
two different levels of stress

Figure 6.15 consists of normal plots for the two samples made on a single
set of axes. In light of the kind of variation in linearity and slope exhibited in
Figure 6.12 by the normal plots for samples of this size (n = 10) from asingle
normal distribution, there is certainly no strong evidence in Figure 6.15 against
the appropriatenessof an“ equal variances, normal distributions’ model for spring
lifetimes.

If the assumption that o; = o, is used, then the common valueis called o, and
it makes sensethat both s, and s, will approximate o. That suggeststhat they should
somehow be combined into a single estimate of the basic, baseline variation. As it
turns out, mathematical convenience dictates a particular method of combining or
pooling the individual s'sto arrive at asingle estimate of o.
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Definition 14 If two numerical samples of respective sizes n, and n, produce respective
sample variances s; and s, the pooled sample variance, 3, is the weighted
average of s? and s; where the weights are the sample sizes minus 1. That is,

— 2 = 2 - e B 3
g M-Dsi+(M-Dg _ M-Dsi+M-Dg .o
(n,— 1)+ (n, — 1) ng+ny,—2

The pooled sample standard deviation, s;, is the square root of s

S, is akind of average of s, and s, that is guaranteed to fall between the two
values s, and s,. Its exact form is dictated more by considerations of mathematical
convenience than by obvious intuition.

Example 8 In the spring-life case, making the arbitrary choice to call the 900 N/mm? stress

(continued) level condition 1 and the 950 N/mm? stress level condition 2, s, = 42.9 (10°
cycles) and s, = 33.1 (10% cycles). So pooling the two sample variances via
formula (6.32) produces

, (10— 1)(42.9° + (10 — 1)(33.1)°

— 1,468(10° cycles)?
(10— 1) + (10— 1) (107 cycles)

Then, taking the square root,

S> = /1,468 = 38.3(10° cycles)

In the argument leading to large-sample inference methods for u, — u,, the
guantity given in expression (6.28),

Xy = Xp = (g — 14p)

Z:
2 2
o 0.
o1 %
n n

was briefly considered. Inthe o, = 0, = o context, this can be rewritten as

7= XX = U= 1)) (6.33)

1 1
o |—+—
Ve Ny




Normal distributions
(0, = 0,) confidence
limits for v, — p,
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One could use the fact that expression (6.33) is standard normal to produce methods
for confidence interval estimation and significance testing. But for use, these would
require the input of the parameter . So instead of beginning with expression (6.28)
or (6.33), it is standard to replace o in expression (6.33) with s, and begin with the
guantity

()_(1_)?2)_(“1_/12)
1 1
S [+

n n,

T=

(6.34)

Expression (6.34) iscrafted exactly so that under the present model assumptions,
the variable (6.34) has a well-known, tabled probability distribution: the t distribu-
tionwithv = (n; — 1) + (n, — 1) = n, + n, — 2 degrees of freedom. (Notice that
the n, — 1 degrees of freedom associated with the first sample add together with
the n, — 1 degrees of freedom associated with the second to produce n, +n, — 2
overal.) This probability fact, again via the kind of reasoning developed in Sec-
tions 6.1 and 6.2, produces inference methods for p, — u,. That is, a two-sided
confidence interval for the difference 1, — 1, based on independent samples from
normal distributions with a common variance, has endpoints

1 1
1

where t is chosen such that the probability that the b 4ny-2 distribution assigns to
the interval between —t and t corresponds to the desired confidence. And under the

same conditions,

Hot g =y =#

can be tested using the statistic
X, — X, —#
T=1_"22 (6.36)
1 N 1
® n n

and at, in, 2 reference distribution.

We return to the spring-life case to illustrate small-sample inference for two
means. First consider testing the hypothesis of equal mean lifetimes with an
alternative of increased lifetime accompanying a reduction in stress level. Then
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consider making atwo-sided 95% confidence interval for the differencein mean
lifetimes.

Continuing to call the 900 N/mm? stresslevel condition 1 and the 950 N/mm?
stress level condition 2, from Table 6.7 X, = 215.1 and X, = 168.3, while (from
before) s, = 38.3. The five-step significance-testing format then gives the fol-
lowing:

1. Hyipqg — iy, =0.

2. Hipg —py, > 0.
(The engineering expectation is that condition 1 produces the larger life-

times.)
. X, —X,—=0
3. Thetest statisticis T =
1 N 1
% n, n

Thereferencedistributionist with 10 + 10 — 2 = 18 degreesof freedom,
and large observed t will count as evidence against H,.

4. The samples give

,_2151-1683-0 _

1 1
38.3 E—FE

2.7

5. The observed level of significance is P[at g random variable > 2.7],
which (according to Table B.4) is between .01 and .005. This is strong
evidence that the lower stress level is associated with larger mean spring
lifetimes.

Then, if the expression (6.35) is used to produce atwo-sided 95% confidence
interval, the choice of t as the .975 quantile of the t,g distribution is in order.
Endpoints of the confidence interval for u, — ., are

1 1
2151 — 168.3) + 2.101(38. —+ —
(215 68.3) 01(38.3) 10 + 10

46.8 + 36.0

> 10.8 x 103 cycles and 82.8 x 10° cycles
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The datain Table 6.7 provide enough information to establish convincingly that
increased stress is associated with reduced mean spring life. But although the
apparent sizeof that reduction when moving from the 900 N/mm? level (condition
1) to the 950 N/mm? level (condition 2) is 46.8 x 10 cycles, the variability
present in the dataiis large enough (and the sample sizes small enough) that only
aprecisionof £36.0 x 10% cyclescan beattached to thefigure 46.8 x 10° cycles.

Thereisno completely satisfactory answer to the question of how to doinference
for u, — u, whenitisnot sensibletoassumethat o, = o,. Themost widely accepted
(but approximate) method for the problemisonedueto Satterthwaitethat isrelated to
the large-sample formula (6.30). That is, while endpoints (6.30) are not appropriate
whenn, or n, issmall (they don’t produce actua confidence levels near the nominal
one), amodification of them is appropriate. Let

2 2\ 2
ng. n

a

51

(n, — LHn?

. (6.37)

5

(n, — Hn3

and for a desired confidence level, suppose that f is such that thet distribution with
D degrees of freedom assigns that probability to theinterval between —t and . Then

the two endpoints
2 2
X, — X, £ EAE.
n

can serve as confidence limits for n, — 1, with a confidence level approximating
the desired one. (One of the two limits (6.38) may be used as a single confidence
bound with the two-sided unconfidence level halved.)

(6.38)

Armstrong collected spring lifetime data at stress levels besides the 900 and 950
N/mm? levels used thus far in this example. Ten springs tested at 850 N/mm?
had lifetimeswith X = 348.1 and s = 57.9 (both in 10° cycles) and areasonably
linear normal plot. But taking the 850, 900, and 950 N/mm? data together, there
isaclear trend to smaller and more consistent lifetimes as stressisincreased. In
light of this fact, should mean lifetimes at the 850 and 950 N/mm? stress levels
be compared, use of a constant variance assumption seems questionable.
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Consider then what the Satterthwaite method (6.38) gives for two-sided
approximate 95% confidence limits for the difference in 850 and 950 N/mm?
mean lifetimes. Equation (6.37) gives

(57.9)° N (33.1)? 2
10 10

(57.9* (33.1%
9(100) * 9(100)

> D=

and (rounding “ degrees of freedom” down) the .975 quantile of thet, , distribution
is 2.145. So the 95% limits (6.38) for the (850 N/mm? minus 950 N/mm?)
difference in mean lifetimes (g5, — 1gg,) A€

7.9)2 1)?
(57.9) +(33)

348.1 - 168.3 £ 2.145\/

10 10
i.e.,
179.8 + 45.2
i.e.,
r 134.6 x 10 cycles and 225.0 x 10° cycles

The inference methods represented by displays (6.35), (6.36), and (6.38) are
the last of the standard one- and two-sample methods for means. In the next two
sections, parallel methods for variances and proportions are considered. But before
leaving this section to consider those methods, afinal comment is appropriate about
the small-sample methods.

This discussion has emphasized that, strictly speaking, the nominal properties
(in terms of coverage probabilities for confidence intervals and relevant p-value
declarations for significance tests) of the small-sample methods depend on the
appropriateness of exactly normal underlying distributions and (in the cases of the
methods (6.35) and (6.36)) exactly equal variances. Onthe other hand, when actually
applying the methods, rather crude probability-plotting checks have been used for
verifying (only) that the models are roughly plausible. According to conventional
statistical wisdom, the small-sample methods presented here are remarkably robust
to all but gross departures from the model assumptions. That is, aslong asthe model
assumptions are at least roughly a description of reality, the nominal confidence
levels and p-values will not be ridiculously incorrect. (For example, a nominally
90% confidence interval method might in reality be only an 80% method, but it will
not be only a20% confidence interval method.) So the kind of plotting that has been
illustrated here is often taken as adequate precaution against unjustified application
of the small-sample inference methods for means.
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S ON 3 X OISO . oo

1. What is the practical consequence of using a“nor- (8) Make a90% two-sided confidence interval for

mal distribution” confidenceinterval formulawhen
in fact the underlying data-generating mechanism
cannot be adequately described using anormal dis-
tribution? Say something more specific/informa-
tive than “an error might be made,” or “theinterval
might not bevalid.” (What, for example, canbesaid
about the real confidence level that ought to be as-
sociated with anominally 90% confidence interval
in such a situation?)

. Consider again the situation of Exercise 3 of Sec-
tion 3.1. (It concernsthe torques required to loosen
two particular bolts holding an assembly on apiece
of machinery.)

(8 What model assumptions are needed in order
to do inference for the mean top-bolt torque
here? Make a plot to investigate the necessary
distributional assumption.

(b) Assessthe strength of the evidence in the data
that the mean top-bolt torque differs from a
target value of 100 ft Ib.

() Make atwo-sided 98% confidence interval for
the mean top-bolt torque.

(d) What model assumptions are needed in order
to compare top-bolt and bottom-bolt torques
here? Make a plot for investigating the neces-
sary distributional assumption.

(e) Assess the strength of the evidence that there
is a mean increase in required torque as one
moves from the top to the bottom bolts.

(f) Give a 98% two-sided confidence interval for
the mean difference in torques between the top
and bottom bolts.

. The machine screw measurement study of DuToit,
Hansen, and Osborne referred to in Exercise 4 of
Section 6.1 involved measurement of diameters of
each of 50 screws with both digital and vernier-
scale calipers. For the student referred to in that
exercise, the differences in measured diameters
(digital minus vernier, with units of mm) had the
following frequency distribution:

Difference —-.03 —-02 -—-01 .00 .01 .02
Frequency 1 3 11 19 10 6

the mean differencein digital and vernier read-
ings for this student.

(b) Assess the strength of the evidence provided
by these differences to the effect that thereisa
systematic difference in the readings produced
by thetwo calipers (at least when employed by
this student).

(c) Briefly discuss why your answers to parts (a)
and (b) of this exercise are compatible. (Dis-
cuss how the outcome of part (b) could easily
have been anticipated from the outcome of part

@)

. B. Choi tested the stopping properties of various

bike tires on various surfaces. For one thing, he
tested both treaded and smooth tires on dry con-
crete. The lengths of skid marks produced in his
study under these two conditions were as follows
(in cm).

Treaded Smooth
365, 374, 376 341, 348, 349
391, 401, 402 355, 375, 391

(@ In order to make forma inferences about
Mrreaded — Msmooth 08SED on these data, what
must you be willing to use for model assump-
tions? Make a plot to investigate the reason-
ableness of those assumptions.

(b) Proceed under the necessary model assump-
tions to assess the strength of Choi’s evidence
of adifference in mean skid lengths.

(c) Make a95% two-sided confidence interval for
Mrresged — Msmooth @SSUMing that treaded and
smooth skid marks have the same variability.

(d) Usethe Satterthwaite method and make an ap-
proximate 95% two-sided confidence interval
fOr 11 cnded — Msmooth @SSUMing only that skid
mark lengths for both types of tires are nor-
mally distributed.
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6.4 One- and Two-Sample Inference for Variances

This text has repeatedly indicated that engineers must often pay close attention to
the measurement, the prediction, and sometimes the physical reduction of variability
associated with asystem response. Accordingly, it makes senseto consider inference
for a single variance and inference for comparing two variances. In doing so, two
more standard families of probability distributions—the x? distributions and the F

distributions—will be introduced.

6.4.1 Inference for the Variance of a Normal Distribution

The key step in developing most of the formal inference methods discussed in this
chapter has been to find a random quantity involving both the parameter (or func-
tion of parameters) of interest and sample-based guantities that under appropriate
assumptions can be shown to have somewell-known distribution. Inference methods
for a single variance rely on a type of continuous probability distribution that has

not yet been discussed in this book: the x 2 distributions.

is a continuous probability distribution with probability density

1

f — vi2p (Y
-t 20 (3)
0 otherwise

x(V/D-1g=x/2 forx >0

said to have the x2 distribution.

The x? (Chi-squared) distribution with degrees of freedom parameter, v,

If arandom variable has the probability density given by formula (6.39), itis

Form (6.39) isnot terribly inviting, but neither isit unmanageable. For instance,
it iseasy enough to use it to make the kind of plotsin Figure 6.16 for comparing the

shapes of the Xf distributions for various choices of v.

The Xf distribution has mean v and variance 2v. For v = 2, it is exactly the
exponential distribution with mean 2. For large v, the x 2 distributions look increas-
ingly bell-shaped (and can in fact be approximated by normal distributions with
matching means and variances). Rather than using form (6.39) to find x 2 probabil-
ities, it is more common to use tables of x? quantiles. Table B.5 is one such table.
Across the top of the table are several cumulative probabilities. Down the |eft side
of the table are values of the degrees of freedom parameter, v. In the body of the

table are corresponding quantiles.
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f(x)

v=1
'/V—Z

/V=3

v =5
v =8
e
[ s i S NN N O O B
5 10 15 X

Figure 6.16  x? probability densities for v = 1, 2,
3,5,and 8

Use of a Table of x? Distribution Quantiles

Supposethat V isarandom variablewith a X§ distribution. Consider first finding
the .95 quantile of V’s distribution and then seeing what Table B.5 says about
P[V < .4 and P[V > 10.0].

First, looking at the v = 3 row of Table B.5 under the cumulative probability
.95, one finds 7.815 in the body of the table. That is, Q(.95) = 7.815, or (equiv-
aently) P[V < 7.815] = .95. Then note that again using the v = 3 line of Table
B.5, .4 lies between the .05 and .10 quantiles of the x2 distribution. Thus,

.05 < P[V < 4] < .10
Finally, since 10.0 liesbetween the (v = 3line) entries of thetable corresponding
to cumulative probabilities .975 and .99 (i.e., the .975 and .99 quantiles of the X§

distribution), one may reason that

.01 < P[V > 10.0] < .025

The x 2 distributions are of interest here because of aprobability fact concerning

the behavior of the random variable s? if the observations from which it iscalculated
areiid normal random variables. Under such assumptions,

_ (n—1Ds°

0_2

X2 (6.40)
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test statistic for o2
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testing
Hyo? =#

has a x2_, distribution. This fact is what is needed to identify inference methods
foro.

That is, given a desired confidence level concerning o, one can choose x2
quantiles (say, L and U) such that the probability that a x2_, random variable will
take a value between L and U corresponds to that confidence level. (Typically, L
and U are chosen to “split the ‘unconfidence’ between the upper and lower Xﬁl
tails’—for example, using the .05 and .95 X,f_l quantilesfor L and U, respectively,
if 90% confidence is of interest.) Then, because the variable (6.40) has a x2 ,
distribution, the probability that

(n —1)s?
=5

0_2

L <U (6.41)

corresponds to the desired confidence level. But expression (6.41) is algebraically
equivalent to the eventuality that

(n — 1)s? e (n — 1)s?
U L

This then means that when an engineering data-generating mechanism can be
thought of as essentially equivalent to random sampling from a normal distribu-
tion, atwo-sided confidence interval for o2 has endpoints

_ 2 _ 2

where L and U are such that the X,f_l probability assigned to the interval (L, U)
corresponds to the desired confidence.

Further, there is an obvious significance-testing method for o2, That is, subject
to the same modeling limitations needed to support the confidence interval method,

Hoiazz#

can be tested using the statistic

_ (n—1Ds’

XZ
#

(6.43)

and a x?2_, reference distribution.

One feature of the testing methodology that needs comment concerns the com-
puting of p-values in the case that the alternative hypothesis is of the form H_:
o2 + #. (p-values for the one-sided aternative hypotheses H,: 02 < # and H,:
o? > #are, respectively, theleft and right x2_, tail areas beyond the observed value
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of X2.) The fact that the x? distributions have no point of symmetry leaves some
doubt for two-sided significance testing as to how an observed value of X2 should
be tranglated into a (two-sided) p-value. The convention that will be used here is
as follows. If the observed value is larger than the x2 ; median, the (two-sided)
p-value will be twice the x2_, probability to the right of the observed value. If the
observed value of X? issmaller than the 2, median, the (two-sided) p-value will
be twice the x2 , probability to the left of the observed value.

Knowing that display (6.42) gives endpoints for a confidence interval for o2
also leads to confidence intervals for functions of o2, The square roots of the values
in display (6.42) give endpoints for aconfidenceinterval for the standard deviation,
o. And six times the square roots of the valuesin display (6.42) could be used as
endpoints of a confidence interval for the “60™ capability of a process.

Inference for the Capability of a CNC Lathe

Cowan, Renk, Vander Leest, and Yakes worked with a manufacturer of high-
precision metal parts on a project involving a computer numerically controlled
(CNC) lathe. A critical dimension of one particular part produced on the lathe
had engineering specifications of the form

Nominal dimension & .0020 in.

An important practical issue in such situations is whether or not the machine is
capable of meeting specifications of this type. One way of addressing thisisto
collect dataand do inference for the intrinsic machine short-term variability, rep-
resented as a standard deviation. Table 6.8 gives values of the critical dimension
measured on 20 parts machined on the lathe in question over athree-hour period.
The units are .0001 in. over nominal.

Table 6.8
Measurements of a Dimension on 20 Parts
Machined on a CNC Lathe

Measured Dimension
(.0001 in. over nominal)  Frequency

8 1
9 1
10 10
11 4
12 3
13 1
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30

15+

enve
(XX}

Standard normal quantile

15} .
| | | | | |
80 90 100 110 120 130

Measurement quantile (.0001 in. over nominal)

Figure 6.17 Normal plot of measurements on 20 parts
machined on a CNC lathe

Suppose one takes the £.0020 in. engineering specifications as a statement
of worst acceptable” +30" machine capability, accordingly usesthedatain Table
6.8, and (since %’ ~ .0007) testsH,: o = .0007. The relevance of the methods
represented by displays (6.42) and (6.43) depends on the appropriateness of a
normal distribution as a description of the critical dimension (as machined in the
three-hour period in question). In this regard, note that (after allowing for the
fact of the obvious discreteness of measurement introduced by gauging read to
.0001 in.) the normal plot of the data from Table 6.8 shown in Figure 6.17 is
not distressing in its departure from linearity. Further, at least over periods where
manufacturing processes like the one in question are physicaly stable, normal
distributions often prove to be quite adequate models for measured dimensions
of mass-produced parts. Other evidence available on the machining process in-
dicated that for practical purposes, the machining process was stable over the
three-hour period in question. So one may proceed to use the normal-based
methods, with no strong reason to doubt their relevance.

Direct calculation with the data of Table 6.8 showsthat s = 1.1 x 10~%in.
So, using the five-step significance-testing format produces the following:

1. Hyio = .0007.

2. H,:o > .0007.
(The most practical concern is the possibility that the machine is not
capable of holding to the stated tolerances, and this is described in terms
of o larger than standard.)

3. Thetest statisticis

w2 _ (- 1)s?
~(.0007)2
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The reference distribution is x2 withv = (20 — 1) = 19 degrees of free-
dom, and large observed values x? (resulting from large values of s2) will
congtitute evidence against H,.

4. The sample gives

2 — (20— 1)(00011)?
© (0007

5. Theobservedlevel of significanceis P[a ng random variable > .5]. Now
.5 issmaller than the .005 quantile of the Xlzg distribution, so the p-value
exceeds .995. There is nothing in the data in hand to indicate that the
machine isincapable of holding to the given tolerances.

Consider, too, making a one-sided 99% confidence interval of the form

(0, #) for 30. According to Table B.5, the .01 quantile of the ng distribution is
L = 7.633. So using display (6.42), a 99% upper confidence bound for 3o is

=5.0x 10~%in.

3 (20— 1)(1.1 x 107%in.)?
7.633

When this is compared to the +20 x 10~# in. engineering requirement, it shows
that the lathe in question is clearly capable of producing the kind of precision
specified for the given dimension.

Inference for the Ratio of Two Variances (Based on
Independent Samples from Normal Distributions)

To move from inference for a single variance to inference for comparing two vari-
ancesrequirestheintroduction of yet another new family of probability distributions:
(Snedecor’s) F distributions.

The (Snedecor) F distribution with numerator and denominator degrees
of freedom parameters v, and v, is a continuous probability distribution
with probability density

f(x) =

2
r v+, V1 "/ x(1/2-1
2 v,
(v1+v5)/2
¥\ 1t2
r(3)r(z) (s
2 2 v,

0 otherwise

forx >0

(6.44)
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Relationship between
F, ,andF

1°Y2 2°"1
quantiles

If arandom variable has the probability density given by formula (6.44), itis
sadtohavetheF, , distribution.

As Figure 6.18 reveals, the F distributions are strongly right-skewed distribu-
tions, whose densities achieve their maximum values at arguments somewhat less
than 1. Roughly speaking, the smaller the values v, and v,, the more asymmetric
and spread out is the corresponding F distribution.

Direct use of formula (6.44) to find probabilitiesfor the F distributions requires
numerical integration methods. For purposes of applying the F distributions in
statistical inference, the typical path is to instead make use of either statistical
software or some fairly abbreviated tables of F distribution quantiles. Tables B.6
aretablesof F quantiles. The body of aparticular one of thesetables, for asingle p,
gives the F distribution p quantiles for various combinations of v, (the numerator
degrees of freedom) and v, (the denominator degrees of freedom). The values of
v, are given across the top margin of the table and the values of v, down the left
margin.

Tables B.6 give only p quantiles for p larger than .5. Often F distribution
quantiles for p smaller than .5 are needed as well. Rather than making up tables of
such values, it is standard practice to instead make use of a computational trick. By
using a relationship between F, |~ and FUZ’Ul guantiles, quantiles for small p can

be determined. If onelets Q, . Stand for the F, .., quantile function and Q

Vo,V
stand for the quantile function for the F, distribution, o

1
P ==—""7 (6.45)

Qv V.
12 Q,,.,1=P)

T v,=10 v,=100
v,=10 v,=10
v, =10 v,=4

v,=4 v,=4

| |
10 20 3.0 X

Figure 6.18 Four different F probability densities
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Fact (6.45) means that a small lower percentage point of an F distribution may be
obtained by taking the reciprocal of a corresponding small upper percentage point
of the F distribution with degrees of freedom reversed.

Example 13 Use of Tables of F Distribution Quantiles

Suppose that V is an F; ¢ random variable. Consider finding the .95 and .01
guantilesof V' sdlstrlbutlon and then seeing what Tables B.6 reveal about P[V >
4.0] and P[V < .3].

First, adirect look-up inthe p = .95 table of quantiles, inthe v, = 3 column
and v, = 5 row, produces the number 5.41. That is, Q(.95) = 5.41, or (equiva-
lently) P[V < 5.41] = .95.

To find the p = .01 quantile of the F, 5 distribution, expression (6.45) must

be used. That is,
1
Q35(.01) = =——=
5 Qs5(-99)
o that using the v, = 5 column and v, = 3 row of the table of F .99 quantiles,
one has
1
Qas(OD = 2524 =

Next, considering P[V > 4.0], one finds (using the v, = 3 columns and
v, = 5 rows of Tables B.6) that 4.0 lies between the .90 and .95 quantiles of the
F, 5 distribution. That i,

90 < P[V <4.0] <.95
so that
.05 < P[V >4.0] < .10

Finally, considering P[V < .3], notethat none of the entriesin TablesB.6 is
lessthan 1.00. So to place the value .3 in the F; 5 distribution, one must locateits
reciprocal, 3.33(= 1/.3), inthe F; 5 distri bution and then make use of expression
(6.45). Using the v; = 5 columns and v, = 3 rows of Tables B.6, one finds that
3.33isbetweenthe .75 and .90 quantiles of the F; , distribution. So by expression
(6.45), .3 is between the .1 and .25 quantiles of the F, 5 distribution, and

10 < PV < .31 <.25
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The extra effort required to find small F distribution quantiles is an artifact
of standard table-making practice, rather than being any intrinsic extra difficulty
associated with the F distributions. One way to eliminate the difficulty entirely is
to use standard statistical software or a statistical calculator to find F quantiles.

The F distributions are of use here because a probability fact tiesthe behavior of
ratios of independent sample variances based on samples from normal distributions
to the variances o2 and o2 of those underlying distributions. That is, when s? and
s5 come from independent samples from normal distributions, the variable

F— (6.46)

Sl
NS

hasan F, _;, _, distribution. (s{ has n; — 1 associated degrees of freedom and

is in the numerator of this expression, while s5 has n, — 1 associated degrees of
freedom and isin the denominator, providing motivation for the language introduced
in Definition 16.)

This fact is exactly what is needed to produce formal inference methods for
the ratio o /o2, For example, it is possible to pick appropriate F quantiles L
and U such that the probability that the variable (6.46) falls between L and U
corresponds to a desired confidence level. (Typically, L and U are chosen to “split
the “unconfidence’ " between the upper and lower F,, _, , _, tails) But

2 2
L < iz . 0—3 <U
o1 %
isalgebraically equivalent to
2 2 2
s _a_1s
Us o L g

That is, when a data-generating mechanism can be thought of as essentially equiv-
alent to independent random sampling from two normal distributions, a two-sided
confidence interval for /o2 has endpoints

2 2
and
U.s? L.s?

(6.47)

where L and U are (F, _, , _; quantiles) such that the F, _, | _; probability as-
1 -2 2
signed to theinterval (L, U) corresponds to the desired confidence.
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In addition, there is an obvious significance-testing method for /02, That
is, subject to the same modeling limitations as needed to support the confidence
interval method,

0_2
Hy: = =# (6.48)
03
can be tested using the statistic
2 /a2
Fo S/ (6.49)

and an Fnl_lynz_1 reference distribution. (The choice of # = 1 in displays (6.48)
and (6.49), so that the null hypothesis is one of equality of variances, is the only
one commonly used in practice.) p-values for the one-sided alternative hypotheses
H, 0f/0? < #andH,: o7 /of > #are(respectively) theleftandright F, | ., tail
areas beyond the observed values of the test statistic. For the two-si ded alternative
hypothesisH,: 02/0Z # #, the standard convention isto report twice the Fo 1,1
probability to theright of the observed f if f > 1andto report twicethe Fnl—l,nz—l

probability to the left of the observed f if f < 1.

Comparing Uniformity of Hardness Test Results for Two Types of Steel

Condon, Smith, and Woodford did some hardness testing on specimens of 4%
carbon steel. Part of their data are given in Table 6.9, where Rockwell hardness
measurements for ten specimens from a lot of heat-treated steel specimens and
five specimens from alot of cold-rolled steel specimens are represented.
Consider comparing measured hardness uniformity for these two steel types
(rather than mean hardness, as might have been donein Section 6.3). Figure 6.19
shows side-by-side dot diagrams for the two samples and suggests that there
is alarger variability associated with the heat-treated specimens than with the
cold-rolled specimens. The two normal plotsin Figure 6.20 indicate no obvious
problems with amodel assumption of normal underlying distributions.

Table 6.9

Rockwell Hardness Measurements for Steel Specimens
of Two Types

Heat-Treated Cold-Rolled

32.8,44.9,344,37.0,23.6, 21.0,245,1909, 14.8,18.8

29.1,395,30.1, 29.2,19.2
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Example 14 Heat-treated
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Figure 6.19 Dot diagrams of hardness for heat-treated and cold-rolled
steels

12+

00

Standard normal quantile

| | | | |
160 240 320 400 480

Heat-treated hardness quantile

24+

12

0.0

Standard normal quantile

| | | | |
160 240 320 400 480

Cold-rolled hardness quantile

Figure 6.20 Normal plots of hardness for
heat-treated and cold-rolled steels

Then, arbitrarily choosing to call the heat-treated condition number 1 and
the cold-rolled condition 2, s, = 7.52 and s, = 3.52, and afive-step significance
test of equality of variances based on the variable (6.49) proceeds as follows:

0 2
o)

1. H =1
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(If there is any materials-related reason to pick a one-sided alternative
hypothesis here, the authors don’t know it.)

3. Thetest statisticis

F=

Thereferencedistributionisthe Fy , distribution, and both large observed
f and small observed f will constitute evidence against H,.

4. The samples give

(1527
(3527

5. Since the observed f is larger than 1, for the two-sided alternative, the
p-vaueis

2P[an Fy , random variable > 4.6]

From Tables B.6, 4.6 isbetween the F, , distribution .9 and .95 quantiles,
so the observed level of significance is between .1 and .2. This makes
it moderately (but not completely) implausible that the heat-treated and
cold-rolled variabilities are the same.

In an effort to pin down the relative sizes of the heat-treated and cold-rolled
hardness variabilities, the square roots of the expressionsin display (6.47) may be
used to give a 90% two-sided confidence interval for o, /o,. Now the .95 quantile
of the Fy , distribution is 6.0, while the .95 quantile of the F49 distribution is

3.63, implying that the .05 quantile of the Fy , distribution is 7. Thus, 2 90%
confidence interval for the ratio of standard deviations o, /o, has endp0| nts

| (7.52)? and (7.52)2
6.0(3.52)? (1/3.63)(3.52)°

.87 and 4.07

That is,
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Example 15

Caveats about
inferences for
variances

The fact that the interval (.87, 4.07) covers values both smaller and larger than 1
indicatesthat the datain hand do not provide definitive evidence even asto which
of the two variabilities in material hardnessis larger.

One of the most important engineering applications of the inference methods
represented by displays (6.47) through (6.49) is in the comparison of inherent
precisions for different pieces of equipment and for different methods of operating
asingle piece of equipment.

Comparing Uniformities of Operation of Two Ream Cutters

Abassi, Afinson, Shezad, and Yeo worked with acompany that cutsrolls of paper
into sheets. The uniformity of the sheet lengths is important, because the better
the uniformity, the closer the average sheet length can be set to the nominal value
without producing undersized sheets, thereby reducing the company’s giveaway
costs. The students compared the uniformity of sheets cut on a ream cutter
having amanual brake to the uniformity of sheets cut on aream cutter that had an
automatic brake. The basis of that comparison was estimated standard deviations
of sheet lengths cut by the two machines—just the kind of information used to
frame formal inferences in this section. The students estimated o, .4/ % automatic
to be on the order of 1.5 and predicted a period of two years or less for the
recovery of the capital improvement cost of equipping all the company’s ream
cutters with automatic brakes.

The methods of this section are, strictly speaking, normal distribution methods.
It is worthwhile to ask, “How essential isthis normal distribution restriction to the
predictable behavior of these inference methods for one and two variances?’ There
isaremark at the end of Section 6.3 to the effect that the methods presented there for
means are fairly robust to moderate violation of the section’s model assumptions.
Unfortunately, such is not the case for the methods for variances presented here.

These are methods whose nominal confidence levelsand p-values can befairly
badly misleading unless the normal models are good ones. This makes the kind of
careful data scrutiny that has been implemented in the examples (in the form of
normal-plotting) essential to the responsible use of the methods of this section. And
it suggests that since normal-plotting itself isn't typically terribly revealing unless
the sample size involved is moderate to large, formal inferences for variances will
be most safely made on the basis of moderate to large normal-looking samples.

The importance of the “normal distribution(s)” restriction to the predictable
operation of the methods of this section is not the only reason to prefer large sample
sizesfor inferenceson variances. A little experience with theformulasin thissection
will convince the reader that (even granting the appropriateness of normal models)
small samples often do not prove adequate to answer practical questions about
variances. x2 and F confidence intervals for variances and variance ratios based on
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small samples can be so big asto be of little practical value, and the engineer will
typically bedriven to large sample sizesin order to solve variance-rel ated real -world
problems. This is not in any way a failing of the present methods. It is simply a
warning and quantification of the fact that learning about variances requires more
data than (for example) learning about means.

1. Return to data on Choi’s bicycle stopping distance
given in Exercise 4 of Section 6.3.

@

(b)

(©)

(d)

Operating under the assumption that treaded
tires produce normally distributed stopping
distances, give a two-sided 95% confidence
interval for the standard deviation of treaded
tire stopping distances.

Operating under the assumption that smooth
tires produce normally distributed stopping
distances, give a 99% upper confidence bound
for the standard deviation of smooth tire stop-
ping distances.

Operating under the assumption that both
treaded and smooth tires produce normally dis-
tributed stopping distances, assess the strength
of Choi’s evidence that treaded and smooth
stopping distances differ in their variability.
(Use Hy: 07caged = Tsmootn a_nd Hy Orreaged 7
Ogmooth @Nd show the whole five-step format.)

Operating under the assumption that both

treaded and smooth tiresproduce normally dis-
tributed stopping distances, give a 90% two-
sided confidence interval for the ratio o+, o e/

9 Smooth

2. Consider again the situation of Exercise 3 of Sec-
tion 3.1 and Exercise 2 of Section 6.3. (It concerns
the torques required to loosen two particular bolts
holding an assembly on a piece of machinery.)

@

(b)

©

Operating under the assumption that top-bolt
torques are normally distributed, give a 95%
lower confidence bound for the standard devi-
ation of the top-boalt torques.

Translate your answer to part (a) into a 95%
lower confidence bound on the “60 process
capability” of the top-bolt tightening process.
It is not appropriate to use the methods (6.47)
through (6.49) and the data given in Exercise
3 of Section 3.1 to compare the consistency of
top-bolt and bottom-bolt torques. Why?

6.5 One- and Two-Sample Inference

for Proportions

Themethods of formal statistical inferencein the previousfour sectionsare useful in
theanalysisof quantitative data. Occasionally, however, engineering studies produce
only qualitative data, and one is faced with the problem of making properly hedged
inferencesfrom such data. This section considers how the samplefraction p (defined
in Section 3.4) can be used as the basis for formal statistical inferences. It begins
with the use of p from a single sample to make formal inferences about a single
system or population. The section then treats the use of sample proportions from
two samples to make inferences comparing two systems or populations.
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6.5.1

Mean of the
sample proportion

Variance of the
sample proportion

Inference for a Single Proportion

Recall from display (3.6) (page 104) that the notation p is used for the fraction
of a sample that possesses a characteristic of engineering interest. A sample of
pellets produced by a pelletizing machine might prove individually conforming or
nonconforming, and p could be the sample fraction conforming. Or in another case,
a sample of turned steel shafts might individualy prove acceptable, reworkable, or
scrap; p could be the sample fraction reworkable.

If formal statistical inferences are to be based on p, one must think of the
physical situationin such away that p isrelated to some parameter characterizing it.
Accordingly, thissection considers scenarioswhere p isderived from anindependent
identical success/failuretrials data-generating mechanism. (See again Section 5.1.4
to review this terminology.) Applications will include inferences about physically
stable processes, where p is a system’s propensity to produce an item with the
characteristic of interest. And they will include inferences drawn about population
proportions p in enumerative contexts involving large populations. For example,
the methods of this section can be used both to make inferences about the routine
operation of a physically stable pelletizing machine and also to make inferences
about the fraction of nonconforming machine parts contained in a specific lot of
10,000 such parts.

Review of the material on independent success/failure trials (and particularly
the binomial distributions) in Section 5.1.4 should convince the reader that

X = np = the number of items in the sample with the characteristic of interest

has the binomial (n, p) distribution. The sample fraction p is just a scale change
away from X = np, sofactsabout the distribution of X haveimmediate counterparts
regarding the distribution of p. For example, Section 5.1.4 stated that the mean and
variance for the binomial (n, p) distribution are (respectively) np and np(1 — p).
This (together with Proposition 1 in Chapter 5) impliesthat p has

R X 1 1
Ep_E(F)_HEX_H-np_p (6.50)
and
2
Varp=var (2) = (1) varx = POZP PSP sy
n n n n

Equations (6.50) and (6.51) provide areassuring picture of the behavior of the statis-
tic p. They show that the probability distribution of p is centered at the underlying
parameter p, with avariability that decreases as n increases.
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Means and Standard Deviations of Sample Fractions
of Reworkable Shafts

Return again to the case of the performance of a process for turning steel shafts.
Assume for the time being that the process is physically stable and that the
likelihood that a given shaft is reworkable is p = .20. Consider p, the sample
fraction of reworkable shaftsin samples of first n = 4 and then n = 100 shafts.
Expressions (6.50) and (6.51) show that for the n = 4 sample size,

Ep=p=.2
Nap \/ p(ln— P _ \/ (.2{4«8) _
Similarly, for the n = 100 sample size,
Ep=p=.2

Comparing the two standard deviations, it is clear that the effect of a change
in sample size from n = 4 to n = 100 is to produce a factor of 5 (= ,/100/4)
decrease in the standard deviation of p, while the distribution of p is centered at

p for both sample sizes.

The basic new insight needed to provide large-sampl e inference methods based
on p isthefact that for large n, the binomia (n, p) distribution (and therefore also
the distribution of p) is approximately normal. That is, for large n, approximate
probabilities for X = np (or p) can be found using the normal distribution with
mean . = np (or 4 = p) and variance % = np(1 — p) (or o2 = 2R,

I n the shaft-turning example, consider the probability that for asampleof n = 100
shafts, p > .25. Notice that p > .25 is equivalent here to the eventuality that
np > 25. So in theory the form of the binomial probability function given in
Definition 9 of Chapter 5 could be used and the desired probability could be
evaluated exactly as

P[p > .25] = P[X > 25] = f(25) + f(26) + --- + f(99) + f(100)

But instead of making such laborious calculations, it is common (and typically
adequate for practical purposes) to settle instead for a normal approximation to
probabilities such as this one.
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Example 16
(continued)

Conditions for the
normal approximation
to the binomial

For n = 100, the approximate
distribution of p is normal with
mean .2 and standard deviation .04

Approximate
probability that
p=.25

A5 2 .25

Figure 6.21 Approximate probability distribution
for p

Figure 6.21 shows the normal distribution with mean © = p = .2 and stan-
dard deviation o = /p(1 — p)/n = .04 and the corresponding probability as-
signed to the interval [.25, co). Conversion of .25 to a z-value and then an
approximate probability proceeds as follows:

25-Ep 25— 2
2= P —125

JVVarp 04

P[p > .25] ~ 1 — &(1.25) = .1056 ~ .11

The exact value of P[p > .25] (calculated to four decima places using the
binomial probability function) is .1314. (This can, for example, be obtained
using the MINITAB routine under the “ Cal c/Probability Distributions/Binomial”
menu.)

The statement that for large n, the random variable p is approximately normal
is actually aversion of the central limit theorem. For a given n, the approximation
is best for moderate p (i.e., p near .5), and a common rule of thumb is to require
that both the expected number of successes and the expected number of failures
be at least 5 before making use of a normal approximation to the binomial (n, p)
distribution. Thisis arequirement that

np>5 and nl-p)>5

which amounts to a requirement that

5<np=n-5 (6.52)

(Notice that in Example 16, np = 100(.2) = 20 and 5 < 20 < 95.)
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An dternative, and typicaly somewhat stricter rule of thumb (which comes
from arequirement that the mean of the binomial distribution be at least 3 standard
deviations from both 0 and n) isto require that

9<(n+9p<n (6.53)

before using the normal approximation. (Againin Example 16, (n + 9)p = (100 +
9)(.2) = 21.8 and 9< 21.8 < 100.)
The approximate normality of p for large n impliesthat for largen,

p-p

/P —p)
n

is approximately standard normal. This and the reasoning of Section 6.2 then imply
that the null hypothesis

Z= (6.54)

Hyp=#

can be tested using the statistic

_b-#
[#(1—#)
n

and a standard normal reference distribution. Further, reasoning parallel to that
in Section 6.1 (beginning with the fact that the variable (6.54) is approximately
standard normal), leads to the conclusion that an interval with endpoints

D+ z/ w (6.56)

(where z is chosen such that the standard normal probability between —z and z
corresponds to adesired confidence) isamathematically valid two-sided confidence
interval for p.

However, the endpoints indicated by expression (6.54) are of no practical use
as they stand, since they involve the unknown parameter p. There are two standard
ways of remedying this situation. One draws its motivation from the simple plot
of p(1— p) shown in Figure 6.22. That is, from Figure 6.22 it is easy to see that
p(l— p) < (.5)2 = .25, so the plus-or-minus part of formula (6.56) has (for z > 0)

[p(l—p) 1
z - 522\/ﬁ

Z= (6.55)
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Large-sample
conservative
confidence limits
forp

Large-sample
confidence limits
for p

pP(1-p)

A0+

Figure 6.22 Plot of p(1 — p) versus p

Thus, modifying the endpointsin formula(6.56) by replacing the plus-or-minus part
with £2/2,/n produces an interval that is guaranteed to be as wide as necessary to
give the desired approximate confidence level. That is, the interval with endpoints

A

P+ Zz—\l/ﬁ (6.57)

where z is chosen such that the standard normal probability between —z and z
corresponds to a desired confidence, is a practically usable large-n, two-sided,
conservative confidenceinterval for p. (Appropriate use of only one of the endpoints
in display (6.57) gives aone-sided confidence interval.)

The other common method of dealing with the fact that the endpointsinformula
(6.56) are of no practical useisto begin the search for aformulafrom a point other
than the approximate standard normal distribution of the variable (6.54). For large
n, not only isthe variable (6.54) approximately standard normal, but so is

A

p—p
/P — P)
n

And the denominator of the quantity (6.58) (which amountsto an estimated standard
deviation for p) isfree of the parameter p. So when manipulations parallél to those
in Section 6.1 are applied to expression (6.58), the conclusion is that the interval
with endpoints

Z= (6.58)

Ptz @ (6.59)

can be used as atwo-sided, large-n confidence interval for p with confidence level
corresponding to the standard normal probability assigned to the interval between
—z and z. (One-sided confidence limits are obtained in the usual way, using only
one of the endpoints in display (6.59) and appropriately adjusting the confidence
level.)
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Inference for the Fraction of Dry Cells with Internal Shorts

The article “A Case Study of the Use of an Experimental Design in Preventing
Shorts in Nickel-Cadmium Cells’ by Ophir, EI-Gad, and Snyder (Journal of
Quality Technology, 1988) describes a series of experiments conducted to find
how to reduce the proportion of cells scrapped by a battery plant because of
internal shorts. At the beginning of the study, about 6% of the cells produced
were being scrapped because of internal shorts.

Among a sample of 235 cells made under a particular trial set of plant
operating conditions, 9 cells had shorts. Consider what formal inferences can be
drawn about the set of operating conditions based on such data. p = %5 = .038,
so two-sided 95% confidence limits for p, are by expression (6.59)

038 + 1.96\/ (.038)(1 — .038)
235
i.e.,
038 + .025
ie,
013 and 063 (6.60)

Notice that according to display (6.60), athough p = .038 < .06 (and thus indi-
cates that the trial conditions were an improvement over the standard ones), the
casefor thisisnot airtight. The datain hand allow some possibility that p for the
trial conditions even exceeds .06. And the ambiguity is further emphasized if the
conservative formula (6.57) isused in place of expression (6.59). Instead of 95%
confidence endpointsof .038 + .025, formula(6.57) givesendpoints.038 + .064.
Toillustratethe significance-testing method represented by expression (6.55),
consider testing with an alternative hypothesis that the trial plant conditions are
an improvement over the standard ones. One then has the following summary:

1. Hy: p = .06.
2. H;p < .06.
3. Thetest statisticis

p—.06

(.06)(1 — .06)
n

The reference distribution is standard normal, and small observed values
z will count as evidence against H,,.

Z =
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Sample size
determination
for estimating p

Example 17
(continued)

4. The sample gives

.038 — .06

(06)(1— .06
V235

5. The observed level of significanceisthen

—-142

®(—1.42) = .08

Thisisstrong but not overwhel ming evidencethat thetrial plant conditions
are an improvement on the standard ones.

It needs to be emphasized again that these inferences depend for their practi-
cal relevance on the appropriateness of the “ stabl e process/independent, identical
trials” model for the battery-making process and extend only as far as that de-
scription continues to make sense. It isimportant that the experience reported in
the article was gained under (presumably physically stable) regular production,
so thereis reason to hope that a single “independent, identical trials’” model can
describe both experimental and future process behavior.

Section 6.1 illustrated the fact that the form of the large-n confidence interval
for amean can be used to guide sample-size choices for estimating . The sameis
true regarding the estimation of p. If one (1) hasin mind a desired confidence level,
(2) plans to use expression (6.57) or has in mind a worst-case (largest) expectation
for p(1 — p) in expression (6.59), and (3) has a desired precision of estimation of
p, it is a simple matter to solve for a corresponding sample size. That is, suppose
that the desired confidence level dictatesthe use of the value zin formula (6.57) and
one wants to have confidence limits (or alimit) of theform p £ A. Setting

and solving for n produces the requirement

"= (z)

Return to the nicad battery case and suppose that for some reason a better fix on
the implications of the new operating conditions was desired. In fact, suppose
that p isto be estimated with a two-sided conservative 95% confidence interval,
and +.01 (fraction defective) precision of estimation is desired. Then, using the
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plus-or-minus part of expression (6.57) (or equivalently, the plus-or-minus part
of expression (6.59) under the worst-case scenario that p = .5), oneisled to set

1
.01=196—
2/n

From this, a sample size of
n ~ 9,604

isrequired.

In most engineering contextsthis samplesizeisimpractically large. Rethink-
ing the cal cul ation by planning the use of expression (6.59) and adopting the point
of view that, say, 10%isaworst-case expectationfor p (and thus.1(1 — .1) = .09
isaworst-case expectation for p(1 — p)), one might be led instead to set

.0l =196/ w

However, solving for n, one has
n ~ 3,458

which is still beyond what istypically practical.

Themoral of these cal culationsisthat something hasto give. Thekind of large
confidence and somewhat precise estimation requirements set at the beginning
here cannot typically be ssimultaneously satisfied using a realistic sample size.
One or the other of the requirements must be relaxed.

The sample-size conclusions just illustrated are typical, and they justify two
important points about the use of qualitative data. First, qualitative data carry less
information than corresponding numbers of quantitative data (and therefore usually
require very large samples to produce definitive inferences). This makes measure-
ments generally preferable to qualitative observations in engineering applications.
Second, if inferences about p based on even large values of n are often disappoint-
ing in their precision or reliability, there is little practical motivation to consider
small-sample inference for p in abeginning text like this.

Inference for the Difference Between Two Proportions

(Based on Independent Samples)

Two separately derived sample proportions p, and p,, representing different pro-
cesses or populations, can enable formal comparison of those processes or pop-
ulations. The logic behind those methods of inference concerns the difference
P, — b, If



408 Chapter6

Mean of a
difference in
sample proportions

Variance of a
difference in
sample proportions

Approximate
normality of
’:71 o ’:72

Example 16
(continued)

Introduction to Formal Statistical Inference

1. the “independent, identical success-failure trials’ description applies sepa-
rately to the mechanisms that generate two samples,

2. the two samples are reasonably described as independent, and
3. bothn, and n, arelarge,

avery simple approximate description of the distribution of p, — p, results.
Assuming p, and p, are independent, Proposition 1 in Chapter 5 and the

discussion in this section concerning the mean and variance of a single sample
proportion imply that p, — p, has

E(p,— P) =EpPpy+ (DEP,=p,— P, (6.61)

and

pl(l_ pj_) + pz(l_ pz)

Var(py—py) = ()2 Var p;+(=1)* Var p,= —=— ;
1 2

(6.62)

Then the approximate normality of p, and p, for large sample sizes turns out to
imply the approximate normality of the difference p, — p,.

Consider again the turning of steel shafts, and imagine that two different, physi-
cally stable lathes produce reworkable shafts at respective rates of 20 and 25%.
Then suppose that samples of (respectively) n, = 50 and n, = 50 shafts pro-
duced by the machines are taken, and the reworkable sample fractions p, and
p, are found. Consider approximating the probability that p, > p, (i.e., that
Apl - Apz = 0)-

Using expressions (6.61) and (6.62), the variable p, — p, has

E(p, — P, =.20-.25=-.05
and

JVva(p, — py) = \/('20)(20_ 20 + ('25)(;0_ -2) = +/.00695 = .083

Figure 6.23 shows the approximately normal distribution of p, — p, andthearea
corresponding to P[p; — p, > 0]. The z-value corresponding to p, — p, = 0is

,— 0—EM® —Pp) 0-(=05

JVad, — py .083

.60

s0 that

P[P, — P, > 0] =1 — &(.60) = .27
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The approximate distribution
of p, —f, is normal with
mean —05 and standard

deviation .083

Approximate
probability that
[

| | | | |
-20 -10 0 .10

Figure 6.23 Approximate probability distribution for
:61 - :62

Thelarge-sample approximate normality of p, — p, transatesto therealization
that

bl_ bz_ (pl_ pz)
\/pl(l_ pl) + pz(l_ pz)

n

7 (6.63)

1 n,

isapproximately standard normal, and this observation formsthe basisfor inference
concerning p, — p,. First consider confidence interval estimation for p; — p,. The
familiar argument of Section 6.1 (beginning with the quantity (6.63)) shows

1- 1-
o, by \/ Pi(1—P) , P(1- Py 664
n, n,

to be a mathematically correct but practically unusable formula for endpoints of a
confidenceinterval for p; — p,. Conservative modification of expression (6.64), via
replacement of both p, (1 — p,) and p,(1 — p,) with .25, shows that the two-sided
interval with endpoints

1/1 1
p,—pPotz -/ —+— 6.65
I (6.65)

is a large-sample, two-sided, conservative confidence interval for p, — p, with
confidence at least that corresponding to the standard normal probability between
—z and z. (One-sided intervals are obtained from expression (6.65) in the usual

way.)



410 Chapter 6 Introduction to Formal Statistical Inference

Large-sample
confidence limits
forp, —p,

Example 18
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In addition, in by now familiar fashion, beginning with the fact that for large
sample sizes, the modification of the variable (6.63),

bl_ ﬁz_(pl_ pz)

bl(l_ pl) + bz(l_ r)z)
n n2

Z= (6.66)

1

is approximately standard normal leads to the conclusion that the interval with
endpoints

P P,(1— Py | P(1—DPy)
pl—pziz\/ 1 . 1y =2 . 2 (6.67)
1 2

is a large-sample, two-sided confidence interval for p, — p, with confidence cor-
responding to the standard normal probability assigned to the interval between —z
and z. (Again, use of only one of the endpoints in display (6.67) gives a one-sided
confidence interval.)

Comparing Fractions Conforming for Two Methods
of Operating a Pelletizing Process

Greiner, Grim, Larson, and Lukomski studied a number of different methods of
running a pelletizing process. Two of these involved a mix with 20% reground
powder with respectively small (condition 1) and large (condition 2) shot sizes.
Of n; =n, =100 pellets produced under these two sets of conditions, sam-
ple fractions p, = .38 and p, = .29 of the pellets conformed to specifications.
Consider making a 90% confidence interval for comparing the two methods of
process operation (i.e., an interval for p, — p,).
Use of expression (6.67) shows that the interval with endpoints

—-.38) (2991-.29
0 + 100

38 —-.29+ 1.645\/('38)(:&)

.09+ .109

> ~.019 and .199 (6.68)
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is a 90% confidence interval for p, — p,, the difference in long-run fractions
of conforming pellets that would be produced under the two sets of conditions.
Notice that although appearances are that condition 1 has the higher associated
likelihood of producing a conforming pellet, the case for this made by the datain
hand is not airtight. The interval (6.68) allows some possibility that p, — p, <
0—i.e, that p, actually exceeds p,. (The conservative interval indicated by
expression (6.65) has endpoints of the form .09 + .116 and thus tells a similar
story.)

The usual significance-testing method for p, — p, concernsthe null hypothesis
Hy:p,—p,=0 (6.69)

i.e., the hypothesis that the parameters p, and p, are equal. Notice that if p, = p,
and the common value is denoted as p, expression (6.63) can be rewritten as

(6.70)

1

1
Jpa=p) [ =+ =

n n,

The variable (6.70) cannot serve as a test statistic for the null hypothesis (6.69),
since it involves the unknown hypothesized common value of p; and p,. What is
done to modify the variable (6.70) to arrive at a usable test statistic, is to replace p
with a sample-based estimate, obtained by pooling together the two samples. That
is, let

n;p; +n,p,

6.71
n, 1, (6.71)

p=

(p isthetotal number of itemsin the two samples with the characteristic of interest
divided by the total number of items in the two samples). Then a significance test
of hypothesis (6.69) can be carried out using the test statistic

a N

p _pz

1
1
e

If Hy: p; — p, = Oistrue, Z in equation (6.72) is approximately standard normal,
s0 a standard normal reference distribution isin order.

Z =

(6.72)

+_

1
n,

1
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Example 18
(continued)

Asfurther confirmation of thefact that in the pell etizing problem samplefractions
of p, = .38and p, = .29 based on samples of sizen; = n, = 100 are not com-
pletely convincing evidence of areal differencein process performance for small
and large shot sizes, consider testing Hy: p, — p, = OwithH_: p, — p, # 0. As
apreliminary step, from expression (6.71),

> - 100(.38) +100(.29) 67 335

100+100 200
Then the five-step summary gives the following:
1. Hyp,—p,=0.

2. Hip,—p, #0.
3. Thetest statisticis

7 — Apl_Apz
VPA—p) -+ —
p p n, ' n,

The reference distribution is standard normal, and large observed values
|z| will constitute evidence against H,.

4. The samplesgive

S .38 —-.29 _ 135

[ 1 1
Vv (.335)(1 - .335) 100 + 100

5. The p-value is P[|astandard normal variable| > 1.35]. That is, the p-
valueis

®(—1.35) 4 (1 — ©(1.35)) = .18

Thedatafurnish only fairly weak evidence of areal differenceinlong-run
fractions of conforming pellets for the two shot sizes.

The kind of results seen in Example 18 may take some getting used to. Even
with sample sizes as large as 100, sample fractions differing by nearly .1 are still
not necessarily conclusive evidence of a difference in p; and p,. But this is just
another manifestation of the point that individual qualitative observations carry
disappointingly little information.

A final reminder of the large-sample nature of the methods presented hereisin
order. The methods hereall rely (for the agreement of nominal and actual confidence
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levels or the validity of their p-values) on the adequacy of normal approximations
to binomial distributions. The approximations are workable provided expression
(6.52) or (6.53) holds. When testing H,: p = #, it is easy to plug both n and # into
expression (6.52) or (6.53) before putting great stock in normal-based p-values.
But when estimating p or p, — p, or testing Hy: p; — p, = 0, no parallel check is
obvious. So it is not completely clear how to screen potential applications for ones
where the nominal confidence levels or p-values are possibly misleading. What is
often doneisto plug both n and p (or bothn, and p, and n, and p,) into expression
(6.52) or (6.53) and verify that the inequalities hold beforetrusting nominal (normal-
based) confidence levels and p-values. Since these random quantities are only
approximations to the corresponding nonrandom quantities, one will occasionally
be misled regarding the appropriateness of the normal approximations by such
empirical checks. But they are better than automatic application, protected by no
check at all.

1. Consider the situation of Example 14 of Chapter 3, 2. In estimating a proportion p, a two-sided interval

and in particular the results for the 50% reground

mixture.

(8 Make and interpret 95% one-sided and two-
sided confidence intervals for the fraction of
conforming pellets that would be produced us-
ing the 50% mixture and the small shot size.
(For the one-sided interval, give a lower con-
fidence bound.) Use both methods of dealing
with thefact that o isnot known and compare
the resulting pairs of intervals.

(b) If records show that past pelletizing perfor-
mance was such that 55% of the pellets pro-
duced were conforming, doesthevaluein Table
3.20 constitute strong evidence that the condi-
tions of 50% reground mixture and small shot-
size provide an improvement in yield? Show
the five-step format.

(¢) Compare the small and large shot-size condi-
tions using a 95% two-sided confidence inter-
val for the difference in fractions conforming.
Interpret the interval in the context of the ex-
ample.

(d) Assess the strength of the evidence given in
Table 3.20 that the shot size affectsthe fraction
of pellets conforming (when the 50% reground
mixture is used).

p+ A is used. Suppose that 95% confidence and
A < .01 are desired. About what sample size will
be needed to guarantee this?

. Specifications on the punch heights referred to in

Chapter Exercise 9 of Chapter 3 were .500 in. to
.505 in. In the sample of 405 punches measured
by Hyde, Kuebrick, and Swanson, there were only
290 punches meeting these specifications. Suppose
that the 405 punches can be thought of asarandom
sample of al such punches manufactured by the
supplier under standard manufacturing conditions.
Give an approximate 99% two-sided confidencein-
terval for the standard fraction of nonconforming
punches of this type produced by the punch sup-
plier.

. Consider two hypothetical machines producing a

particular widget. If samplesof n, =25and n, =
25 widgets produced by the respective machines
have fractions nonconforming p, = .2 and p, =
.32, is this strong evidence of a difference in ma-
chine nonconforming rates? What doesthis suggest
about the kind of sample sizes typically needed in
order to reach definitive conclusions based on at-
tributes or qualitative data?
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6.6 Prediction and Tolerance Intervals

6.6.1

Methods of confidence interval estimation and significance testing concern the
problem of reasoning from sample information to statements about underlying pa-
rameters of the datageneration, such as i, o, and p. These are extremely important
engineering tools, but they often fail to directly address the question of real interest.
Sometimes what is really needed as the ultimate product of a statistical analysisis
not a statement about a parameter but rather an indication of reasonable bounds on
other individual values generated by the process under study. For example, suppose
you are about to purchase a new car. For some purposes, knowing that “the mean
EPA mileagefor thismodel islikely in therange 25 mpg + .5 mpg” isnot nearly as
useful as knowing that “the EPA mileage figure for the particular car you are order-
ing is likely in the range 25 mpg + 3 mpg.” Both of these statements may be quite
accurate, but they serve different purposes. The first statement is one about a mean
mileage and the second is about an individual mileage. And it is only statements of
the first type that have been directly treated thus far.

This section indicates what is possible in the way of formal statistical in-
ferences, not for parameters but rather for individual values generated by a stable
data-generating mechanism. There aretwo types of formal inference methods aimed
in this general direction—statistical prediction interval methods and statistical tol-
eranceinterval methods—and both types will be discussed. The section begins with
prediction intervals for anormal distribution. Then tolerance intervals for a normal
distribution are considered. Finally, thereis adiscussion of how it is possible to use
minimum and/or maximum values in a sample to create prediction and tolerance
intervals for even nonnormal underlying distributions.

Prediction Intervals for a Normal Distribution

Onefruitful way to phrase the question of inference for additional individua values
produced by a process is the following: How might data in hand, x,, X,, ..., X,
be used to create a numerical interval likely to bracket one additional (as yet
unobserved) value, X, .,, from the same data-generating mechanism? How, for
example, might mileage tests on ten cars of aparticular model be used to predict the
results of the same test applied to an el eventh?

If the underlying distribution is adequately described as normal with mean

and variance o', there is asimple line of reasoning based on the random variable
X —Xo,q (6.73)

that leads to an answer to this question. That is, the random variable in expression
(6.73) has, by the methods of Section 5.5 (Proposition 1 in particular),

E(X — X,,q) = EX+ (~DEX, ;= —pn=0 (6.74)
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and

2
1
Var(x — x,,,) = (D?Varx + (=) Varx, , = % to?= (1 + ﬁ) o2 (6.75)

Further, it turns out that the difference (6.73) isnormally distributed, so the variable

(6.76)

is standard normal. And taking one more step, if s is the usual sample variance of
Xy, Xy, . .., X, SUbStituting s for o in expression (6.76) produces a variable

(X = X140 =0
1
s\/1+ =
n

which hasat distribution with v = n — 1 degrees of freedom.

Now (upon identifying X, with © and /1 + (1/n) with \/1/n), the variable
(6.77) isformally similar to the t-distributed variable used to derive a small-sample
confidence interval for . In fact, algebraic steps parallel to those used in the first
part of Section 6.3 show that if t > 0 issuch that thet,_, distribution assigns, say,
.95 probability to the interval between —t and t, there is then .95 probability that

/ 1 / 1
X —ts 1+H<Xn+l<)_(+ts l+ﬁ

This reasoning suggests in general that the interval with endpoints

| 1
X ts /14— (6.78)

can be used as a two-sided interval to predict X, ., and that the probability-based
reliability figure attached to the interval should be thet, , probability assigned to
theinterval from —t to t. Theinterval (6.78) isacalled a prediction interval with
associated confidence thet, , probability assigned to the interval from —t tot. In
general, the language indicated in Definition 17 will be used.

T= (6.77)
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Definition 17

Example 19
(Example 8 revisited )

A prediction interval for a single additional observation is a data-based
interval of numbers thought likely to contain the observation, possessing a
stated probability-based confidence or reliability.

It is the fact that a finite sample gives only a somewhat clouded picture of a
distribution that prevents the making of a normal distribution prediction interval
from being atrivial matter of probability calculationslike thosein Section 5.2. That
is, suppose there were enough data to “know” the mean, 1, and variance, o2, of
a normal distribution. Then, since 1.96 is the .975 standard normal quantile, the
interval with endpoints

n—19%c and u+ 1960 (6.79)

has a 95% chance of bracketing the next value generated by the distribution. Thefact
that (when based only on small samples), the knowledge of « and ¢ is noisy forces
expression (6.79) to beabandoned for aninterval like (6.78). It isthuscomforting that
for large n and 95% confidence, formula (6.78) produces an interval with endpoints
approximating those in display (6.79). That is, for large n and 95% confidence,
t ~ 1.96, /14 (1/n) ~ 1, and one expectsthat typically X ~ p and s = o, so that
expressions (6.78) and (6.79) will essentially agree. The beauty of expression (6.78)
isthat it allowsin arational fashion for the uncertaintiesinvolved in the u ~ X and
o ~ S approximations.

Predicting a Spring Lifetime

Recall from Section 6.3 that n = 10 spring lifetimes under 950 N/mm? stress
conditions given in Table 6.4 (page 366) produced a fairly linear normal plot,
% = 168.3 (x10° cycles) and s = 33.1 (x 10° cycles). Consider now predicting
the lifetime of an additional spring of this type (under the same test conditions)
with 90% confidence.

Using v = 10 — 1 = 9 degrees of freedom, the .95 quantile of the t distri-
bution is (from Table B.4) 1.833. So, employing expression (6.78), there are
two-sided 90% prediction limits for an additional spring lifetime

1
168.3+ 1.833(33.1),/1+ 15

> 104.7 x 103 cycles and 231.9 x 10° cycles (6.80)



Example 20

6.6 Prediction and Tolerance Intervals 417

The interval indicated by display (6.80) is not at all the same as the confidence
interval for u found in Example 8. The limits of

149.1 x 10% cycles and 187.5 x 10° cycles

found on page 367 apply to the mean spring lifetime, w, not to an additional
observation x,, asthe onesin display (6.80) do.

Predicting the Weight of a Newly Minted Penny

The delightful book Experimentation and Measurement by W. J. Youden (pub-
lished as NBS Special Publication 672 by the U.S. Department of Commerce)
contains a data set giving the weights of n = 100 newly minted U.S. pennies
measured to 10~* g but reported only to the nearest .02 g. These data are repro-
duced in Table 6.10. Figure 6.24 isanormal plot of these data and shows that a
normal distribution is a plausible model for weights of newly minted pennies.

Further, calculation with the values in Table 6.10 shows that for the penny
weights, X = 3.108 g and s = .043 g. Then interpolation in Table B.4 shows
the .9 quantile of the ty, distribution to be about 1.290, so that using only the
“plus’ part of expression (6.78), aone-sided 90% prediction interval of the form
(—o0, #) for the weight of a single additional penny has upper endpoint

/ 1
3.108 + 1.290(.043), /1 + —
+ (.043),/1+ 100

3.1649 (6.81)

Table 6.10
Weights of 100 Newly Minted U.S. Pennies

Penny Weight (g) Frequency  Penny Weight (g)  Frequency

2.99 1 311 24
3.01 4 3.13 17
3.03 4 3.15 13
3.05 4 3.17 6
3.07 7 3.19 2
3.09 17 321 1
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Example 20
(continued)

Cautions about
“prediction”

Standard normal quantile
o
T

3.0 31 3.2
Weight quantile

Figure 6.24 Normal plot of the penny weights

This example illustrates at least two important points. First, the two-sided
prediction limitsin display (6.78) can be modified to get aone-sided limit exactly
as two-sided confidence limits can be modified to get a one-sided limit. Second,
the calculation represented by the result (6.81) is, because n = 100 is a fairly
large sample size, only marginally different from what one would get assuming
u = 3.108 g exactly and o = .043 g exactly. That is, sincethe .9 normal quantile
is1.282, “knowing”  and o leadsto an upper prediction limit of

1+ 1.2820 = 3.108 + (1.282)(.043) = 3.163 g (6.82)

The fact that the result (6.81) is dlightly larger than the final result in display
(6.82) reflects the small uncertainty involved in the use of X in place of u and s
inplaceof o.

The name “prediction interval” probably has some suggested meanings that
should be dismissed before going any further. Prediction suggests the future and
thus potentially different conditions. But no such meaning should be associated
with statistical prediction intervals. The assumption behind formula (6.78) is that
X3, %o, - .., X, @nd X, areall generated according to the same underlying distribu-
tion. If (for example, because of potential physical changesin asystem during atime
lapse between the generation of Xy, X, ..., X, and the generation of x . ,) nosingle
stable process model for the generation of all n + 1 observationsis appropriate, then
neither is formula (6.78). Statistical inference is not acrystal ball for foretelling an
erratic and patternless future. It is rather a methodology for quantifying the extent
of knowledge about a pattern of variation existing in a consistent present. It has
implicationsin other times and at other places only if that same pattern of variation
can be expected to repeat itself in those conditions.
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It isalso appropriate to comment on the meaning of the confidence or reliability
figure attached to apredictioninterval. Since aprediction interval isdoing adifferent
job than the confidence intervals of previous sections, the meaning of confidence
given in Definition 2 doesn’t quite apply here.

Prior to the generation of any of x;, X,, ..., X,, X, 4, planned use of expression
(6.78) gives aguaranteed probability of successin bracketing x,,, ,. And after al of
X5 %o, -+ -5 X X1 have been generated, one has either been completely successful
or completely unsuccessful in bracketing X, , ;. But itis not altogether obvious how
to think about “confidence” of prediction when x,, x,, ..., X, arein hand, but prior
to the generation of x, ,. For example, in the context of Example 19, having used
sample data to arrive at the prediction limitsin display (6.80)—i.e.,

104.7 x 103 cycles to 231.9 x 10° cycles
since x,, isarandom variable, it would make sense to contemplate
P[104.7 x 10° < x,, < 231.9 x 10°]

However, there is no guarantee on this probability nor any way to determine it. In
particular, it isnot necessarily .9 (the confidence level associated with the prediction
interval). That is, there is no practical way to employ probability to describe the
likely effectiveness of a numerical prediction interval. One is thus left with the
interpretation of confidence of prediction given in Definition 18.

Tosay that anumerical interval (a, b) is(for example) a90% predictioninterval
for an additional observation X, isto say that in obtaining it, methods of
data collection and cal culation have been applied that would produce intervals
bracketing an (n + 1)th observation in about 90% of repeated applications of
the entire process of (1) selecting the sample x,, ..., x,, (2) calculating an
interval, and (3) generating a single additional observation X, ,. Whether or
not X, ., will fall into the numerical interval (a, b) isnot known, and although
there is some probability associated with that eventuality, it is not possible to
evaluateit. And in particular, it need not be 90%.

When using a90% predictioninterval method, although somesamplesx, . .., X,
produce numerical intervals with probability lessthan .9 of bracketing x,, , ; and oth-
ers produce numerical intervals with probability more than .9, the average for al
samplesx,, ..., X, doesturn out to be .9. The practical problem issimply that with
datax,, ..., X, in hand, you don’'t know whether you are above, below, or at the .9

figure.
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6.6.2

Definition 19

Two-sided normal
distribution tolerance
limits

A one-sided
normal tolerance
interval

Tolerance Intervals for a Normal Distribution

The emphasis, when making a prediction interval of the type just discussed, ison a
single additional observation beyond those n already in hand. But in some practical
engineering problems, many additional items are of interest. In such cases, one may
wishto declareadata-based interval likely to encompass most measurementsfrom
therest of these items.

Prediction intervals are not designed for the purpose of encompassing most of
the measurements from the additional items of interest. The paragraph following
Definition 18 argues that only on average is the fraction of a normal distribution
bracketed by a90% predictioninterval equal to 90%. So acrude analysis(identifying
the mean fraction bracketed with the median fraction bracketed) then suggests that
the probability that the actual fraction bracketed is at least 90% is only about .5.
That is, a90% prediction interval is not constructed to be big enough for the present
purpose. What is needed instead is a statistical tolerance interval.

A statistical toleranceinterval for afraction p of an underlying distribu-
tion is adata-based interval thought likely to contain at least afraction p and
possessing a stated (usually large) probability-based confidence or reliability.

The derivation of normal distribution tolerance interval formulas requires prob-
ability background well beyond what has been devel oped in this text. But results of
that work look about as would be expected. It is possible, for a desired confidence
level and fraction p of an underlying normal distribution, to find a corresponding
constant t,, such that the two-sided interval with endpoints

X £ 7,5 (6.83)

isatoleranceinterval for afraction p of the underlying distribution. The 7, appear-
ing in expression (6.83) is, for common (large) confidence levels, larger than the
multiplier t4/1 4+ (1/n) appearing in expression (6.78) for two-sided confidence of
prediction p. On the other hand, as n getslarge, both 7, from expression (6.83) and
t/1+ (1/n) from expression (6.78) tend to the (#) standard normal quantile.
Table B.7A gives some values of 7, for 95% and 99% confidence and p = .9, .95,
and .99. (The use of this table will be demonstrated shortly.)

The factors 7, are not used to make one-sided tolerance intervals. Instead,
another set of constants that will here be called 7, values have been developed.
They are such that for a given confidence and fraction p of an underlying normal
distribution, both of the one-sided intervals

(=00, X + 1,5) (6.84)
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(continued)

Example 20
(continued)
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and
(X — 1,8, 00) (6.85)

are tolerance intervals for a fraction p of the distribution. 7, appearing in inter-
vals (6.84) and (6.85) is, for common confidence levels, larger than the multiplier
tv/1+ (1/n) appearing in expression (6.78) for one-sided confidence of prediction
p. And as n gets large, both 7, from expression (6.84) or (6.85) and t\/1+ (1/n)
from expression (6.78) tend to the standard norma p quantile. Table B.7B gives
some values of z,.

Consider making atwo-sided 95% toleranceinterval for 90% of additional spring
lifetimes based on the data of Table 6.4. As earlier, for these data, X = 168.3
(x10° cycles) and s = 33.1 (x10° cycles). Then consulting Table B.7A, since
n =10, r, = 2.856 isappropriate for usein expression (6.83). That is, two-sided
95% tolerance limits for 90% of additional spring lifetimes are

168.3 + 2.856 (33.1)

> 73.8 x 10° cycles and  262.8 x 10° cycles (6.86)

It is obvious from comparing displays (6.80) and (6.86) that the effect of moving
from the prediction of asingle additional spring lifetime to attempting to bracket
most of a large number of additional lifetimes is to increase the size of the
declared interval .

Consider again the new penny weightsgivenin Table6.10 and now the problem of
making aone-sided 95% toleranceinterval of theform (—oo, #) for theweights of
90% of additional pennies. Remembering that for the penny weights, X = 3.108 g
and s = .043 g, and using Table B.7B for n = 100, the desired upper tolerance
bound for 90% of the penny weightsis

> 3.108 + 1.527(.043) = 3.174 g

As expected, thisislarger (more conservative) than the value of 3.164 g givenin
display (6.81) as a one-sided 90% prediction limit for a single additional penny
weight.
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Definition 20
(Interpretation of a
Tolerance Interval)

6.6.3

Example 21
(Example 11, Chapter 4,
revisited—page 192)

The correct interpretation of the confidence level for atoleranceinterval should
be fairly easy to grasp. Prior to the generation of X, X,, ..., X, planned use of
expression (6.83), (6.84), or (6.85) gives a guaranteed probability of success in
bracketing afraction of at least p of the underlying distribution. But after observing
Xy, ..., X, and making a numerical interval, it is impossible to know whether the
attempt has or has not been successful. Thus the following interpretation:

To say that a numerical interva (a, b) is (for example) a 90% tolerance in-
terval for afraction p of an underlying distribution is to say that in obtaining
it, methods of data collection and calculation have been applied that would
produce intervals bracketing a fraction of at least p of the underlying distri-
bution in about 90% of repeated applications (of generation of x,, ..., x, and
subsequent calculation). Whether or not the numerical interval (a, b) actualy
contains at least a fraction p is unknown and not describable in terms of a
probability.

Prediction and Tolerance Intervals Based on Minimum
and/or Maximum Values in a Sample

Formulas (6.78), (6.83), (6.84), and (6.85) for prediction and tolerance limits are
definitely normal distribution formulas. So what if an engineering data-generation
process is stable but does not produce normally distributed observations? How,
if at al, can prediction or tolerance limits be made? Two kinds of answers to
these questions will be illustrated in this text. The first employs the transformation
idea presented in Section 4.4, and the second involves the use of minimum and/or
maximum sampl e val ues to establish prediction and/or tolerance bounds.

First (as observed in Section 4.4) if aresponse variable y fails to be normally
distributed, it may still be possible to find some transformation g (essentially speci-
fying arevised scale of measurement) such that g(y) is normal. Then normal-based
methods might be applied to g(y) and answers of interest trandlated back into
statements about .

Prediction and Tolerance Intervals for Discovery Times
Obtained Using a Transformation

Section 5.3 argued that the auto service discovery time data of Elliot, Kibby, and
Meyer given in Figure 4.31 (see page 192) are not themselves normal-looking,
but that their natural logarithms are. This, together with the facts that then = 30
natural logarithms have X = 2.46 and s = .68, can be used to make prediction or
tolerance intervals for log discovery times.
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For example, using expression (6.78) to make a two-sided 99% prediction
interval for an additional log discovery time produces endpoints

1
2,464 2.756(.68),/ 1 + o

S5Inmin and  4.37Inmin (6.87)

And using expression (6.83) to make, for example, a 95% tolerance interval for
99% of additional log discovery times produces endpoints

2.46 £ 3.355(.68)

A18Inmin and 4.74Inmin (6.88)

Then the interval s specified in displays (6.87) and (6.88) for log discovery times
have, via exponentiation, their counterparts for raw discovery times. That is,
exponentiation of the valuesin display (6.87) gives a 99% prediction interval for
another discovery time of from

4 1.7min to 79.0min

And exponentiation of the valuesin display (6.88) gives a 95% tolerance interval
for 99% of additional discovery times of from

r 1.2min to 114.4min

When it is not possible to find a transformation that will allow normal-based
methods to be used, prediction and tolerance interval formulas derived for other
standard families of distributions (e.g., the Weibull family) can sometimes be ap-
propriate. (The book Statistical Intervals. A Guide for Practitioners, by Hahn and
Meeker, is a good place to look for these methods.) What can be done here is to
point out that intervals from the smallest observation and/or to the largest value in
a sample can be used as prediction and/or tolerance intervals for any underlying
continuous distribution.
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That is, if x;,X,,...,x, are values in a sample and min(x,, ..., x,) and
max(X,, ..., X,) are (respectively) the smallest and largest values among X,,
Xy, ..., X, consider the use of theintervals
Interval based on
the sample maximum (—oo,max(Xy, ..., X)) (6.89)
and
Interval based on .
the sample minimum (MiN(X,, - -, Xy), 00) (6.90)
and

Interval based on
the sample minimum (Min(Xy, ..., X)), Max(X,, ..., X)) (6.91)
and maximum

as prediction or tolerance intervals. Independent of exactly what underlying contin-
uous distribution is operating, if the generation of x,, X,, ..., X, (and if relevant,
Xn4+1) €an be described as a stable process, it is possible to evaluate the confidence
levels associated with intervals (6.89), (6.90), and (6.91).

Consider first intervals (6.89) or (6.90) used as one-sided prediction intervals

for asingle additional observation X, ;. The associated confidence level is

Prediction confidence . L . n
for a one-sided interval One-sided prediction confidence level = N1 (6.92)

Then, considering interval (6.91) as a two-sided prediction interval for a single

additional observation x . ,, the associated confidence level is

Prediction confidence
for a two-sided interval

: - . =il
Two-sided prediction confidence level = h (6.93)

The confidence levels for intervals (6.89), (6.90), and (6.91) as tolerance in-
tervals must of necessity involve p, the fraction of the underlying distribution one
hopes to bracket. Thefact isthat using interval (6.89) or (6.90) as aone-sided toler-
anceinterval for afraction p of an underlying distribution, the associated confidence
level is

Confidence level for
a one-sided tolerance One-sided confidence level = 1 — p" (6.94)
interval
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And when interval (6.91) is used as a tolerance interval for a fraction p of an
underlying distribution, the appropriate associated confidence is

Confidence level for

a two-sided tolerance Two-sided confidencelevel = 1 — p" — n(1 — p)p"* (6.95)
interval

Example 19 Return one more time to the spring-life scenario, and consider the use of interval

(continued) (6.91) as first a prediction interval and then a tolerance interval for 90% of

additional spring lifetimes. Notice in Table 6.4 (page 366) that the smallest and
largest of the observed spring lifetimes are, respectively,

min(X, - . ., X;o) = 117 x 10% cycles
and
mMax(X,, . . ., X;g) = 225 x 10° cycles

so the numerical interval under consideration is the one with endpoints 117
(x10° cycles) and 225 (x 10° cycles).

Then expression (6.93) means that this interval can be used as a prediction
interval with

10-1
Prediction confidence = 0— = 3 = 82%
100+1 11

And expression (6.95) says that as a tolerance interval for a fraction p=.9
of many additional spring lifetimes, the interval can be used with associated
confidence

Confidence = 1 — (.9)° — 10(1 — .9)(.9)° = 26%

Example 20 Looking for afinal time at the penny weight datain Table 6.10, consider the use

(continued) of interval (6.89) as first a prediction interval and then a tolerance interval for
99% of additional penny weights. Notice that in Table 6.10, the largest of the
n = 100 weightsis 3.21 g, so

MaX(Xy, ..., X;p0) = 3.21 9
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1. Confidence, prediction, and tolerance intervals are

Chapter 6

Example 20
(continued)
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Then expression (6.92) says that when used as an upper prediction limit for a
singleadditional penny weight, the prediction confidence associated with 3.21 gis

Prediction confidence = = 99%

100+ 1

And expression (6.94) shows that as a tolerance interval for 99% of many addi-
tional penny weights, the interval (—oo, 3.21) has associated confidence

Confidence = 1 — (.99)1® = 63%

A little experience with formulas (6.92), (6.93), (6.94), and (6.95) will convince
the reader that the intervals (6.89), (6.90), and (6.91) often carry disappointingly
small confidence coefficients. Usually (but not always), you can do better in terms
of high confidence and short intervals if (possibly after transformation) the normal
distribution methods discussed earlier can be applied. But the beauty of intervals
(6.89), (6.90), and (6.91) isthat they are both widely applicable (in even nonnormal
contexts) and extremely simple.

Prediction and tolerance interval methods are very useful engineering tools.
Historically, they probably haven't been used as much as they should be for lack of
accessible textbook material on the methods. We hope the reader is now aware of the
existence of the methods as the appropriate form of formal inference when the focus
is on individual values generated by a process rather than on process parameters.
When the few particular methods discussed here don’t prove adequate for practical
purposes, the reader should look into the topic further, beginning with the book by
Hahn and Meeker mentioned earlier.

() Make atwo-sided 90% prediction interval for

al intended to do different jobs. What are these
jobs? Consider the differing situations of an officia
of the EPA, a consumer about to purchase asingle
car, and adesign engineer trying to equip acertain
model with a gas tank large enough that most cars
produced will have highway cruising ranges of at
least 350 miles. Argue that depending on the point
of view adopted, a lower confidence bound for a
mean mileage, alower prediction bound for anin-
dividual mileage, or a lower tolerance bound for
most mileages would be of interest.

. The 900 N/mm? stress spring lifetime datain Table
6.7 used in Example 8 have afairly linear normal
plot.

an additional spring lifetime under this stress.

(b) Make a two-sided 95% tolerance interval for
90% of all spring lifetimes under this stress.

(¢) How dotheintervalsfrom (a) and (b) compare?
(Consider both size and interpretation.)

(d) Thereis atwo-sided 90% confidence interval
for the mean spring lifetime under this stress
given in Example 8. How do your intervals
from (a) and (b) compare to the interval in
Example 8? (Consider both size and interpre-
tation.)

(e) Make a 90% lower prediction bound for an
additional spring lifetime under this stress.



(f) Make a95% lower tolerance bound for 90% of
all spring lifetimes under this stress.

3. The natural logarithms of the aluminum contents

discussed in Exercise 2 of Chapter 3 have a rea
sonably bell-shaped rel ative frequency distribution.
Further, these 26 log a uminum contents have sam-
ple mean 4.9 and sample standard deviation .59.
Use this information to respond to the following:
(8) Give a two-sided 99% tolerance interval for
90% of additiona log aluminum contents at
the Rutgers recycling facility. Then trandate
this interval into a 99% tolerance interval for
90% of additional raw auminum contents.
(b) Make a 90% prediction interval for one ad-
ditional log aluminum content and trandlate it

Chapter 6 Exercises

1. Consider the breaking strength data of Table 3.6.

Notice that the normal plot of these data given as

Figure 3.18 isreasonably linear. It may thus be sen-

sible to suppose that breaking strengths for generic

towel of thistype (as measured by the students) are
adequately modeled as normal. Under this assump-
tion,

(8) Make and interpret 95% two-sided and one-
sided confidence intervals for the mean break-
ing strength of generic towels (make a one-
sided interval of the form (#,00)).

(b) Make and interpret 95% two-sided and one-
sided prediction intervals for a single addi-
tional generic towel breaking strength (for the
one-sided interval, give the lower prediction
bound).

(c) Make and interpret 95% two-sided and one-
sided tolerance intervals for 99% of generic
towel breaking strengths (for the one-sided in-
terval, give the lower tolerance bound).

(d) Make and interpret 95% two-sided and one-
sided confidence intervals for o, the standard
deviation of generic towel breaking strengths.

(e) Put yourself in the position of a quality con-
trol inspector, concerned that the mean break-
ing strength not fall under 9,500 g. Assess the
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into aprediction interval for asingle additional
aluminum content.
(c) How dotheintervalsfrom (a) and (b) compare?

4. Againinthecontext of Chapter Exercise2 of Chap-

ter 3, if the interval from 30 ppm to 511 ppm
is used as a prediction interval for a single addi-
tional aluminum content measurement from the
study period, what associated prediction confi-
dence level can be stated? What confidence can
be associated with this interval as a tolerance in-
terval for 90% of all such aluminum content mea-
surements?

strength of the evidence in the data that the
mean generic towel strength is in fact below
the 9,500 g target. (Show the whole five-step
significance-testing format.)

(f) Now put yourself in the place of a quality
control inspector concerned that the breaking
strength be reasonably consistent—i.e., that o
be small. Supposein fact it is desirable that o
be no more than 400 g. Use the significance-
testing format and assess the strength of the
evidence given in the data that in fact o ex-
ceeds the target standard deviation.

. Consider the situation of Example 1 in Chapter 1.

() Usethefive-step significance-testing format to
assess the strength of the evidence collected in
this study to the effect that the laying method
is superior to the hanging method in terms of
mean runouts produced.

(b) Make and interpret 90% two-sided and one-
sided confidenceintervalsfor theimprovement
in mean runout produced by the laying method
over the hanging method (for the one-sided
interval, give alower bound for i, .. — 44)-

(c) Make and interpret a 90% two-sided confi-
dence interval for the mean runout for laid
gears.



(d) What isit about Figure 1.1 that makes it ques-
tionable whether “normal distribution” predic-
tionand toleranceinterval formulasought to be
used to describe runouts for laid gears? Sup-
pose instead that you used the methods of Sec-
tion 6.6.3 to make prediction and tolerance in-
tervals for laid gear runouts. What confidence
could be associated with the largest observed
laid runout as an upper prediction bound for a
single additional laid runout? What confidence
could be associated with the largest observed
laid runout as an upper tolerance bound for
95% of additional laid gear runouts?

3. Consider the situation of Example 1 in Chapter 4.

In particular, limit attention to those densities ob-
tained under the 2,000 and 4,000 psi pressures.
(One can view the six corresponding densities as
two samplesof sizen, =n, = 3.

(a) Assess the strength of the evidence that in-
creasing pressure increases the mean density
of the resulting cylinders. Use the five-step
significance-testing format.

(b) Give a 99% lower confidence bound for the
increase in mean density associated with the
change from 2,000 to 4,000 psi conditions.

(c) Assessthe strength of the evidence (in the six
density values) that the variability in density
differs for the 2,000 and 4,000 psi conditions
(i.e, that o, 50y # 04 000)-

(d) Give a 90% two-sided confidence interval for
the ratio of density standard deviations for the
two pressures.

(e) What model assumptions stand behind the for-
mal inferences you made in parts (a) through
(d) above?

. Simplecountingwith thedataof Chapter Exercise2

in Chapter 3 shows that 18 out of the 26 PET sam-

ples had aluminum contents above 100 ppm. Give

a two-sided approximate 95% confidence interval

for the fraction of all such sampleswith aluminum

contents above 100 ppm.

. Losen, Cahoy, and Lewis measured the lengths of
some spanner bushings of a particular type pur-
chased from a loca machine supply shop. The
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lengths obtained by one of the students were as
follows (the units are inches):

1.1375, 1.1390, 1.1420, 1.1430, 1.1410, 1.1360,
1.1395, 1.1380, 1.1350, 1.1370, 1.1345, 1.1340,
1.1405, 1.1340, 1.1380, 1.1355

(@) If you were to, for example, make a confi-
dence interval for the population mean mea-
sured length of these bushings via the formu-
lasin Section 6.3, what model assumption must
you employ? Make a probability plot to assess
the reasonableness of the assumption.

(b) Make a90% two-sided confidence interval for
the mean measured length for bushings of this
type measured by this student.

(c) Give an upper bound for the mean length with
90% associated confidence.

(d) Make a 90% two-sided prediction interval for
asingle additional measured bushing length.

(e) Make a 95% two-sided tolerance interval for
99% of additional measured bushing lengths.

(f) Consider the statistical interval derived from
the minimum and maximum sample values—
namely, (1.1340, 1.1430). What confidence
level should be associated with this interval
as a prediction interval for a single additional
bushing length? What confidence level should
be associated with this interval as a tolerance
interval for 99% of additional bushing lengths?

. The study mentioned in Exercise 5 aso included

measurement of the outside diameters of the 16
bushings. Two of the students measured each of
the bushings, with the results given here.

Bushing 1 2 3 4
Student A 3690 .3690 .3690 .3700
StudentB .3690 .3695 .3695 .3695

Bushing 5 6 7 8
Student A 3695 .3700 .3695 .3690
StudentB  .3695 .3700 .3700 .3690




Bushing 9 10 11 12
Student A .3690 .3695 .3690 .3690
StudentB .3700 .3690 .3695  .3695
Bushing 13 14 15 16
Student A .3695 .3700 .3690 .3690
Student B 3690 .3695 .3690  .3690

(& If youwanttocomparethetwo students’ aver-
age measurements, the methods of formulas
(6.35), (6.36), and (6.38) are not appropriate.
Why?

(b) Make a 95% two-sided confidence interval
for the mean difference in outside diameter
measurements for the two students.

. Find the following quantiles using the tables of

Appendix B:

(a) the .90 quantile of the t distribution

(b) the .10 quantile of the t; distribution

(c) the .95 quantile of the x2 distribution

(d) the .05 quantile of the X72 distribution

(e) the .95 quantile of the F distribution with
numerator degrees of freedom 8 and denom-
inator degrees of freedom 4

(f) the .05 quantile of the F distribution with
numerator degrees of freedom 8 and denom-
inator degrees of freedom 4

. Find the following quantiles using the tables of

Appendix B:

(a) the .99 quantile of thet, , distribution

(b) the .01 quantile of thet,, distribution

(c) the .975 quantile of the x2 distribution

(d) the.025 quantile of the X§ distribution

(e) the .75 quantile of the F distribution with
numerator degrees of freedom 6 and denom-
inator degrees of freedom 12

(f) the .25 quantile of the F distribution with
numerator degrees of freedom 6 and denom-
inator degrees of freedom 12

. Ho, Lewer, Peterson, and Riegel worked with the
lack of flatness in a particular kind of manufac-
tured steel disk. Fifty different parts of this type
were measured for what the students called “ wob-
ble” with the results that the 50 (positive) values

10.
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obtained had mean X = .0287 in. and standard de-

viations = .0119in.

(@) Givea95% two-sided confidenceinterval for
the mean wobble of all such disks.

(b) Givealower bound for the mean wobble pos-
sessing a 95% confidence level.

(c) Suppose that these disks are ordered with the
requirement that the mean wobble not exceed
.025 in. Assess the strength of the evidence
in the students' data to the effect that the re-
quirement is being violated. Show the whole
five-step format.

(d) Isthe requirement of part (c) the same as an
upper specification of .025 in. on individual
wobbles? Explain. Isit possible for alot with
many individual wobbles exceeding .025 in.
to meet the requirement of part (c)?

(e) Of the measured wobbles, 19 were .030 in.
or more. Use this fact and make an approx-
imate 90% two-sided confidence interval for
the fraction of all such disks with wobbles of
at least .030in.

T. Johnson tested properties of several brands of
10 Ib test monofilament fishing line. Part of his
study involved measuring the stretch of a fixed
length of line under a 3.5 kg load. Test resultsfor
three pieces of two of the brandsfollow. The units
arecm.

Brand B Brand D

.86, .88, .88 1.06, 1.02, 1.04

(@) Considering first only Brand B, use “normal
distribution” model assumptions and give a
90% upper prediction bound for the stretch
of an additional piece of Brand B line.

(b) Againconsidering only Brand B, use“normal
distribution” model assumptions and give a
95% upper tolerance bound for stretch mea-
surements of 90% of such pieces of Brand B
line.

(c) Again considering only Brand B, use “nor-
mal distribution” model assumptionsand give
90% two-sided confidence intervals for the
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mean and for the standard deviation of the

Brand B stretch distribution.

Compare the Brand B and Brand D stan-

dard deviationsof stretch using an appropriate

90% two-sided confidence interval.

Compare the Brand B and Brand D mean

stretch values using an appropriate 90% two-

sided confidence interval. Does this interval
give clear indication of a difference in mean
stretch values for the two brands?

(f) Carry out aformal significancetest of the hy-
pothesis that the two brands have the same
mean stretch values (use a two-sided alter-
native hypothesis). Does the conclusion you
reach here agree with your answer to part (e)?

The accompanying data are n = 10 daily mea-
surements of the purity (in percent) of oxygen be-
ing delivered by a certain industrial air products
supplier. (These data are similar to some given in
a November 1990 article in Chemical Engineer-
ing Progress and used in Chapter Exercise 10 of
Chapter 3.)

(d)

(€)

90.77 99.66 99.61 99.59 99.55
99.64 99.53 99.68 99.49 99.58

(@) Make anormal plot of these data. What does
the normal plot reveal about the shape of the
purity distribution? (“It is not bell-shaped” is
not an adequate answer. Say how its shape
departs from the normal shape.)

(b) What statistical “problems’ are caused by
lack of a normal distribution shape for data
such as these?

As away to deal with problems like those from
part (b), you might try transforming the origina
data. Next are values of y' = In(y — 99.3) corre-
sponding to each of the origina data values vy,
and some summary statistics for the transformed
values.

— .76
—-1.08

-102 -117 -124 -1.39
—-1.47 -.97 -166 -127

y =-1203 and s, = .263

12.
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(c) Makeanormal plot of the transformed values
and verify that it is very linear.

(d) Makea95% two-sided predictioninterval for

the next transformed purity delivered by this

supplier. What does this “untransform” to in
terms of raw purity?

Make a 99% two-sided tolerance interval for

95% of additional transformed purities from

this supplier. What does this “untransform”

toin terms of raw purity?

(f) Suppose that the air products supplier ad-
vertises a median purity of at least 99.5%.
This corresponds to a median (and therefore
mean) transformed value of at least —1.61.
Test the supplier’s claim (H,: ny = —1.61)
against the possibility that the purity is sub-
standard. Show and carefully label al five
steps.

Chapter Exercise 6 of Chapter 3 contains a data

set on the lifetimes (in numbers of 24 mm deep

holesdrilledin 1045 steel beforetool failure) of 12

D952-11 (8 mm) drills. The data there have mean

y =117.75 and s = 51.1 holes drilled. Suppose

that a normal distribution can be used to roughly

describe drill lifetimes.

() Give a 90% lower confidence bound for the

mean lifetime of drillsof thistypeinthiskind

of industrial application.

Based on your answer to (a), do you think a

hypothesistestof H,: © = 100versusH,: u >

100 would have alarge p-vaue or asmall p-

value? Explain.

Give a 90% lower prediction bound for the

next life length of a drill of this type in this

kind of industrial application.

Give two-sided tolerance limits with 95%

confidence for 90% of all life lengths for

drills of this type in this kind of industrial
application.

Give two-sided 90% confidence limits for the

standard deviation of life lengths for drills of

thistypeinthiskind of industrial application.

M. Murphy recorded the mileages he obtained
while commuting to school in his nine-year-old
economy car. He kept track of the mileage for ten

(€)

(b)

(©)

(d)

(e
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different tankfuls of fuel, involving gasoline of
two different octanes. His data follow.

87 Octane 90 Octane

26.43, 27.61, 28.71,
28.94, 29.30

30.57, 30.91, 31.21,
31.77, 32.86

(8 Make normal plots for these two samples of
size5 on the same set of axes. Doesthe equal
variances, normal distributions” model ap-
pear reasonable for describing this situation?

(b) Find s, for these data. What is this quantity
measuring in the present context?

(c) Givea95% two-sided confidenceinterval for
the difference in mean mileages obtainable
under these circumstances using the fuels of
the two different octanes. From the nature of
this confidence interval, would you expect to
find alarge p-value or asmall p-value when
testing Hy: jug; = tgo VErSUSH, ! gy # 11gy?

(d) Conduct asignificance test of H: g, = j1g,
against the aternative that the higher-octane
gasoline provides a higher mean mileage.

(e) Give 95% lower prediction bounds for the
next mileages experienced, using first 87 oc-
tane fuel and then 90 octane fuel.

(f) Give 95% lower tolerance bounds for 95% of
additional mileages experienced, using first
87 octane fuel and then 90 octane fuel.

Eastman, Frye, and Schnepf worked with a com-

pany that mass-produces plastic bags. They fo-

cused on start-up problemsof aparticular machine

that could be operated at either a high speed or a

low speed. One part of the datathey collected con-

sisted of counts of faulty bags produced inthefirst

250 manufactured after changing aroll of plastic

feedstock. The countsthey obtained for both low-

and high-speed operation of themachinewere 147

faulty (p,, = 32°) under high-speed operation and

12 faulty under low-speed operation (P, = ).

Supposethat itis sensibleto think of the machine

as operating in a physically stable fashion during

the production of thefirst 250 bags after changing

15.
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aroll of plastic, with aconstant probability (p,, or
p,) of any particular bag produced being faulty.
(@) Give a95% upper confidence bound for p,,.
(b) Give a95% upper confidence bound for p, .
(c) Compare p,, and p, using an appropriatetwo-
sided 95% confidence interval. Does this in-
terval provide a clear indication of a differ-
ence in the effectiveness of the machine at
start-up when run at the two speeds? What
kind of a p-value (big or small) would you
expect tofindinatest of H: p,, = p_ versus
Hypy # P.?
(d) Usethefive-stepformat andtestH,: p, = p,
versusH_: p, # p, -
Hamilton, Seavey, and Stucker measured resis-
tances, diameters, and lengths for seven copper
wiresat two different temperatures and used these
to compute experimental resistivities for copper
at these two temperatures. Their data follow. The
unitsare 10~ Qm.

Wire 00°C 21.8°C
1 152 172
2 144 156
3 152 168
4 152 164
5 156  1.69
6 149 171
7 156 172

(@) Suppose that primary interest here centers on
the difference between resistivities at the two
different temperatures. Make anormal plot of
the seven observed differences. Doesit appear
that a normal distribution description of the
observed difference in resistivities at these
two temperatures is plausible?

(b) Givea90% two-sided confidence interval for
the mean difference in resistivity measure-
ments for copper wire of this type at 21.8°C
and 0.0°C.
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(c) Give a90% two-sided prediction interval for
an additional difference in resistivity mea-
surements for copper wire of this type at
21.8°Cand 0.0°C.

The students referred to in Exercise 15 also mea-
sured theresistivities for seven aluminum wires at
the sametemperatures. The 21.8°C measurements
that they obtained follow:

2.65,2.83, 2.69, 2.73, 2.53, 2.65, 2.69

() Givea99% two-sided confidenceinterval for
the mean resitivity value derived from such
experimental determinations.

(b) Give a95% two-sided prediction interval for
thenext resistivity valuethat would bederived
from such an experimental determination.

(c) Give a 95% two-sided tolerance interval for
99% of resistivity values derived from such
experimental determinations.

(d) Givea95% two-sided confidenceinterval for

the standard deviation of resistivity valuesde-

rived from such experimental determinations.

How strong isthe evidence that thereisareal

difference in the precisions with which the

aluminum resistivitiesand the copper resistiv-
ities can be measured at 21.8°C? (Carry out

a significance test of Hy: o006 = Oauminum
versus H,: oo # Oguminum USING the data
of this problem and the 21.8°C data of Exer-
cise 15.)

(f) Again using the data of this exercise and Ex-
ercise 15, give a 90% two-sided confidence
interval for the ratio oqqe /g minum-

(The Stein Two-Stage Estimation Procedure)
One of the most common of all questions faced
by engineers planning a data-based study is how
much data to collect. The last part of Example 3
illustrates a rather crude method of producing an
answer to the sample-size question when estima-
tion of asingle mean isinvolved. In fact, in such
circumstances, a more careful two-stage proce-
dure due to Charles Stein can sometimes be used
to find appropriate sample sizes.

()

18.
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Suppose that one wishes to use an interval of
the form X & A with a particular confidence co-
efficient to estimate the mean . of anormal dis-
tribution. If itisdesirableto have A < #for some
number # and one can collect datain two stages,
it is possible to choose an overall sample size to
satisfy these criteria as follows. After taking a
small or moderate initial sample of size n, (n;
must be at least 2 and is typically at least 4 or
5), one computes the sample standard deviation
of the initial data—say, s;. Then if t is the ap-
propriaIetnr1 distribution quantile for producing
the desired (one- or two-sided) confidence, it is
necessary to find the smallest integer n such that

2
= (3)
T\ #
If this integer is larger than n,, then n, =n —
n, additional observations are taken. (Otherwise,
n, = 0.) Finally, with X the samplemean of all the
observations (from both the initial and any sub-
sequent sample), the formula X £ ts, /. /n, +n,
(with t till based on n, — 1 degrees of freedom)
is used to estimate .

Suppose that in estimating the mean resistance
of a production run of resistors, it is desirable to
have the two-sided confidence level be 95% and
the “£ part” of theinterval no longer than .5 Q.
(@) If an initial sample of n, = 5 resistors pro-

duces a sample standard deviation of 1.27 €2,
how many (if any) additional resistors should
be sampled in order to meet the stated goals?
(b) If al of the n; + n, resistors taken together
produce the sample mean X = 102.8 2, what
confidenceinterval for . should be declared?

Example 15 of Chapter 5 concerns some data on
service times at a residence hall depot counter.
The data portrayed in Figure 5.21 are decidedly
nonnormal-looking, so prediction and tolerance
interval formulas based on normal distributions
are not appropriate for use with these data. How-
ever, the largest of the n = 65 observed service
timesin that figureis 87 sec.
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(8) What prediction confidence level can be as-
sociated with 87 sec as an upper prediction
bound for a single additional service time?

(b) What confidence level can be associated with
87 sec as an upper tolerance bound for 95%
of servicetimes?

Caliste, Duffie, and Rodriguez studied the pro-

cess of keymaking using a manual machine at a

local lumber yard. The records of two different

employees who made keys during the study pe-
riod were as follows. Employee 1 made atotal of

54 different keys, 5 of which were returned as not

fitting their locks. Employee 2 made atotal of 73

different keys, 22 of which were returned as not

fitting their locks.

(a) Give approximate 95% two-sided confidence
intervals for the long-run fractions of faulty
keys produced by these two different employ-
€es.

(b) Give an approximate 95% two-sided confi-
dence interval for the difference in long-run
fractions of faulty keysproduced by thesetwo
different employees.

(c) Assess the strength of the evidence provided
in these two samples of areal difference in
the keymaking proficiencies of thesetwo em-
ployees. (Test H,: p, = p, using atwo-sided
aternative hypothesis.)

Thearticle* Optimizing Heat Treatment with Fac-

toria Design” by T. Lim (JOM, 1989) discusses

the improvement of a heat-treating process for
gears through the use of factorial experimenta-
tion. To compare the performance of the heat-
treating process under the original settings of pro-
cess variables to that using the “improved” set-
tings (identified through factorial experimenta-
tion), n; = n, = 10 gearsweretreated under both

sets of conditions. Then measures of flatness, y;

(inmm of distortion), and concentricity, y, (again

in mm of distortion), were made on each of the

gears. The data shown were read from graphs in
the article (and may in some cases differ by per-
haps +.002 mm from the original measurements).

Chapter 6 Exercises 433

Improved settings

Gear vy, (mm) vy, (mm)
1A .036 .050
2A .040 .054
3A .026 .043
4A .051 .071
5A .034 .043
6A .050 .058
7A .059 .061
8A .055 .048
9A .051 .060

10A .050 .033

Original settings

Gear vy, (mm) vy, (mm)
1B .056 .070
2B .064 .062
3B .070 .075
4B .037 .060
5B .054 .071
6B .060 .070
7B .065 .060
8B .060 .060
9B .051 .070

10B .062 .070

(8 What assumptions are necessary in order to
make inferences regarding the parameters of
the y, (or y,) distribution for the improved
settings of the process variables?

(b) Makeanormal plot for theimproved settings
y, values. Doesit appear that it is reasonable
to treat the improved settings' flatness distri-
bution as normal ? Explain.

(c) Suppose that the improved settings flatness
distribution is normal, and do the following:
(i) Givea90% two-sided confidenceinterval
for themean flatnessdistortion valuefor gears
of thistype.

(il) Givea90% two-sided prediction interval
for an additional flatness distortion value.
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(iii) Give a 95% two-sided tolerance inter-
val for 90% of additional flatness distortion
values.

(iv) Give a90% two-sided confidence inter-
va for the standard deviation of flatness dis-
tortion values for gears of this type.

Repeat parts (b) and (¢) using the improved
settings concentricity values, y,, instead of
flatness.

Explain why it is not possible to base formal
inferences (testsand confidenceintervals), for
comparing the standard deviations of the y,
and y, distributions for the improved process
settings, on the sampl e standard deviations of
the y, and y, measurements from gears 1A
through 10A.

(f) What assumptions are necessary in order to
make comparisons between parameters of the
y, (or y,) distributions for the origina and
improved settings of the process variables?
Make normal plots of the y, data for the
origina settings and for the improved set-
tings on the same set of axes. Does an “equal
variances, normal distributions” model ap-
pear tenable here? Explain.

Supposing that the flatness distortion distri-
butionsfor the original and improved process
settings are adequately described as normal
with a common standard deviation, do the
following.

(i) Useanappropriate significancetest to as-
sess the strength of the evidencein the datato
the effect that the improved settings produce
areduction in mean flatness distortion.

(if) Give a 90% lower confidence bound on
the reduction in mean flatness distortion pro-
vided by the improved process settings.

(1) Repeat parts (g) and (h) using the y, values

and concentricity instead of flatness.
R. Behne measured air pressure in car tiresin a
student parking lot. Shown hereisone summary of
the data he reported. Any tire with pressure read-
ing more than 3 psi below itsrecommended value
was considered underinflated, while any tire with
pressure reading more than 3 psi aboveitsrecom-
mended value was considered overinflated. The

(d)

()

©)

(h)
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counts in the accompanying table are the num-
bers of cars (out of 25 checked) falling into the
four possible categories.

Underinflated
tires
At Least
None OneTire
Overinflated None 6 5
tires AtLeast OneTire 10 4

22,

(8) Behne's sample was in al likelihood a con-
venience sample (as opposed to a genuinely
simplerandom sample) of thecarsinthelarge
lot. Does it make sense to argue in this case
that the data can be treated as if the sample
were a simple random sample? On what ba-
sis? Explain.

Give atwo-sided 90% confidenceinterval for

the fraction of al carsin the lot with at least

one underinflated tire.

(c) Giveatwo-sided 90% confidence interval for
the fraction of the carsin the lot with at least
one overinflated tire.

(d) Give a 90% lower confidence bound on the
fraction of cars in the lot with at least one
misinflated tire.

(e) Why can’t the data here be used with formula
(6.67) of Section 6.5 to make a confidence
interval for the difference in the fraction of
cars with at least one underinflated tire and
thefraction with at |east one overinflated tire?

The article “A Recursive Partitioning Method for
the Selection of Quality Assurance Tests’ by Raz
and Bousum (Quality Engineering, 1990) con-
tains some data on the fractions of torque convert-
ers manufactured in a particular facility failing a
final inspection (and thus requiring some rework).
For a particular family of four-element convert-
ers, about 39% of 442 converters tested were out
of specifications on a high-speed operation inlet
flow test.

(b)
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(8 If plant conditions tomorrow are like those
under which the 442 converters were man-
ufactured, give a two-sided 98% confidence
interval for the probability that a given con-
verter manufactured will fail the high-speed
inlet flow test.

(b) Supposethat a process changeisinstituted in
an effort to reduce the fraction of converters
failing the high-speed inlet flow test. If only
32 out of the first 100 converters manufac-
tured fail the high-speed inlet flow test, isthis
corvincing evidence that a real process im-
provement hasbeen accomplished? (Giveand
interpret a 90% two-sided confidenceinterval
for the change in test failure probability.)

Return to the situation of Chapter Exercise 1 in
Chapter 3 and the measured gains of 120 ampli-
fiers. The nominal/design value of the gain was
10.0 dB; 16 of the 120 amplifiers measured had
gains above nominal. Give a 95% two-sided con-
fidence interval for the fraction of all such ampli-
fierswith above-nominal gains.

The article “Multi-functional Pneumatic Gripper
Operating Under Constant Input Actuation Air
Pressure” by J. Przybyl (Journal of Engineering
Technology, 1988) discusses the performance of a
6-digit pneumatic robotic gripper. One part of the
article concerns the gripping pressure (measured
by manometers) delivered to objects of different
shapesfor fixedinput air pressures. Thedatagiven
here are the measurements (in psi) reported for
an actuation pressure of 40 psi for (respectively)
al.7in. x 1.5in. x 3.5in. rectangular bar and a
circular bar of radius 1.0 in. and length 3.5 in.

Rectangular Bar Circular Bar
76 84
82 87
85 94
88 80
82 92

25.
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(@) Comparethevariabilitiesof thegripping pres-
sures delivered to the two different objects
using an appropriate 98% two-sided confi-
denceinterval. Does there appear to be much
evidence in the data of a difference between
these? Explain.

(b) Supposing that the variabilities of gripping
pressure delivered by the gripper to the two
different objects are comparable, give a 95%
two-sided confidence interval for the differ-
ence in mean gripping pressures delivered.

(c) The data here came from the operation of a
single prototype gripper. Why would you ex-
pect to see more variation in measured grip-
ping pressures than that represented here if
each measurement in a sample were made on
adifferent gripper? Strictly speaking, to what
do the inferencesin (a) and (b) apply? To the
single prototype gripper or to al grippers of
this design? Discuss thisissue.

A sample of 95 U-bolts produced by asmall com-

pany has thread lengths with amean of X = 10.1

(.001 in. above nominal) and s = 3.2 (.001 in.).

() Givea95% two-sided confidenceinterval for
the mean thread length (measured in .001 in.
above nominal). Judging from this interval,
would you expect a small or alarge p-vaue
when testing Hy: u = 0 versus H,: u # 0?
Explain.

(b) Use the five-step format of Section 6.2 and
assess the strength of the evidence provided
by the data to the effect that the population
mean thread length exceeds nominal.

D. Kim did some crude tensile strength testing on
pieces of some nominally .012 in. diameter wire
of various lengths. Below are Kim’'s measured
strengths (kg) for pieces of wire of lengths 25 cm
and 30 cm.

25 cm Lengths 30 cm Lengths

4.00, 4.65, 4.70, 4.50
4.40, 4.50, 4.50, 4.20

4.10, 4.50, 3.80, 4.60
4.20, 4.60, 4.60, 3.90
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(a) If oneisto make aconfidence interval for the
mean measured strength of 25 cm pieces of
this wire using the methods of Section 6.3,
what model assumption must be employed?
Make a probability plot useful in assessing
the reasonableness of the assumption.

(b) Makea95% two-sided confidenceinterval for
the mean measured strength of 25 cm pieces
of thiswire.

(c) Give a 95% lower confidence bound for the
mean measured strength of 25 cm pieces.

(d) Make a95% two-sided prediction interval for
a single additional measured strength for a
25 cm piece of wire.

(e) Make a99% two-sided tolerance interval for
95% of additional measured strengths of
25 cm pieces of thiswire.

(f) Consider the statistical interval derived from
the minimum and maximum sample values
for the 25 cm lengths—namely, (4.00, 4.70).
What confidence should be associated with
thisinterval as a prediction interval for asin-
gle additional measured strength? What con-
fidence should be associated with thisinterval
as atolerance interval for 95% of additional
measured strengths for 25 cm pieces of this
wire?

In order to make formal inferences about

Mos — g, based on these data, what must

you bewilling to use for model assumptions?

Make a plot useful for investigating the rea-

sonableness of those assumptions.

Proceed under the assumptions discussed in

part (g) and assess the strength of the evi-

dence provided by Kim's data to the effect
that an increase in specimen length produces

a decrease in measured strength.

(i) Proceed under the necessary model assump-
tions to give a 98% two-sided confidence in-
terval for p,c — pgg.

The article “Influence of Final Recrystallization
Heat Treatment on Zircaloy-4 Strip Corrosion”
by Foster, Dougherty, Burke, Bates, and Worces-
ter (Journal of Nuclear Materials, 1990) reported
some summary statisticsfrom the measurement of

(9)

(h)

28.
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the diameters of 821 particlesobservedin abright
field TEM micrograph of a Zircaloy-4 specimen.
The samplemean diameter wasX = .055 um, and
the sample standard deviation of the diameters
wass = .028 um.

(&) The engineering researchers wished to es-
tablish from their observation of this single
specimen the impact of a certain combination
of specimen lot and heat-treating regimen on
particlesize. Briefly discusswhy datasuch as
the ones summarized have serious limitations
for this purpose. (Hints: The apparent “sam-
ple size’ hereis huge. But of what isthere a
sample? How widely do the researchers want
their resultsto apply? Given thisdesire, isthe
“real” sample size redly so large?)

Use the sample information and give a 98%
two-sided confidenceinterval for the mean di-
ameter of particlesin thisparticular Zircaloy-
4 specimen.

Suppose that a standard method of heat treat-
ing for such specimensis believed to produce
amean particle diameter of .057 um. Assess
the strength of the evidence contained in the
sample of diameter measurements to the ef-
fect that the specimen’s mean particle diam-
eter is different from the standard. Show the
whole five-step format.

Discuss, in the context of part (c), the po-
tential difference between the mean diameter
being statistically different from .057 pwm and
there being a difference between . and .057
that is of practical importance.

Return to Kim'stensile strength data given in Ex-
ercise 26.

(@) Operating under the assumption that mea-
sured tensile strengths of 25 cm lengths of
thewirestudied arenormally distributed, give
a two-sided 98% confidence interval for the
standard deviation of measured strengths.
Operating under the assumption that mea-
sured tensile strengths of 30 cm lengths of the
wire studied are normally distributed, give a
95% upper confidence bound for the standard
deviation of measured strengths.

(b)

(©

(d)

(b)
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(c) Operating under the assumption that both 25
and 30 cm lengths of the wire have normally
distributed measured tensile strengths, assess
the strength of Kim's evidence that 25 and
30 cm lengths differ in variability of their
measured tensile strengths. (Use H: 0,5 =
04 ad H,: 0, # o4, and show the whole
five-step format.)

(d) Operating under the assumption that both 25
and 30 cm lengths produce normally dis-
tributed tensile strengths, give a 98% two-
sided confidenceinterval for theratio o5 /o4,

Find the following quantiles:

(@) the .99 quantile of the xZ distribution

(b) the.025 quantile of the Xf distribution

(c) the .99 quantile of the F distribution with
numerator degrees of freedom 3 and denom-
inator degrees of freedom 15

(d) the .25 quantile of the F distribution with
numerator degrees of freedom 3 and denom-
inator degrees of freedom 15

The digital and vernier caliper measurements of
no. 10 machine screw diameters summarized in
Exercise 3 of Section 6.3 are such that for 19 out
of 50 of the screws, there was no difference in
the measurements. Based on these results, give a
95% confidence interval for the long-run fraction
of such measurements by the student technician
that would produce agreement between the digital
and vernier caliper measurements.

Duren, Leng, and Patterson studied the drilling of
holesinaminiaturemetal part using electrical dis-
charge machining. Blueprint specifications on a
certain hole called for diametersof .0210 + .0003
in. Thediametersof thisholeweremeasured on 50
parts with plug gauges and produced X = .02046
and s = .00178. Assume that the holes the stu-
dents measured were representative of the output
of aphysically stable drilling process.

(8) Givea95% two-sided confidenceinterval for
the mean diameter of holes drilled by this
process.

(b) Give a 95% lower confidence bound for the
mean diameter of the holes drilled by this
process. (Find a number, #, so that (#, oo)

32.
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is a95% confidence interval.) How does this
number compare to the lower end point of
your interval from (a)?

(c) Repeat () using 90% confidence. How does
thisinterval compare with the one from (a)?

(d) Repeat (b) using 90% confidence. How does
this bound compare to the one found in (b)?

(e) Interpret your interval from (@) for someone
with little statistical background. (Speak in
the context of the drilling study and use the
“authorized interpretation” of confidence as
your guide.)

(f) Based on your confidence intervals, would
you expect the p-value in atest of Hy: =
.0210 versus H,: v # .0210 to be small? Ex-
plain.

(g) Based on your confidence intervals, would
you expect the p-value in atest of Hy: u =
.0210 versus H,: © > .0210 to be small? Ex-
plain.

(h) Consider again your answer to part (). A col-
league sees your calculations and says, “Oh,
S0 95% of the measured diameters would be
in that range?’ What do you say to this per-
son?

(i) Use the five step significance-testing format
of Section 6.2 and assess the strength of the
evidence provided by the data to the effect
that the process mean diameter differs from
the mid-specification of .0210. (Begin with
Hy: o = .0210 and use H,: 1 # .0210.

(1) Thus far in this exercise, inference for the
mean hole diameter has been of interest. Ex-
plain why in practice the variability of di-
ameters is also important. The methods of
Sections 6.1 are not designed for analyzing
distributional spread. Wherein Chapter 6 can
you find inference methods for this feature?

Return to Babcock's fatigue life testing data in
Chapter Exercise 18 of Chapter 3 and for now
focus on the fatigue life data for heat 1.

() In order to do inference based on this small
sample, what model assumptions must you
employ? What does a normal plot say about
the appropriateness of these assumptions?
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(b) Givea90% two-sided confidenceinterval for
the mean fatigue life of such specimensfrom
this heat.

(c) Give a 90% lower confidence bound for the
mean fatiguelife of such specimensfrom this
heat.
If you are interested in quantifying the vari-
ability in fatigue lives produced by this heat
of stedl, inference for o becomes relevant.
Give a 95% two-sided confidenceinterval for
o based on display (6.42) of the text.
Make a90% two-sided prediction interval for
asingle additional fatigue life for a specimen
from this heat.
(f) Make a 95% two-sided tolerance interval for
90% of additional fatigue livesfor specimens
from this heat. How does this interval com-
pare to your interval from (€)?
Now consider the statistical interval derived
from the minimum and maximum sampleval-
uesfrom heat 1, namely (11, 548). What con-
fidence should be associated with thisinterval
asaprediction interval for asingle additional
fatigue life from this heat? What confidence
should be associated with theinterval asatol-
erance interval for 90% of additional fatigue
lives?

Now consider both the datafor heat 1 and the data

for heat 3.

(h) In order to make formal inferences about
W, — 14 based on these data, what must be
assumed about fatigue lives for specimens
from these two heats? Make a plot useful for
investigating the reasonableness of these as-
sumptions.

(i) Under the appropriate assumptions (state
them), give a 95% two-sided confidence in-
terval for pu, — pg.

Consider the Notch/Dial Bore and Notch/Air
Spindler measurements on ten servo sleeves re-
corded in Chapter Exercise 19 in Chapter 3.

(a) If onewishesto compare the dial bore gauge
and the air spindler gauge measurements, the
methodsof formulas (6.35), (6.36), and (6.38)
are not appropriate. Why?

(d)

(€)

©)
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(b) What assumption must you make in order to
do formal inference on the mean difference
in dia bore and air spindler gauge measure-
ments? Make a plot useful for assessing the
reasonableness of this assumption. Comment
on what it indicates in this problem.
Make the necessary assumptions about the
dial bore and air spindler measurements and
assess the strength of the evidence in the data
of a systematic difference between the two
gauges.
Make a 95% two-sided confidence interval
for the mean difference in dial bore and air
spindler measurements.
(e) Briefly discusshow your answersfor parts(c)
and (d) of this problem are consistent.

Chapter Exercise 20 in Chapter 3 concerned the
drilling of holes in miniature metal parts using
laser drilling and electrical discharge machining.
Return to that problem and consider first only the
EDM values.
(& In order to use the methods of inference of
Section 6.3 with these data, what model as-
sumptions must be made? Make a plot useful
for investigating the appropriateness of those
assumptions. Comment on the shape of that
plot and what it says about the appropriate-
ness of the model assumptions.

Give a99% two-sided confidence interval for

the mean angle produced by the EDM drilling

of this hole.

(c) Give a 99% upper confidence bound for the
mean angle produced by the EDM drilling of
this hole.

(d) Givea95% two-sided confidenceinterval for
the standard deviation of angles produced by
the EDM drilling of this hole.

(e) Make a 99% two-sided prediction interval
for the next measured angle produced by the
EDM drilling of this hole.

(f) Make a 95% two-sided tolerance interval for
99% of angles produced by the EDM drilling
of this hole.

(g) Consider the statistical interval derived from
the minimum and maximum sample EDM

(©

(d)

(b)
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values, namely (43.2, 46.1). What confidence
should be associated with this interval as
a prediction interval for a single additional
measured angle? What confidence should be
associated with thisinterval asatolerancein-
terval for 99% of additional measured angles?

Now consider both the EDM and initial set of

Laser valuesin Chapter Exercise 20 of Chapter 3

(two sets of 13 parts).

(h) In order to make formal inferences about
My sser — Mepy P@SEd onthesedata, what must
you be willing to use for model assumptions?
Make a plot useful for investigating the rea-
sonableness of those assumptions.

(i) Proceed under appropriate assumptionsto as-
sess the strength of the evidence provided by
the data that thereis a difference in the mean
angles produced by the two drilling methods.

() Givea95% two-sided confidence interval for
Hiaser = MEDM: , .

(k) Givea90% two-sided confidenceinterval for
comparing the standard deviations of angles
produced by Laser and EDM drilling of this
hole.

Now consider both sets of Laser measurements

given in Chapter Exercise 20 of Chapter 3. (Holes

A and B are on the same 13 parts.)

() 1If you wished to compare the mean angle
measurementsfor the two holes, theformulas
used in (i) and (j) are not appropriate. Why?

(m) Make a 90% two-sided confidence interval
for the mean difference in angles for the two
holes made with the laser equipment.

(n) Assess the strength of the evidence provided
by these datathat there is a systematic differ-
ence in the angles of the holes made with the
laser equipment.

(o) Briefly discusswhy your answersto parts (m)
and (n) of this exercise are compatible. (Dis-
cuss how the outcome of part (n) could have
been anticipated from the outcome of part
(m).)

A so-caled “tilttable” test was run in order to

determine the angles at which certain vehicles ex-

perience lift-off of one set of wheelsand begin to
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roll over on their sides. “Tilttable ratios’ (which
are the tangents of the angles at which lift-off
occurred) were measured for two minivans of dif-
ferent makes four times each with the following
results.

Van 1 Van 2
1.096, 1.093, .962, .970,
1.090, 1.093 .967, .966

(@) If you were to make a confidence interval
for thelong-run mean measured tilttableratio
for Van 1 (under conditions like those expe-
rienced during the testing) using the methods
of Section 6.3, what model assumption must
be made?

(b) Makea95% two-sided confidenceinterval for
the mean measured tilttableratiofor Van 1 un-
der conditions like those experienced during
the testing.

(c) Give a 95% lower confidence bound for the
mean measured tilttable ratio for Van 1.

(d) Give a 95% lower confidence bound for the
standard deviation of tilttableratiosfor Van 1.

(e) Makea95% two-sided prediction interval for
asingle additional measured tilttableratio for
Van 1 under conditions such as those experi-
enced during testing.

(f) Make a 99% two-sided tolerance interval for
95% of additional measuredtilttableratiosfor
Van 1.

(g) Consider the statistical interval derived from
the minimum and maximum sample values
for Van 1, namely (1.090, 1.096). What con-
fidence should be associated with this inter-
val as a prediction interval for a single ad-
ditional measured tilttable ratio? What confi-
dence should be associated with this interval
as a tolerance interval for 95% of additional
tilttable test results for Van 1?

Now consider the data for both vans.

(h) In order to make formal inferences about
w, — 1, based on these data, what must you
be willing to use for model assumptions?
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(i) Proceed under the necessary assumptions to (K) Proceed under the necessary model assump-
assess the strength of the evidence provided tions to give a 90% two-sided confidence in-
by the data that there is a difference in mean terva for o, /o,.

measured tilttable ratios for the two vans.

(i) Proceed under the necessary model assump-
tions to give a 90% two-sided confidence in-
terval for pu, — .

Chapter 6 Summary Tables

The methods presented in Chapter 6 can seem overwhelming in their variety. It is
sometimes hel pful to have asummary of them. The tables here give such asummary
and can be used to help you locate methods appropriate in a particular problem or

application.
Table 1
Inference Methods for Individual Values
Inference For Assumptions Interval Section
Xq41 (@single additional value) (Min(xy, ..., X)), max(x, ..., X))
or (min(x,, ..., %), 00) 6.6
or (—oo, max(Xy, .. ., X))
. _ 1
observations normal X+ts (14 - 6.6
most of the distribution (min(xy, ..., X,), max(x,, ..., X))
or (Min(Xy, ..., X,), 00) 6.6
or (—oo, max(Xy, .. ., X))
observations normal X+ 1,8
or (X — 1,8, 00) 6.6

or (—o0, X + 1;9)
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Table 2
Inference Methods for One and Two Means
Inference For Sample Size  Assumptions H,, Test Stat, Reference Interval Section
S
one mean largen H,:u=# X+z— 6.1, 6.2
m( ) 9 o- M Jn
X —#
Z=——
s/y/n
standard normal
. 3
small n observations Hy:u=# Xtt— 6.3
normal % vn
T=
s//n
twithv=n-1
<, 9
Hy — Uy largen,, n, independent Ho: ity —, =# X, —X, £z /| =+—= 63
(difference samples N
in means) 7 X, — X, —#
N
ntny
standard normal
; . 1 1
small n; or n, independent Ho: iy —u, =# X, — X, £ts, [ —+— 6.3
normal samples n
X, — X, — #
1= = T
Py TR,
twithv=n; +n,—2
2 2
possibly o, # o, %, — %+t L +2 63
n m
use random v given in (6.37)
Iig large n (paired data) Hy: g = # d+ z% 6.3
(mean
difference) d—#
NG
standard normal
- : 341 d
smal n (paired data) Hy: g =# dﬂ:t\/—ﬁ 6.3
d—#
normal T=—-—+
differences Sa/v/M

twithv=n-1




442 Chapter 6 Introduction to Formal Statistical Inference

Table 3
Inference Methods for Variances
Inference For Assumptions H,, Test Stat, Reference Interval Section
o2 (one variance) observationsnormal  H,: 0% = #
n—1)s? n—1)s? n—1)s?
xz - (N- D (-1 and/or (-1 6.4
. # U L
xZwithv=n—-1
0.2
o} /0% (varianceratio) ~observationsnormal  Hy: -5 =#
independent samples %2
2 /a2 2 2
Fzﬁ Slzandlorsl2 6.4
# U-s L-s;
F withv, =n, -1
andv,=n,—1
Table 4
Inference Methods for Proportions
Inference Sample H,, Test Stet,
For Size Assumptions Reference Interval Section
p (one largen Hy: p=#
proportion)
b # -
z__P-7 paz/PE=P 65
[#(1—#) n
" 1
standard normal orptz——
P 2/n
P — P, large Ho: P =P, =0
difference n,,n,
in proportions ) A — B B(1— 1D D.(1—p
Independent Z — pl p2 ﬁl _ Apz + Z\/ pl( pl) + p2( p2)
samples VPa-D) 7+ Ny Ny
use p givenin (6.71)
. R 1/1 1
standard normal orp,—pP,x£z- - |—+— 6.5
2\n, N,






