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Probability:
The Mathematics
of Randomness

The theory of probability is the mathematician’s description of random variation.
This chapter introduces enough probability to serve as a minimum background for
making formal statistical inferences.

The chapter begins with a discussion of discrete random variables and their
distributions. It next turns to continuous random variables and then probability
plotting. Next, the simultaneous modeling of several random variables and the
notion of independence are considered. Finally, there is a look at random variables
that arise as functions of several others, and how randomness of the input variables
is translated to the output variable.
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5.1 (Discrete) Random Variables

The concept of a random (or chance) variable is introduced in general terms in this
section. Then specialization to discrete cases is considered. The specification of a
discrete probability distribution via a probability function or cumulative probability
function is discussed. Next, summarization of discrete distributions in terms of
(theoretical) means and variances is treated. Then the so-called binomial, geometric,
and Poisson distributions are introduced as examples of useful discrete probability
models.

5.1.1 Random Variables and Their Distributions

It is usually appropriate to think of a data value as subject to chance influences.
In enumerative contexts, chance is commonly introduced into the data collection
process through random sampling techniques. Measurement error is nearly always a
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222 Chapter 5 Probability: The Mathematics of Randomness

factor in statistical engineering studies, and the many small, unnameable causes that
work to produce it are conveniently thought of as chance phenomena. In analytical
contexts, changes in system conditions work to make measured responses vary, and
this is most often attributed to chance.

Definition 1 A random variable is a quantity that (prior to observation) can be thought
of as dependent on chance phenomena. Capital letters near the end of the
alphabet are typically used to stand for random variables.

Consider a situation (like that of Example 3 in Chapter 3) where the torques
of bolts securing a machine component face plate are to be measured. The next
measured value can be considered subject to chance influences and we thus term

Z = the next torque recorded

a random variable.
Following Definition 9 in Chapter 1, a distinction was made between discrete

and continuous data. That terminology carries over to the present context and inspires
two more definitions.

Definition 2 A discrete random variable is one that has isolated or separated possible
values (rather than a continuum of available outcomes).

Definition 3 A continuous random variable is one that can be idealized as having an
entire (continuous) interval of numbers as its set of possible values.

Random variables that are basically count variables clearly fall under Defi-
nition 2 and are discrete. It could be argued that all measurement variables are
discrete—on the basis that all measurements are “to the nearest unit.” But it is often
mathematically convenient, and adequate for practical purposes, to treat them as
continuous.

A random variable is, to some extent, a priori unpredictable. Therefore, in
describing or modeling it, the important thing is to specify its set of potential values
and the likelihoods associated with those possible values.

Definition 4 To specify a probability distribution for a random variable is to give its set
of possible values and (in one way or another) consistently assign numbers
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between 0 and 1—called probabilities—as measures of the likelihood that
the various numerical values will occur.

The methods used to specify discrete probability distributions are different
from those used to specify continuous probability distributions. So the implications
of Definition 4 are studied in two steps, beginning in this section with discrete
distributions.

5.1.2 Discrete Probability Functions
and Cumulative Probability Functions

The tool most often used to describe a discrete probability distribution is the prob-
ability function.

Definition 5 A probability function for a discrete random variable X , having possible
values x1, x2, . . ., is a nonnegative function f (x), with f (xi ) giving the prob-
ability that X takes the value xi .

This text will use the notational convention that a capital P followed by an
expression or phrase enclosed by brackets will be read “the probability” of that
expression. In these terms, a probability function for X is a function f such that

Probability function
for the discrete

random variable X

f (x) = P[X = x]

That is, “ f (x) is the probability that (the random variable) X takes the value x .”

Example 1 A Torque Requirement Random Variable

Consider again Example 3 in Chapter 3, where Brenny, Christensen, and Schnei-
der measured bolt torques on the face plates of a heavy equipment component.
With

Z = the next measured torque for bolt 3 (recorded to the nearest integer)

consider treating Z as a discrete random variable and giving a plausible proba-
bility function for it.

The relative frequencies for the bolt 3 torque measurements recorded in
Table 3.4 on page 74 produce the relative frequency distribution in Table 5.1.
This table shows, for example, that over the period the students were collecting
data, about 15% of measured torques were 19 ft lb. If it is sensible to believe
that the same system of causes that produced the data in Table 3.4 will operate
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Example 1
(continued )

to produce the next bolt 3 torque, then it also makes sense to base a probability
function for Z on the relative frequencies in Table 5.1. That is, the probability
distribution specified in Table 5.2 might be used. (In going from the relative
frequencies in Table 5.1 to proposed values for f (z) in Table 5.2, there has been
some slightly arbitrary rounding. This has been done so that probability values
are expressed to two decimal places and now total to exactly 1.00.)

Table 5.1
Relative Frequency Distribution for Measured Bolt 3
Torques

z, Torque (ft lb) Frequency Relative Frequency

11 1 1/34 ≈ .02941
12 1 1/34 ≈ .02941
13 1 1/34 ≈ .02941
14 2 2/34 ≈ .05882
15 9 9/34 ≈ .26471
16 3 3/34 ≈ .08824
17 4 4/34 ≈ .11765
18 7 7/34 ≈ .20588
19 5 5/34 ≈ .14706
20 1 1/34 ≈ .02941

34 1

Table 5.2
A Probability Function
for Z

Torque Probability
z f (z)

11 .03
12 .03
13 .03
14 .06
15 .26
16 .09
17 .12
18 .20
19 .15
20 .03
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The appropriateness of the probability function in Table 5.2 for describing Z
depends essentially on the physical stability of the bolt-tightening process. But
there is a second way in which relative frequencies can become obvious choices for
probabilities. For example, think of treating the 34 torques represented in Table 5.1
as a population, from which n = 1 item is to be sampled at random, and

Y = the torque value selected

Then the probability function in Table 5.2 is also approximately appropriate for Y .
This point is not so important in this specific example as it is in general: Where
one value is to be selected at random from a population, an appropriate probabilityThe probability

distribution of a
single value selected

at random from
a population

distribution is one that is equivalent to the population relative frequency distribution.
This text will usually express probabilities to two decimal places, as in Table 5.2.

Computations may be carried to several more decimal places, but final probabilities
will typically be reported only to two places. This is because numbers expressed to
more than two places tend to look too impressive and be taken too seriously by the
uninitiated. Consider for example the statement “There is a .097328 probability of
booster engine failure” at a certain missile launch. This may represent the results of
some very careful mathematical manipulations and be correct to six decimal places
in the context of the mathematical model used to obtain the value. But it is doubtful
that the model used is a good enough description of physical reality to warrant that
much apparent precision. Two-decimal precision is about what is warranted in most
engineering applications of simple probability.

The probability function shown in Table 5.2 has two properties that are necessaryProperties of a
mathematically valid
probability function

for the mathematical consistency of a discrete probability distribution. The f (z)
values are each in the interval [0, 1] and they total to 1. Negative probabilities or
ones larger than 1 would make no practical sense. A probability of 1 is taken as
indicating certainty of occurrence and a probability of 0 as indicating certainty of
nonoccurrence. Thus, according to the model specified in Table 5.2, since the values
of f (z) sum to 1, the occurrence of one of the values 11, 12, 13, 14, 15, 16, 17, 18,
19, and 20 ft lb is certain.

A probability function f (x) gives probabilities of occurrence for individual val-
ues. Adding the appropriate values gives probabilities associated with the occurrence
of one of a specified type of value for X .

Example 1
(continued )

Consider using f (z) defined in Table 5.2 to find

P[Z > 17] = P[the next torque exceeds 17]

Adding the f (z) entries corresponding to possible values larger than 17 ft lb,

P[Z > 17] = f (18) + f (19) + f (20) = .20 + .15 + .03 = .38

The likelihood of the next torque being more than 17 ft lb is about 38%.
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Example 1
(continued )

If, for example, specifications for torques were 16 ft lb to 21 ft lb, then the
likelihood that the next torque measured will be within specifications is

P[16 ≤ Z ≤ 21] = f (16) + f (17) + f (18) + f (19) + f (20) + f (21)

= .09 + .12 + .20 + .15 + .03 + .00

= .59

In the torque measurement example, the probability function is given in tabular
form. In other cases, it is possible to give a formula for f (x).

Example 2 A Random Tool Serial Number

The last step of the pneumatic tool assembly process studied by Kraber, Rucker,
and Williams (see Example 11 in Chapter 3) was to apply a serial number plate
to the completed tool. Imagine going to the end of the assembly line at exactly
9:00 A.M. next Monday and observing the number plate first applied after 9:00.

Suppose that

W = the last digit of the serial number observed

Suppose further that tool serial numbers begin with some code special to the
tool model and end with consecutively assigned numbers reflecting how many
tools of the particular model have been produced. The symmetry of this situation
suggests that each possible value of W (w = 0, 1, . . . , 9) is equally likely. That
is, a plausible probability function for W is given by the formula

f (w) =
{

.1 for w = 0, 1, 2, . . . , 9

0 otherwise

Another way of specifying a discrete probability distribution is sometimes used.
That is to specify its cumulative probability function.

Definition 6 The cumulative probability function for a random variable X is a function
F(x) that for each number x gives the probability that X takes that value or a
smaller one. In symbols,

F(x) = P[X ≤ x]
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Since (for discrete distributions) probabilities are calculated by summing values
of f (x), for a discrete distribution,

Cumulative probability
function for a discrete

variable X

F(x) =
∑
z≤x

f (z)

(The sum is over possible values less than or equal to x .) In this discrete case, the
graph of F(x) will be a stair-step graph with jumps located at possible values and
equal in size to the probabilities associated with those possible values.

Example 1
(continued )

Values of both the probability function and the cumulative probability function
for the torque variable Z are given in Table 5.3. Values of F(z) for other z are
also easily obtained. For example,

F(10.7) = P[Z ≤ 10.7] = 0

F(16.3) = P[Z ≤ 16.3] = P[Z ≤ 16] = F(16) = .50

F(32) = P[Z ≤ 32] = 1.00

A graph of the cumulative probability function for Z is given in Figure 5.1. It
shows the stair-step shape characteristic of cumulative probability functions for
discrete distributions.

Table 5.3
Values of the Probability Function and Cumulative
Probability Function for Z

z, Torque f (z) = P[Z = z] F(z) = P[Z ≤ z]

11 .03 .03
12 .03 .06
13 .03 .09
14 .06 .15
15 .26 .41
16 .09 .50
17 .12 .62
18 .20 .82
19 .15 .97
20 .03 1.00
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Example 1
(continued )

.5

1.0

11

F(z)

12 13 14 15 16 17 18 19 20 z

Figure 5.1 Graph of the cumulative
probability function for Z

The information about a discrete distribution carried by its cumulative probabil-
ity function is equivalent to that carried by the corresponding probability function.
The cumulative version is sometimes preferred for table making, because round-off
problems are more severe when adding several f (x) terms than when taking the
difference of two F(x) values to get a probability associated with a consecutive
sequence of possible values.

5.1.3 Summarization of Discrete Probability Distributions

Amost all of the devices for describing relative frequency (empirical) distributions
in Chapter 3 have versions that can describe (theoretical) probability distributions.

For a discrete random variable with equally spaced possible values, a probabil-
ity histogram gives a picture of the shape of the variable’s distribution. It is made
by centering a bar of height f (x) over each possible value x . Probability histograms
for the random variables Z and W in Examples 1 and 2 are given in Figure 5.2.
Interpreting such probability histograms is similar to interpreting relative frequency
histograms, except that the areas on them represent (theoretical) probabilities instead
of (empirical) fractions of data sets.

It is useful to have a notion of mean value for a discrete random variable (or its
probability distribution).

Definition 7 The mean or expected value of a discrete random variable X (sometimes
called the mean of its probability distribution) is

EX =
∑

x

x f (x) (5.1)

EX is read as “the expected value of X ,” and sometimes the notation µ is used
in place of EX.
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z

f (z)
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Probability Distribution for Z

.1
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w

f (w)

0 1 2 3 4 5 6 7 8 9

Probability Distribution for W

Figure 5.2 Probability histograms for Z and W (Examples 1 and 2)

(Remember the warning in Section 3.3 that µ would stand for both the mean of a
population and the mean of a probability distribution.)

Example 1
(continued )

Returning to the bolt torque example, the expected (or theoretical mean) value of
the next torque is

EZ =
∑

z

z f (z)

= 11(.03) + 12(.03) + 13(.03) + 14(.06) + 15(.26)

+ 16(.09) + 17(.12) + 18(.20) + 19(.15) + 20(.03)

= 16.35 ft lbI

This value is essentially the arithmetic mean of the bolt 3 torques listed in
Table 3.4. (The slight disagreement in the third decimal place arises only because
the relative frequencies in Table 5.1 were rounded slightly to produce Table 5.2.)
This kind of agreement provides motivation for using the symbol µ, first seen in
Section 3.3, as an alternative to EZ.

The mean of a discrete probability distribution has a balance point interpretation,
much like that associated with the arithmetic mean of a data set. Placing (point)
masses of sizes f (x) at points x along a number line, EX is the center of mass of
that distribution.
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Example 2
(continued )

Considering again the serial number example, and the second part of Figure 5.2,
if a balance point interpretation of expected value is to hold, EW had better turn
out to be 4.5. And indeed,

EW = 0(.1) + 1(.1) + 2(.1) + · · · + 8(.1) + 9(.1) = 45(.1) = 4.5

It was convenient to measure the spread of a data set (or its relative frequency
distribution) with the variance and standard deviation. It is similarly useful to have
notions of spread for a discrete probability distribution.

Definition 8 The variance of a discrete random variable X (or the variance of its distribu-
tion) is

Var X = ∑
(x − EX)2 f (x)

(= ∑
x2 f (x) − (EX)2) (5.2)

The standard deviation of X is
√

Var X . Often the notation σ 2 is used in
place of Var X , and σ is used in place of

√
Var X .

The variance of a random variable is its expected (or mean) squared distance
from the center of its probability distribution. The use of σ 2 to stand for both the
variance of a population and the variance of a probability distribution is motivated
on the same grounds as the double use of µ.

Example 1
(continued )

The calculations necessary to produce the bolt torque standard deviation are
organized in Table 5.4. So

σ =
√

Var Z =
√

4.6275 = 2.15 ft lbI

Except for a small difference due to round-off associated with the creation of
Table 5.2, this standard deviation of the random variable Z is numerically the
same as the population standard deviation associated with the bolt 3 torques in
Table 3.4. (Again, this is consistent with the equivalence between the population
relative frequency distribution and the probability distribution for Z .)
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Table 5.4
Calculations for Var Z

z f (z) (z − 16.35)2 (z − 16.35)2 f (z)

11 .03 28.6225 .8587
12 .03 18.9225 .5677
13 .03 11.2225 .3367
14 .06 5.5225 .3314
15 .26 1.8225 .4739
16 .09 .1225 .0110
17 .12 .4225 .0507
18 .20 2.7225 .5445
19 .15 7.0225 1.0534
20 .03 13.3225 .3997

Var Z = 4.6275

Example 2
(continued )

To illustrate the alternative for calculating a variance given in Definition 8, con-
sider finding the variance and standard deviation of the serial number variable W .
Table 5.5 shows the calculation of

∑
w2 f (w).

Table 5.5
Calculations for

∑
w2f (w)

w f (w) w2 f (w)

0 .1 0.0
1 .1 .1
2 .1 .4
3 .1 .9
4 .1 1.6
5 .1 2.5
6 .1 3.6
7 .1 4.9
8 .1 6.4
9 .1 8.1

28.5
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Example 2
(continued )

Then

Var W =
∑

w2 f (w) − (EW)2 = 28.5 − (4.5)2 = 8.25

so that √
Var W = 2.87I

Comparing the two probability histograms in Figure 5.2, notice that the distribu-
tion of W appears to be more spread out than that of Z . Happily, this is reflected
in the fact that

√
Var W = 2.87 > 2.15 =

√
Var Z

5.1.4 The Binomial and Geometric Distributions

Discrete probability distributions are sometimes developed from past experience
with a particular physical phenomenon (as in Example 1). On the other hand, some-
times an easily manipulated set of mathematical assumptions having the potential
to describe a variety of real situations can be put together. When those can be ma-
nipulated to derive generic distributions, those distributions can be used to model
a number of different random phenomena. One such set of assumptions is that of
independent, identical success-failure trials.Independent

identical success-
failure trials

Many engineering situations involve repetitions of essentially the same “go–no
go” (success-failure) scenario, where:

1. There is a constant chance of a go/success outcome on each repetition of the
scenario (call this probability p).

2. The repetitions are independent in the sense that knowing the outcome of
any one of them does not change assessments of chance related to any others.

Examples of this kind include the testing of items manufactured consecutively,
where each will be classified as either conforming or nonconforming; observing
motorists as they pass a traffic checkpoint and noting whether each is traveling at a
legal speed or speeding; and measuring the performance of workers in two different
workspace configurations and noting whether the performance of each is better in
configuration A or configuration B.

In this context, there are two generic kinds of random variables for which
deriving appropriate probability distributions is straightforward. The first is the case
of a count of the repetitions out of n that yield a go/success result. That is, consider
a variable

Binomial
random

variables

X = the number of go/success results in n independent identical
success-failure trials

X has the binomial (n, p) distribution.
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Definition 9 The binomial (n, p) distribution is a discrete probability distribution with
probability function

f (x) =


n!

x! (n − x)!
px(1 − p)n−x for x = 0, 1, . . . , n

0 otherwise

(5.3)

for n a positive integer and 0 < p < 1.

Equation (5.3) is completely plausible. In it there is one factor of p for each trial pro-
ducing a go/success outcome and one factor of (1 − p) for each trial producing a no
go/failure outcome. And the n!/x! (n − x)! term is a count of the number of patterns
in which it would be possible to see x go/success outcomes in n trials. The name bi-
nomial distribution derives from the fact that the values f (0), f (1), f (2), . . . , f (n)

are the terms in the expansion of

(p + (1 − p))n

according to the binomial theorem.
Take the time to plot probability histograms for several different binomial

distributions. It turns out that for p < .5, the resulting histogram is right-skewed.
For p > .5, the resulting histogram is left-skewed. The skewness increases as p
moves away from .5, and it decreases as n is increased. Four binomial probability
histograms are pictured in Figure 5.3.

.2

.4

x

f (x)

0 1 2 3 4 5

n = 5
p = .2

.1

.3

.2

.4

x

f (x)

0 1 2 3 4 5

n = 5
p = .5

.1

.3

.2

.4

x

f (x)

0 1 2 3 4 5

n = 5
p = .8

.1

.3

.2

x

f (x)

0 1 2 3 4 5

n = 10
p = .2

.1

.3

6 7 8 9 10

Figure 5.3 Four binomial probability histograms
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WWW

Example 3 The Binomial Distribution and Counts of Reworkable Shafts

Consider again the situation of Example 12 in Chapter 3 and a study of the
performance of a process for turning steel shafts. Early in that study, around 20%
of the shafts were typically classified as “reworkable.” Suppose that p = .2 is
indeed a sensible figure for the chance that a given shaft will be reworkable.
Suppose further that n = 10 shafts will be inspected, and the probability that at
least two are classified as reworkable is to be evaluated.

Adopting a model of independent, identical success-failure trials for shaft
conditions,

U = the number of reworkable shafts in the sample of 10

is a binomial random variable with n = 10 and p = .2. So

P[at least two reworkable shafts] = P[U ≥ 2]

= f (2) + f (3) + · · · + f (10)

= 1 − ( f (0) + f (1))

= 1 −
(

10!

0! 10!
(.2)0(.8)10 + 10!

1! 9!
(.2)1(.8)9

)
= .62

(The trick employed here, to avoid plugging into the binomial probability function
9 times by recognizing that the f (u)’s have to sum up to 1, is a common and
useful one.)

The .62 figure is only as good as the model assumptions that produced it.
If an independent, identical success-failure trials description of shaft production
fails to accurately portray physical reality, the .62 value is fine mathematics
but possibly a poor description of what will actually happen. For instance, say
that due to tool wear it is typical to see 40 shafts in specifications, then 10
reworkable shafts, a tool change, 40 shafts in specifications, and so on. In this
case, the binomial distribution would be a very poor description of U , and the
.62 figure largely irrelevant. (The independence-of-trials assumption would be
inappropriate in this situation.)

There is one important circumstance where a model of independent, identicalThe binomial
distribution and
simple random

sampling

success-failure trials is not exactly appropriate, but a binomial distribution can still be
adequate for practical purposes—that is, in describing the results of simple random
sampling from a dichotomous population. Suppose a population of size N contains
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a fraction p of type A objects and a fraction (1 − p) of type B objects. If a simple
random sample of n of these items is selected and

X = the number of type A items in the sample

strictly speaking, x is not a binomial random variable. But if n is a small fraction of
N (say, less than 10%), and p is not too extreme (i.e., is not close to either 0 or 1),
X is approximately binomial (n, p).

Example 4 Simple Random Sampling from a Lot of Hexamine Pellets

In the pelletizing machine experiment described in Example 14 in Chapter 3,
Greiner, Grimm, Larson, and Lukomski found a combination of machine settings
that allowed them to produce 66 conforming pellets out of a batch of 100 pellets.
Treat that batch of 100 pellets as a population of interest and consider selecting
a simple random sample of size n = 2 from it.

If one defines the random variable

V = the number of conforming pellets in the sample of size 2

the most natural probability distribution for V is obtained as follows. Possible
values for V are 0, 1, and 2.

f (0) = P[V = 0]

= P[first pellet selected is nonconforming and
subsequently the second pellet is also nonconforming]

f (2) = P[V = 2]

= P[first pellet selected is conforming and
subsequently the second pellet selected is conforming]

f (1) = 1 − ( f (0) + f (2))

Then think, “In the long run, the first selection will yield a nonconforming pellet
about 34 out of 100 times. Considering only cases where this occurs, in the long
run the next selection will also yield a nonconforming pellet about 33 out of 99
times.” That is, a sensible evaluation of f (0) is

f (0) = 34

100
· 33

99
= .1133
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Example 4
(continued )

Similarly,

f (2) = 66

100
· 65

99
= .4333

and thus

f (1) = 1 − (.1133 + .4333) = 1 − .5467 = .4533

Now, V cannot be thought of as arising from exactly independent trials. For
example, knowing that the first pellet selected was conforming would reduce most
people’s assessment of the chance that the second is also conforming from 66

100 to
65
99 . Nevertheless, for most practical purposes, V can be thought of as essentially
binomial with n = 2 and p = .66. To see this, note that

2!

0! 2!
(.34)2(.66)0 = .1156 ≈ f (0)

2!

1! 1!
(.34)1(.66)1 = .4488 ≈ f (1)

2!

2! 0!
(.34)0(.66)2 = .4356 ≈ f (2)

Here, n is a small fraction of N , p is not too extreme, and a binomial distribution
is a decent description of a variable arising from simple random sampling.

Calculation of the mean and variance for binomial random variables is greatly
simplified by the fact that when the formulas (5.1) and (5.2) are used with the
expression for binomial probabilities in equation (5.3), simple formulas result. For
X a binomial (n, p) random variable,

Mean of the
binomial (n, p)

distribution
µ = E X =

n∑
x=0

x
n!

x!(n − x)!
px (1 − p)n−x = np (5.4)

Further, it is the case that

Variance of the
binomial (n, p)

distribution
σ 2 = Var X =

n∑
x=0

(x − np)2 n!

x!(n − x)!
px (1 − p)n−x = np(1 − p) (5.5)
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Example 3
(continued )

Returning to the machining of steel shafts, suppose that a binomial distribution
with n = 10 and p = .2 is appropriate as a model for

U = the number of reworkable shafts in the sample of 10

Then, by formulas (5.4) and (5.5),

EU = (10)(.2) = 2 shafts
√

Var U =
√

10(.2)(.8) = 1.26 shafts

A second generic type of random variable associated with a series of indepen-
dent, identical success-failure trials is

Geometric
random

variables
X = the number of trials required to first obtain a go/success result

X has the geometric (p) distribution.

Definition 10 The geometric (p) distribution is a discrete probability distribution with
probability function

f (x) =
{

p(1 − p)x−1 for x = 1, 2, . . .

0 otherwise
(5.6)

for 0 < p < 1.

Formula (5.6) makes good intuitive sense. In order for X to take the value x ,
there must be x − 1 consecutive no-go/failure results followed by a go/success. In
formula (5.6), there are x − 1 terms (1 − p) and one term p. Another way to see
that formula (5.6) is plausible is to reason that for X as above and x = 1, 2, . . .

1 − F(x) = 1 − P[X ≤ x]

= P[X > x]

= P[x no-go/failure outcomes in x trials]

That is,
Simple relationship for

the geometric (p)
cumulative probability

function

1 − F(x) = (1 − p)x (5.7)
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Figure 5.4 Two geometric probability histograms

by using the form of the binomial (x, p) probability function given in equation
(5.3). Then for x = 2, 3, . . . , f (x) = F(x) − F(x − 1) = −(1 − F(x)) + (1 −
F(x − 1)). This, combined with equation (5.7), gives equation (5.6).

The name geometric derives from the fact that the values f (1), f (2), f (3), . . .

are terms in the geometric infinite series for

p · 1

1 − (1 − p)

The geometric distributions are discrete distributions with probability his-
tograms exponentially decaying as x increases. Two different geometric probability
histograms are pictured in Figure 5.4.

Example 5 The Geometric Distribution and Shorts in NiCad Batteries

In “A Case Study of the Use of an Experimental Design in Preventing Shorts
in Nickel-Cadmium Cells” (Journal of Quality Technology, 1988), Ophir, El-
Gad, and Snyder describe a series of experiments conducted in order to reduce
the proportion of cells being scrapped by a battery plant because of internal
shorts. The experimental program was successful in reducing the percentage of
manufactured cells with internal shorts to around 1%.
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Suppose that testing begins on a production run in this plant, and let

T = the test number at which the first short is discovered

A model for T (appropriate if the independent, identical success-failure trials
description is apt) is geometric with p = .01. (p is the probability that any
particular test yields a shorted cell.) Then, using equation (5.6),

P[the first or second cell tested has the first short] = P[T = 1 or T = 2]

= f (1) + f (2)

= (.01) + (.01)(1 − .01)

= .02

Or, using equation (5.7),

P[at least 50 cells are tested without finding a short] = P[T > 50]

= (1 − .01)50

= .61

Like the binomial distributions, the geometric distributions have means and
variances that are simple functions of the parameter p. That is, if X is geometric (p),

Mean of the
geometric (p)

distribution
µ = EX =

∞∑
x=1

xp(1 − p)x−1 = 1

p
(5.8)

and

Variance of the
geometric (p)

distribution
σ 2 = Var X =

∞∑
x=1

(
x − 1

p

)2

p(1 − p)x−1 = 1 − p

p2 (5.9)

Example 5
(continued )

In the context of battery testing, with T as before,

ET = 1

.01
= 100 batteries

√
Var T =

√
(1 − .01)

(.01)2 = 99.5 batteries
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Example 5
(continued )

Formula (5.8) is an intuitively appealing result. If there is only 1 chance in 100 of
encountering a shorted battery at each test, it is sensible to expect to wait through
100 tests on average to encounter the first one.

5.1.5 The Poisson Distributions

As discussed in Section 3.4, it is often important to keep track of the total number
of occurrences of some relatively rare phenomenon, where the physical or time
unit under observation has the potential to produce many such occurrences. A case
of floor tiles has potentially many total blemishes. In a one-second interval, there
are potentially a large number of messages that can arrive for routing through a
switching center. And a 1 cc sample of glass potentially contains a large number of
imperfections.

So probability distributions are needed to describe random counts of the number
of occurrences of a relatively rare phenomenon across a specified interval of time
or space. By far the most commonly used theoretical distributions in this context
are the Poisson distributions.

Definition 11 The Poisson (λ) distribution is a discrete probability distribution with prob-
ability function

f (x) =
 e−λλx

x!
for x = 0, 1, 2, . . .

0 otherwise
(5.10)

for λ > 0.

The form of equation (5.10) may initially seem unappealing. But it is one that
has sensible mathematical origins, is manageable, and has proved itself empirically
useful in many different “rare events” circumstances. One way to arrive at equation
(5.10) is to think of a very large number of independent trials (opportunities for
occurrence), where the probability of success (occurrence) on any one is very small
and the product of the number of trials and the success probability is λ. One is
then led to the binomial (n, λ

n ) distribution. In fact, for large n, the binomial (n, λ
n )

probability function approximates the one specified in equation (5.10). So one
might think of the Poisson distribution for counts as arising through a mechanism
that would present many tiny similar opportunities for independent occurrence or
nonoccurrence throughout an interval of time or space.

The Poisson distributions are right-skewed distributions over the values x =
0, 1, 2, . . . , whose probability histograms peak near their respective λ’s. Two dif-
ferent Poisson probability histograms are shown in Figure 5.5. λ is both the mean
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Figure 5.5 Two Poisson probability histograms

and the variance for the Poisson (λ) distribution. That is, if X has the Poisson (λ)

distribution, then

Mean of the
Poisson (λ)

distribution
µ = EX =

∞∑
x=0

x
e−λλx

x!
= λ (5.11)

and

Variance of the
Poisson (λ)

distribution
Var X =

∞∑
x=0

(x − λ)2 e−λλx

x!
= λ (5.12)

Fact (5.11) is helpful in picking out which Poisson distribution might be useful in
describing a particular “rare events” situation.

WWW

Example 6 The Poisson Distribution and Counts of α-Particles

A classical data set of Rutherford and Geiger, reported in Philosophical Magazine
in 1910, concerns the numbers of α-particles emitted from a small bar of polonium
and colliding with a screen placed near the bar in 2,608 periods of 8 minutes each.
The Rutherford and Geiger relative frequency distribution has mean 3.87 and a
shape remarkably similar to that of the Poisson probability distribution with mean
λ = 3.87.
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Example 6
(continued )

In a duplication of the Rutherford/Geiger experiment, a reasonable probabil-
ity function for describing

S = the number of α-particles striking the screen in an additional
8-minute period

is then

f (s) =


e−3.87(3.87)s

s!
for s = 0, 1, 2, . . .

0 otherwise

Using such a model, one has (for example)

P[at least 4 particles are recorded]

= P[S ≥ 4]

= f (4) + f (5) + f (6) + · · ·
= 1 − ( f (0) + f (1) + f (2) + f (3))

= 1 −
(

e−3.87(3.87)0

0!
+ e−3.87(3.87)1

1!
+ e−3.87(3.87)2

2!
+ e−3.87(3.87)3

3!

)
= .54

Example 7 Arrivals at a University Library

Stork, Wohlsdorf, and McArthur collected data on numbers of students entering
the ISU library during various periods over a week’s time. Their data indicate
that between 12:00 and 12:10 P.M. on Monday through Wednesday, an average
of around 125 students entered. Consider modeling

M = the number of students entering the ISU library between 12:00 and
12:01 next Tuesday

Using a Poisson distribution to describe M , the reasonable choice of λ would
seem to be

λ = 125 students

10 minutes
(1 minute) = 12.5 students

For this choice,

E M = λ = 12.5 students√
Var M =

√
λ =

√
12.5 = 3.54 students
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and, for example, the probability that between 10 and 15 students (inclusive)
arrive at the library between 12:00 and 12:01 would be evaluated as

P[10 ≤ M ≤ 15] = f (10) + f (11) + f (12) + f (13) + f (14) + f (15)

= e−12.5(12.5)10

10!
+ e−12.5(12.5)11

11!
+ e−12.5(12.5)12

12!

+ e−12.5(12.5)13

13!
+ e−12.5(12.5)14

14!
+ e−12.5(12.5)15

15!
= .60
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1. A discrete random variable X can be described
using the probability function

x 2 3 4 5 6

f (x) .1 .2 .3 .3 .1

(a) Make a probability histogram for X . Also plot
F(x), the cumulative probability function
for X .

(b) Find the mean and standard deviation of X .

2. In an experiment to evaluate a new artificial sweet-
ener, ten subjects are all asked to taste cola from
three unmarked glasses, two of which contain reg-
ular cola while the third contains cola made with
the new sweetener. The subjects are asked to iden-
tify the glass whose content is different from the
other two. If there is no difference between the
taste of sugar and the taste of the new sweetener,
the subjects would be just guessing.
(a) Make a table for a probability function for

X = the number of subjects correctly
identifying the artificially
sweetened cola

under this hypothesis of no difference in taste.

(b) If seven of the ten subjects correctly identify
the artificial sweetener, is this outcome strong
evidence of a taste difference? Explain.

3. Suppose that a small population consists of the
N = 6 values 2, 3, 4, 4, 5, and 6.
(a) Sketch a relative frequency histogram for this

population and compute the population mean,
µ, and standard deviation, σ .

(b) Now let X = the value of a single number se-
lected at random from this population. Sketch
a probability histogram for this variable X and
compute EX and Var X .

(c) Now think of drawing a simple random sample
of size n = 2 from this small population. Make
tables giving the probability distributions of the
random variables

X = the sample mean

S2 = the sample variance

(There are 15 different possible unordered sam-
ples of 2 out of 6 items. Each of the 15 possible
samples is equally likely to be chosen and has
its own corresponding x̄ and s2.) Use the tables
and make probability histograms for these ran-
dom variables. Compute EX and Var X . How
do these compare to µ and σ 2?
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4. Sketch probability histograms for the binomial dis-
tributions with n = 5 and p = .1, .3, .5, .7, and .9.
On each histogram, mark the location of the mean
and indicate the size of the standard deviation.

5. Suppose that an eddy current nondestructive eval-
uation technique for identifying cracks in critical
metal parts has a probability of around .20 of detect-
ing a single crack of length .003 in. in a certain ma-
terial. Suppose further that n = 8 specimens of this
material, each containing a single crack of length
.003 in., are inspected using this technique. Let W
be the number of these cracks that are detected. Use
an appropriate probability model and evaluate the
following:
(a) P[W = 3]
(b) P[W ≤ 2]
(c) EW
(d) Var W
(e) the standard deviation of W

6. In the situation described in Exercise 5, suppose
that a series of specimens, each containing a sin-
gle crack of length .003 in., are inspected. Let Y
be the number of specimens inspected in order to
obtain the first crack detection. Use an appropriate
probability model and evaluate all of the following:
(a) P[Y = 5]
(b) P[Y ≤ 4]
(c) EY
(d) Var Y
(e) the standard deviation of Y

7. Sketch probability histograms for the Poisson dis-
tributions with means λ = .5, 1.0, 2.0, and 4.0. On

each histogram, mark the location of the mean
and indicate the size of the standard deviation.

8. A process for making plate glass produces an av-
erage of four seeds (small bubbles) per 100 square
feet. Use Poisson distributions and assess proba-
bilities that
(a) a particular piece of glass 5 ft × 10 ft will

contain more than two seeds.
(b) a particular piece of glass 5 ft × 5 ft will con-

tain no seeds.

9. Transmission line interruptions in a telecommu-
nications network occur at an average rate of one
per day.
(a) Use a Poisson distribution as a model for

X = the number of interruptions in the next
five-day work week

and assess P[X = 0].
(b) Now consider the random variable

Y = the number of weeks in the next four
in which there are no interruptions

What is a reasonable probability model for
Y ? Assess P[Y = 2].

10. Distinguish clearly between the subjects of prob-
ability and statistics. Is one field a subfield of the
other?

11. What is the difference between a relative fre-
quency distribution and a probability distribution?

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5.2 Continuous Random Variables

It is often convenient to think of a random variable as not discrete but rather
continuous in the sense of having a whole (continuous) interval for its set of possible
values. The devices used to describe continuous probability distributions differ from
the tools studied in the last section. So the first tasks here are to introduce the
notion of a probability density function, to show its relationship to the cumulative
probability function for a continuous random variable, and to show how it is used to
find the mean and variance for a continuous distribution. After this, several standard
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continuous distributions useful in engineering applications of probability theory will
be discussed. That is, the normal (or Gaussian) exponential and Weibull distributions
are presented.

5.2.1 Probability Density Functions
and Cumulative Probability Functions

The methods used to specify and describe probability distributions have parallels in
mechanics. When considering continuous probability distributions, the analogy to
mechanics becomes especially helpful. In mechanics, the properties of a continuous
mass distribution are related to the possibly varying density of the mass across its
region of location. Amounts of mass in particular regions are obtained from the
density by integration.

The concept in probability theory corresponding to mass density in mechanics
is probability density. To specify a continuous probability distribution, one needs
to describe “how thick” the probability is in the various parts of the set of possible
values. The formal definition is

Definition 12 A probability density function for a continuous random variable X is a
nonnegative function f (x) with∫ ∞

−∞
f (x) dx = 1 (5.13)

and such that for all a ≤ b, one is willing to assign P[a ≤ X ≤ b] according
to

P[a ≤ X ≤ b] =
∫ b

a
f (x) dx (5.14)

A generic probability density function is pictured in Figure 5.6. In keeping with
equations (5.13) and (5.14), the plot of f (x) does not dip below the x axis, the
total area under the curve y = f (x) is 1, and areas under the curve above particular
intervals give probabilities corresponding to those intervals.

In direct analogy to what is done in mechanics, if f (x) is indeed the “density ofMechanics analogy
for probability

density
probability” around x , then the probability in an interval of small length dx around
x is approximately f (x) dx . (In mechanics, if f (x) is mass density around x , then
the mass in an interval of small length dx around x is approximately f (x) dx .) Then
to get a probability between a and b, one needs to sum up such f (x) dx values.∫ b

a f (x) dx is exactly the limit of
∑

f (x) dx values as dx gets small. (In mechanics,∫ b
a f (x) dx is the mass between a and b.) So the expression (5.14) is reasonable.
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Figure 5.6 A generic probability density function

Example 8 The Random Time Until a First Arc in the Bob Drop Experiment

Consider once again the bob drop experiment first described in Section 1.4 and
revisited in Example 4 in Chapter 4. In any use of the apparatus, the bob is almost
certainly not released exactly “in sync” with the 60 cycle current that produces
the arcs and marks on the paper tape. One could think of a random variable

Y = the time elapsed (in seconds) from bob release until the first arc

as continuous with set of possible values (0, 1
60 ).

What is a plausible probability density function for Y ? The symmetry of this
situation suggests that probability density should be constant over the interval
(0, 1

60 ) and 0 outside the interval. That is, for any two values y1 and y2 in
(0, 1

60 ), the probability that Y takes a value within a small interval around y1 of
length dy (i.e., f (y1) dy approximately) should be the same as the probability
that Y takes a value within a small interval around y2 of the same length dy (i.e.,
f (y2) dy approximately). This forces f (y1) = f (y2), so there must be a constant
probability density on (0, 1

60 ).
Now if f (y) is to have the form

f (y) =
{

c for 0 < y < 1
60

0 otherwise

for some constant c (i.e., is to be as pictured in Figure 5.7), in light of equation
(5.13), it must be that

1 =
∫ ∞

−∞
f (y) dy =

∫ 0

−∞
0 dy +

∫ 1/60

0
c dy +

∫ ∞

1/60
0 dy = c

60

That is, c = 60, and thus,
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Figure 5.7 Probability density function
for Y (time elapsed before arc)

f (y) =
{

60 for 0 < y < 1
60

0 otherwise
(5.15)I

If the function specified by equation (5.15) is adopted as a probability density for
Y , it is then (for example) possible to calculate that

P

[
Y ≤ 1

100

]
=

∫ 1/100

−∞
f (y) dy =

∫ 0

−∞
0 dy +

∫ 1/100

0
60 dy = .6

One point about continuous probability distributions that may at first seem coun-
terintuitive concerns the probability associated with a continuous random variable
assuming a particular prespecified value (say, a). Just as the mass a continuous massFor X a continuous

random variable,
P[X = a] = 0

distribution places at a single point is 0, so also is P[X = a] = 0 for a continuous
random variable X . This follows from equation (5.14), because

P[a ≤ X ≤ a] =
∫ a

a
f (x) dx = 0

One consequence of this mathematical curiosity is that when working with contin-
uous random variables, you don’t need to worry about whether or not inequality
signs you write are strict inequality signs. That is, if X is continuous,

P[a ≤ X ≤ b] = P[a < X ≤ b] = P[a ≤ X < b] = P[a < X < b]

Definition 6 gave a perfectly general definition of the cumulative probability
function for a random variable (which was specialized in Section 5.1 to the case
of a discrete variable). Here equation (5.14) can be used to express the cumulative
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probability function for a continuous random variable in terms of an integral of its
probability density. That is, for X continuous with probability density f (x),

Cumulative probability
function for a

continuous variable
F(x) = P[X ≤ x] =

∫ x

−∞
f (t) dt (5.16)

F(x) is obtained from f (x) by integration, and applying the fundamental theorem
of calculus to equation (5.16)

Another relationship
between F(x) and f(x)

d

dx
F(x) = f (x) (5.17)

That is, f (x) is obtained from F(x) by differentiation.

Example 8
(continued )

The cumulative probability function for Y , the elapsed time from bob release
until first arc, is easily obtained from equation (5.15). For y ≤ 0,

F(y) = P[Y ≤ y] =
∫ y

−∞
f (t) dt =

∫ y

−∞
0 dt = 0

and for 0 < y ≤ 1
60 ,

F(y) = P[Y ≤ y] =
∫ y

−∞
f (t) dt =

∫ 0

−∞
0 dt +

∫ y

0
60 dt = 0 + 60y = 60y

and for y > 1
60 ,

F(y) = P[Y ≤ y] =
∫ y

−∞
f (t) dt =

∫ 0

−∞
0 dt +

∫ 1/60

0
60 dt +

∫ y

1/60
0 dt = 1

That is,

F(y) =


0 if y ≤ 0

60y if 0 < y ≤ 1/60

1 if 1
60 < y

I

A plot of F(y) is given in Figure 5.8. Comparing Figure 5.8 to Figure 5.7
shows that indeed the graph of F(y) has slope 0 for y < 0 and y > 1

60 and
slope 60 for 0 < y < 1

60 . That is, f (y) is the derivative of F(y), as promised by
equation (5.17).
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F(y)
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60

Figure 5.8 Cumulative probability
function for Y (time elapsed before arc)

Figure 5.8 is typical of cumulative probability functions for continuous distri-
butions. The graphs of such cumulative probability functions are continuous in the
sense that they are unbroken curves.

5.2.2 Means and Variances for Continuous Distributions

A plot of the probability density f (x) is a kind of idealized histogram. It has the same
kind of visual interpretations that have already been applied to relative frequency
histograms and probability histograms. Further, it is possible to define a mean and
variance for a continuous probability distribution. These numerical summaries are
used in the same way that means and variances are used to describe data sets and
discrete probability distributions.

Definition 13 The mean or expected value of a continuous random variable X (sometimes
called the mean of its probability distribution) is

EX =
∫ ∞

−∞
x f (x) dx (5.18)

As for discrete random variables, the notation µ is sometimes used in place of
EX.

Formula (5.18) is perfectly plausible from at least two perspectives. First, the
probability in a small interval around x of length dx is approximately f (x) dx .
So multiplying this by x and summing as in Definition 7, one has

∑
x f (x) dx ,

and formula (5.18) is exactly the limit of such sums as dx gets small. And second,
in mechanics the center of mass of a continuous mass distribution is of the form
given in equation (5.18) except for division by a total mass, which for a probability
distribution is 1.
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Example 8
(continued )

Thinking of the probability density in Figure 5.7 as an idealized histogram and
thinking of the balance point interpretation of the mean, it is clear that EY had
better turn out to be 1

120 for the elapsed time variable. Happily, equations (5.18)
and (5.15) give

µ = EY =
∫ ∞

−∞
y f (y) dy =

∫ 0

−∞
y · 0 dy +

∫ 1/60

0
y · 60 dy +

∫ ∞

1/60
y · 0 dy

= 30y2
∣∣∣1/60

0
= 1

120
sec

“Continuization” of the formula for the variance of a discrete random variable
produces a definition of the variance of a continuous random variable.

Definition 14 The variance of a continuous random variable X (sometimes called the vari-
ance of its probability distribution) is

Var X =
∫ ∞

−∞
(x − EX)2 f (x) dx

(
=

∫ ∞

−∞
x2 f (x) dx − (EX)2

)
(5.19)

The standard deviation of X is
√

Var X . Often the notation σ 2 is used in
place of Var X , and σ is used in place of

√
Var X .

Example 8
(continued )

Return for a final time to the bob drop and the random variable Y . Using formula
(5.19) and the form of Y ’s probability density,

σ 2 = Var Y =
∫ 0

−∞

(
y − 1

120

)2

· 0 dy +
∫ 1/60

0

(
y − 1

120

)2

· 60 dy

+
∫ ∞

1/60

(
y − 1

120

)2

· 0 dy =
60

(
y − 1

120

)3

3

1/60

0

= 1

3

(
1

120

)2

So the standard deviation of Y is

σ =
√

Var Y =
√

1

3

(
1

120

)2

= .0048 sec
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5.2.3 The Normal Probability Distributions

Just as there are a number of standard discrete distributions commonly applied to
engineering problems, there are also a number of standard continuous probability
distributions. This text has already alluded to the normal or Gaussian distributions
and made use of their properties in producing normal plots. It is now time to introduce
them formally.

Definition 15 The normal or Gaussian (µ, σ 2) distribution is a continuous probability
distribution with probability density

f (x) = 1√
2πσ 2

e−(x−µ)2/2σ 2
for all x (5.20)

for σ > 0.

It is not necessarily obvious, but formula (5.20) does yield a legitimate proba-
bility density, in that the total area under the curve y = f (x) is 1. Further, it is also
the case that

Normal distribution
mean and variance EX =

∫ ∞

−∞
x

1√
2πσ 2

e−(x−µ)2/2σ 2
dx = µ

and

Var X =
∫ ∞

−∞
(x − µ)2 1√

2πσ 2
e−(x−µ)2/2σ 2

dx = σ 2

That is, the parameters µ and σ 2 used in Definition 15 are indeed, respectively, the
mean and variance (as defined in Definitions 13 and 14) of the distribution.

Figure 5.9 is a graph of the probability density specified by formula (5.20). The
bell-shaped curve shown there is symmetric about x = µ and has inflection points
at µ − σ and µ + σ . The exact form of formula (5.20) has a number of theoretical
origins. It is also a form that turns out to be empirically useful in a great variety of
applications.

In theory, probabilities for the normal distributions can be found directly by
integration using formula (5.20). Indeed, readers with pocket calculators that are
preprogrammed to do numerical integration may find it instructive to check some
of the calculations in the examples that follow, by straightforward use of formulas
(5.14) and (5.20). But the freshman calculus methods of evaluating integrals via
antidifferentiation will fail when it comes to the normal densities. They do not have
antiderivatives that are expressible in terms of elementary functions. Instead, special
normal probability tables are typically used.
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x

f (x)

 – 2  –  +  + 2µ µ µσ σ µ µσ σ

Figure 5.9 Graph of a normal probability density
function

The use of tables for evaluating normal probabilities depends on the following
relationship. If X is normally distributed with mean µ and variance σ 2,

P[a ≤ X ≤ b] =
∫ b

a

1√
2πσ 2

e−(x−µ)2/2σ 2
dx =

∫ (b−µ)/σ

(a−µ)/σ

1√
2π

e−z2/2 dz (5.21)

where the second inequality follows from the change of variable or substitution
z = x−µ

σ
. Equation (5.21) involves an integral of the normal density with µ = 0

and σ = 1. It says that evaluation of all normal probabilities can be reduced to the
evaluation of normal probabilities for that special case.

Definition 16 The normal distribution with µ = 0 and σ = 1 is called the standard normal
distribution.

The relationship between normal (µ, σ 2) and standard normal probabilitiesRelation between
normal (µ, σ 2)

probabilities and
standard normal

probabilities

is illustrated in Figure 5.10. Once one realizes that probabilities for all normal
distributions can be had by tabulating probabilities for only the standard normal
distribution, it is a relatively simple matter to use techniques of numerical integration
to produce a standard normal table. The one that will be used in this text (other forms
are possible) is given in Table B.3. It is a table of the standard normal cumulative
probability function. That is, for values z located on the table’s margins, the entries
in the table body are

8(z) = F(z) =
∫ z

−∞

1√
2π

e−t2/2 dt

(8 is routinely used to stand for the standard normal cumulative probability function,
instead of the more generic F .)
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x – 2  –  +  + 2

z–2 –1 0 1 2

a b

Equal areas!

a – b – 
≤ Z ≤P

Standard 
normal
density

Normal
(   ,    2)
density

P[a ≤ X ≤ b]

µ µ

µσµ σµ σµσµ

µ σ

σ

b – µ
σ

σ

a – µ
σ

Figure 5.10 Illustration of the relationship between normal (µ, σ 2) and
standard normal probabilities

Example 9 Standard Normal Probabilities

Suppose that Z is a standard normal random variable. We will find some proba-
bilities for Z using Table B.3.

By a straight table look-up,

P[Z < 1.76] = 8(1.76) = .96

(The tabled value is .9608, but in keeping with the earlier promise to state final
probabilities to only two decimal places, the tabled value was rounded to get .96.)
After two table look-ups and a subtraction,

P[.57 < Z < 1.32] = P[Z < 1.32] − P[Z ≤ .57]

= 8(1.32) − 8(.57)

= .9066 − .7157

= .19

And a single table look-up and a subtraction yield a right-tail probability like

P[Z > −.89] = 1 − P[Z ≤ −.89] = 1 − .1867 = .81

As the table was used in these examples, probabilities for values z located
on the table’s margins were found in the table’s body. The process can be run in
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Example 9
(continued )

–2 –1 0 1 2 –2 –1 0 1 2

–2 –1 0 1 2 –2 –1 0 1 2

P[Z ≤ 1.76] = .96

1.76

P[.57 ≤ Z ≤ 1.32] = .19

.57 1.32

P[Z > –.89] = .81

–.89

P[Z > z] = .025

–z z

Figure 5.11 Standard normal probabilities for Example 9

reverse. Probabilities located in the table’s body can be used to specify values z
on the margins. For example, consider locating a value z such that

P[−z < Z < z] = .95

z will then put probability 1−.95
2 = .025 in the right tail of the standard normal

distribution—i.e., be such that 8(z) = .975. Locating .975 in the table body, one
sees that z = 1.96.

Figure 5.11 illustrates all of the calculations for this example.

The last part of Example 9 amounts to finding the .975 quantile for the standard
normal distribution. In fact, the reader is now in a position to understand the origin
of Table 3.10 (see page 89). The standard normal quantiles there were found by
looking in the body of Table B.3 for the relevant probabilities and then locating
corresponding z’s on the margins.

In mathematical symbols, for 8(z), the standard normal cumulative probability
function, and Qz(p), the standard normal quantile function,

8(Qz(p)) = p

Qz(8(z)) = z

}
(5.22)

Relationships (5.22) mean that Qz and 8 are inverse functions. (In fact, the rela-
tionship Q = F−1 is not just a standard normal phenomenon but is true in general
for continuous distributions.)

Relationship (5.21) shows how to use the standard normal cumulative probabil-
ity function to find general normal probabilities. For X normal (µ, σ 2) and a value
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x associated with X , one converts to units of standard deviations above the mean
via

z-value for a value
x of a normal (µ, σ 2)

random variable

z = x − µ

σ
(5.23)

and then consults the standard normal table using z instead of x .

WWW

Example 10 Net Weights of Jars of Baby Food

J. Fisher, in his article “Computer Assisted Net Weight Control” (Quality
Progress, June 1983), discusses the filling of food containers by weight. In
the article, there is a reasonably bell-shaped histogram of individual net weights
of jars of strained plums with tapioca. The mean of the values portrayed is about
137.2 g, and the standard deviation is about 1.6 g. The declared (or label) weight
on jars of this product is 135.0 g.

Suppose that it is adequate to model

W = the next strained plums and tapioca fill weight

with a normal distribution with µ = 137.2 and σ = 1.6. And further suppose the
probability that the next jar filled is below declared weight (i.e., P[W < 135.0])
is of interest. Using formula (5.23), w = 135.0 is converted to units of standard
deviations above µ (converted to a z-value) as

z = 135.0 − 137.2

1.6
= −1.38

Then, using Table B.3,

P[W < 135.0] = 8(−1.38) = .08

This model puts the chance of obtaining a below-nominal fill level at about 8%.
As a second example, consider the probability that W is within 1 gram of

nominal (i.e., P[134.0 < W < 136.0]). Using formula (5.23), both w1 = 134.0
and w2 = 136.0 are converted to z-values or units of standard deviations above
the mean as

z1 = 134.0 − 137.2

1.6
= −2.00

z2 = 136.0 − 137.2

1.6
= −.75
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Example 10
(continued )

134

P[W < 135.0] = .08
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138 140
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137.2

138 140

–2
–1.38

0 2

–2
–.75

0 2

Normal     = 137.2,      = 1.6 density

P[Z < –1.38] = .08

Standard normal density

Normal     = 137.2,     = 1.6 density Standard normal density

P[134.0 < W < 136.0] = .20 P[–2.0 < Z < –.75] = .20

σµ

σµ

Figure 5.12 Normal probabilities for Example 10

So then

P[134.0 < W < 136.0] = 8(−.75) − 8(−2.00) = .2266 − .0228 = .20

The preceding two probabilities and their standard normal counterparts are shown
in Figure 5.12.

The calculations for this example have consisted of starting with all of the
quantities on the right of formula (5.23) and going from the margin of Table B.3
to its body to find probabilities for W . An important variant on this process is to
instead go from the body of the table to its margins to obtain z, and then—given
only two of the three quantities on the right of formula (5.23)—to solve for the
third.

For example, suppose that it is easy to adjust the aim of the filling process
(i.e., the mean µ of W ) and one wants to decrease the probability that the next
jar is below the declared weight of 135.0 to .01 by increasing µ. What is the
minimum µ that will achieve this (assuming that σ remains at 1.6 g)?

Figure 5.13 shows what to do. µ must be chosen in such a way that w =
135.0 becomes the .01 quantile of the normal distribution with mean µ and
standard deviation σ = 1.6. Consulting either Table 3.10 or Table B.3, it is easy
to determine that the .01 quantile of the standard normal distribution is

z = Qz(.01) = −2.33
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135.0

P[W < 135.0] = .01

w

Normal density with mean =    ,     = 1.6µ σ

µ

Figure 5.13 Normal distribution and
P[W < 135.0] = .01

So in light of equation (5.23) one wants

−2.33 = 135.0 − µ

1.6

i.e.,

µ = 138.7 gI

An increase of about 138.7 − 137.2 = 1.5 g in fill level aim is required.
In practical terms, the reduction in P[W < 135.0] is bought at the price

of increasing the average give-away cost associated with filling jars so that on
average they contain much more than the nominal contents. In some applications,
this type of cost will be prohibitive. There is another approach open to a process
engineer. That is to reduce the variation in fill level through acquiring more
precise filling equipment. In terms of equation (5.23), instead of increasing µ

one might consider paying the cost associated with reducing σ . The reader is
encouraged to verify that a reduction in σ to about .94 g would also produce
P[W < 135.0] = .01 without any change in µ.

As Example 10 illustrates, equation (5.23) is the fundamental relationship used
in problems involving normal distributions. One way or another, three of the four
entries in equation (5.23) are specified, and the fourth must be obtained.

5.2.4 The Exponential Distributions (Optional )

Section 5.1 discusses the fact that the Poisson distributions are often used as models
for the number of occurrences of a relatively rare phenomenon in a specified interval
of time. The same mathematical theory that suggests the appropriateness of the
Poisson distributions in that context also suggests the usefulness of the exponential
distributions for describing waiting times until occurrences.
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Definition 17 The exponential (α) distribution is a continuous probability distribution with
probability density

f (x) =


1

α
e−x/α for x > 0

0 otherwise

(5.24)

for α > 0.

Figure 5.14 shows plots of f (x) for three different values of α. Expression
(5.24) is extremely convenient, and it is not at all difficult to show that α is both the
mean and the standard deviation of the exponential (α) distribution. That is,

Mean of the
exponential (α)

distribution

µ = EX =
∫ ∞

0
x

1

α
e−x/α dx = α

and

Variance of the
exponential (α)

distribution
σ 2 = Var X =

∫ ∞

0
(x − α)2 1

α
e−x/α dx = α2

Further, the exponential (α) distribution has a simple cumulative probability
function,

Exponential (α)
cumulative probability

function F(x) =
{

0 if x ≤ 0

1 − e−x/α if x > 0
(5.25)

1.0

x

f (x)

.5

1.5

2.0

1.0 2.0 3.0 4.0 5.0

α

 = .5α

α  = 1.0

 = 2.0

0

Figure 5.14 Three exponential probability densities
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Example 11
(Example 7 revisited )

The Exponential Distribution and Arrivals at a University Library

Recall that Stork, Wohlsdorf, and McArthur found the arrival rate of students at
the ISU library between 12:00 and 12:10 P.M. early in the week to be about 12.5
students per minute. That translates to a 1

12.5 = .08 min average waiting time
between student arrivals.

Consider observing the ISU library entrance beginning at exactly noon next
Tuesday and define the random variable

T = the waiting time (in minutes) until the first student passes through the door

A possible model for T is the exponential distribution with α = .08. Using it, the
probability of waiting more than 10 seconds ( 1

6 min) for the first arrival is

P

[
T >

1

6

]
= 1 − F

(
1

6

)
= 1 − (

1 − e−1/6(.08)
) = .12

This result is pictured in Figure 5.15.

5

t

f (t)

10

.1 .2

P[T >    ] = .12

1
6

1
6

Figure 5.15 Exponential probability for
Example 11

The exponential distribution is the continuous analog of the geometric distribu-Geometric and
exponential
distributions

tion in several respects. For one thing, both the geometric probability function and
the exponential probability density decline exponentially in their arguments x . For
another, they both possess a kind of memoryless property. If the first success in a
series of independent identical success-failure trials is known not to have occurred
through trial t0, then the additional number of trials (beyond t0) needed to produce
the first success is a geometric (p) random variable (as was the total number of
trials required from the beginning). Similarly, if an exponential (α) waiting time is
known not to have been completed by time t0, then the additional waiting time to
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completion is exponential (α). This memoryless property is related to the force-of-
mortality function of the distribution being constant. The force-of-mortality function
for a distribution is a concept of reliability theory discussed briefly in Appendix A.4.

5.2.5 The Weibull Distributions (Optional )

The Weibull distributions generalize the exponential distributions and provide much
more flexibility in terms of distributional shape. They are extremely popular with
engineers for describing the strength properties of materials and the life lengths of
manufactured devices. The most natural way to specify these distributions is through
their cumulative probability functions.

Definition 18 The Weibull (α, β) distribution is a continuous probability distribution with
cumulative probability function

F(x) =
{

0 if x < 0

1 − e−(x/α)β if x ≥ 0
(5.26)

for parameters α > 0 and β > 0.

Beginning from formula (5.26), it is possible to determine properties of the
Weibull distributions. Differentiating formula (5.26) produces the Weibull (α, β)

probability density

Weibull (α, β)
probability

density
f (x) =


0 if x < 0

β

αβ
xβ−1e−(x/α)β if x > 0

(5.27)

This in turn can be shown to yield the mean

Weibull (α, β)
mean

µ = E X = α0
(

1 + 1
β

)
(5.28)

and variance

Weibull (α, β)
variance

σ 2 = Var X = α2

[
0

(
1 + 2

β

)
−

(
0

(
1 + 1

β

))2
]

(5.29)
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Figure 5.16 Nine Weibull probability densities

where 0(x) = ∫ ∞
0 t x−1e−t dt is the gamma function of advanced calculus. (For

integer values n, 0(n) = (n − 1)!.) These formulas for f (x), µ, and σ 2 are not par-
ticularly illuminating. So it is probably most helpful to simply realize that β controls
the shape of the Weibull distribution and that α controls the scale. Figure 5.16 shows
plots of f (x) for several (α, β) pairs.

Note that β = 1 gives the special case of the exponential distributions. For
small β, the distributions are decidedly right-skewed, but for β larger than about
3.6, they actually become left-skewed. Regarding distribution location, the form of
the distribution mean given in equation (5.28) is not terribly revealing. It is perhaps
more helpful that the median for the Weibull (α, β) distribution is

Weibull (α, β)
median Q(.5) = αe−(.3665/β) (5.30)
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So, for example, for large shape parameter β the Weibull median is essentially α.
And formulas (5.28) through (5.30) show that for fixed β the Weibull mean, median,
and standard deviation are all proportional to the scale parameter α.

Example 12 The Weibull Distribution and the Strength of a Ceramic Material

The report “Review of Workshop on Design, Analysis and Reliability Prediction
for Ceramics—Part II” by E. Lenoe (Office of Naval Research Far East Scientific
Bulletin, 1987) suggests that tensile strengths (MPa) of .95 mm rods of HIPped
UBE SN-10 with 2.5% yttria material can be described by a Weibull distribution
with β = 8.8 and median 428 MPa. Let

S = measured tensile strength of an additional rod (MPa)

Under the assumption that S can be modeled using a Weibull distribution with
the suggested characteristics, suppose that P[S ≤ 400] is needed. Using equation
(5.30),

428 = αe−(.3665/8.8)

Thus, the Weibull scale parameter is

α = 446

Then, using equation (5.26),

P[S ≤ 400] = 1 − e−(400/446)8.8 = .32

Figure 5.17 illustrates this probability calculation.

Weibull density
    = 8.8,     = 446

s

f (s)

300 400 500

P [S ≤ 400] = .32

β α

Figure 5.17 Weibull density and P[S ≤ 400]
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1. The random number generator supplied on a cal-
culator is not terribly well chosen, in that values
it generates are not adequately described by a dis-
tribution uniform on the interval (0, 1). Suppose
instead that a probability density

f (x) =
{

k(5 − x) for 0 < x < 1

0 otherwise

is a more appropriate model for X = the next value
produced by this random number generator.
(a) Find the value of k.
(b) Sketch the probability density involved here.
(c) Evaluate P[.25 < X < .75].
(d) Compute and graph the cumulative probability

function for X , F(x).
(e) Calculate EX and the standard deviation of X .

2. Suppose that Z is a standard normal random vari-
able. Evaluate the following probabilities involv-
ing Z :
(a) P[Z < −.62] (b) P[Z > 1.06]
(c) P[−.37 < Z < .51] (d) P[|Z | ≤ .47]
(e) P[|Z | > .93] (f) P[−3.0< Z <3.0]
Now find numbers # such that the following state-
ments involving Z are true:
(g) P[Z ≤ #] = .90 (h) P[|Z | < #] = .90
(i) P[|Z | > #] = .03

3. Suppose that X is a normal random variable with
mean 43.0 and standard deviation 3.6. Evaluate the
following probabilities involving X :
(a) P[X < 45.2] (b) P[X ≤ 41.7]
(c) P[43.8 < X ≤ 47.0] (d) P[|X − 43.0| ≤ 2.0]
(e) P[|X− 43.0|>1.7]
Now find numbers # such that the following state-
ments involving X are true:
(f) P[X < #] = .95 (g) P[X ≥ #] = .30
(h) P[|X − 43.0| > #] = .05

4. The diameters of bearing journals ground on a
particular grinder can be described as normally dis-
tributed with mean 2.0005 in. and standard devia-
tion .0004 in.
(a) If engineering specifications on these diame-

ters are 2.0000 in. ± .0005 in., what fraction
of these journals are in specifications?

(b) What adjustment to the grinding process (hold-
ing the process standard deviation constant)
would increase the fraction of journal diam-
eters that will be in specifications? What ap-
pears to be the best possible fraction of jour-
nal diameters inside ± .0005 in. specifications,
given the σ = .0004 in. apparent precision of
the grinder?

(c) Suppose consideration was being given to pur-
chasing a more expensive/newer grinder, capa-
ble of holding tighter tolerances on the parts it
produces. What σ would have to be associated
with the new machine in order to guarantee that
(when perfectly adjusted so that µ = 2.0000)
the grinder would produce diameters with at
least 95% meeting 2.0000 in. ± .0005 in. spec-
ifications?

5. The mileage to first failure for a model of military
personnel carrier can be modeled as exponential
with mean 1,000 miles.
(a) Evaluate the probability that a vehicle of this

type gives less than 500 miles of service be-
fore first failure. Evaluate the probability that
it gives at least 2,000 miles of service before
first failure.

(b) Find the .05 quantile of the distribution of
mileage to first failure. Then find the .90 quan-
tile of the distribution.

6. Some data analysis shows that lifetimes, x (in 106

revolutions before failure), of certain ball bearings
can be modeled as Weibull with β = 2.3 and α =
80.
(a) Make a plot of the Weibull density (5.27)

for this situation. (Plot for x between 0 and
200. Standard statistical software packages like
MINITAB will have routines for evaluating this
density. In MINITAB look under the “Calc/
Probability Distributions/Weibull” menu.)

(b) What is the median bearing life?
(c) Find the .05 and .95 quantiles of bearing life.
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5.3 Probability Plotting (Optional )

Calculated probabilities are only as relevant in a given application as are the distri-
butions used to produce them. It is thus important to have data-based methods to
assess the relevance of a given continuous distribution to a given application. The
basic logic for making such tools was introduced in Section 3.2. Suppose you have
data consisting of n realizations of a random variable X , say x1 ≤ x2 ≤ · · · ≤ xn and
want to know whether a probability density with the same shape as f (x) might ade-
quately describe X . To investigate, it is possible to make and interpret a probability
plot consisting of n ordered pairs

Ordered pairs
making a

probability plot

(
xi , Q

(
i − .5

n

))
where xi is the i th smallest data value (the

(
i−.5

n

)
quantile of the data set) and

Q
(

i−.5
n

)
is the

(
i−.5

n

)
quantile of the probability distribution specified by f (x).

This section will further discuss the importance of this method. First, some
additional points about probability plotting are made in the familiar context where
f (x) is the standard normal density (i.e., in the context of normal plotting). Then
the general applicability of the idea is illustrated by using it in assessing the appro-
priateness of exponential and Weibull models. In the course of the discussion, the
importance of probability plotting to process capability studies and life data analysis
will be indicated.

5.3.1 More on Normal Probability Plots

Definition 15 gives the form of the normal or Gaussian probability density with
mean µ and variance σ 2. The discussion that follows the definition shows that all
normal distributions have the same essential shape. Thus, a theoretical Q-Q plot
using standard normal quantiles can be used to judge whether or not there is any
normal probability distribution that seems a sensible model.

WWW

Example 13 Weights of Circulating U.S. Nickels

Ash, Davison, and Miyagawa studied characteristics of U.S. nickels. They ob-
tained the weights of 100 nickels to the nearest .01 g. They found those to have
a mean of 5.002 g and a standard deviation of .055 g. Consider the weight of an-
other nickel taken from a pocket, say, U . It is sensible to think that EU ≈ 5.002 g
and

√
Var U ≈ .055 g. Further, it would be extremely convenient if a normal dis-

tribution could be used to describe U . Then, for example, normal distribution
calculations with µ = 5.002 g and σ = .055 g could be used to assess

P[U > 5.05] = P[the nickel weighs over 5.05 g]
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A way of determining whether or not the students’ data support the use of
a normal model for U is to make a normal probability plot. Table 5.6 presents
the data collected by Ash, Davison, and Miyagawa. Table 5.7 shows some of the
calculations used to produce the normal probability plot in Figure 5.18.

Table 5.6
Weights of 100 U.S. Nickels

Weight (g) Frequency Weight (g) Frequency

4.81 1 5.00 12
4.86 1 5.01 10
4.88 1 5.02 7
4.89 1 5.03 7
4.91 2 5.04 5
4.92 2 5.05 4
4.93 3 5.06 4
4.94 2 5.07 3
4.95 6 5.08 2
4.96 4 5.09 3
4.97 5 5.10 2
4.98 4 5.11 1
4.99 7 5.13 1

Table 5.7
Example Calculations for a Normal Plot of
Nickel Weights

i

(
i − .5

100

)
xi Qz

(
i − .5

100

)
1 .005 4.81 −2.576
2 .015 4.86 −2.170
3 .025 4.88 −1.960
4 .035 4.89 −1.812
5 .045 4.91 −1.695
6 .055 4.91 −1.598
7 .065 4.92 −1.514
...

...
...

...
98 .975 5.10 1.960
99 .985 5.11 2.170

100 .995 5.13 2.576



266 Chapter 5 Probability: The Mathematics of Randomness

Example 13
(continued )
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Figure 5.18 Normal plot of nickel weights

At least up to the resolution provided by the graphics in Figure 5.18, the plot
is pretty linear for weights above, say, 4.90 g. However, there is some indication
that the shape of the lower end of the weight distribution differs from that of a
normal distribution. Real nickels seem to be more likely to be light than a normal
model would predict. Interestingly enough, the four nickels with weights under
4.90 g were all minted in 1970 or before (these data were collected in 1988). This
suggests the possibility that the shape of the lower end of the weight distribution
is related to wear patterns and unusual damage (particularly the extreme lower
tail represented by the single 1964 coin with weight 4.81 g).

But whatever the origin of the shape in Figure 5.18, its message is clear. For
most practical purposes, a normal model for the random variable

U = the weight of a nickel taken from a pocket

will suffice. Bear in mind, though, that such a distribution will tend to slightly
overstate probabilities associated with larger weights and understate probabilities
associated with smaller weights.

Much was made in Section 3.2 of the fact that linearity on a Q-Q plot indicates
equality of distribution shape. But to this point, no use has been made of the fact
that when there is near-linearity on a Q-Q plot, the nature of the linear relationship
gives information regarding the relative location and spread of the two distributions
involved. This can sometimes provide a way to choose sensible parameters of a
theoretical distribution for describing the data set.

For example, a normal probability plot can be used not only to determine whether
some normal distribution might describe a random variable but also to graphically
pick out which one might be used. For a roughly linear normal plot,
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1. the horizontal coordinate corresponding to a vertical coordinate of 0 providesReading a mean
and standard

deviation from
a normal plot

a mean for a normal distribution fit to the data set, and

2. the reciprocal of the slope provides a standard deviation (this is the differ-
ence between the horizontal coordinates of points with vertical coordinates
differing by 1).

Example 14 Normal Plotting and Thread Lengths of U-bolts

Table 5.8 gives thread lengths produced in the manufacture of some U-bolts for
the auto industry. The measurements are in units of .001 in. over nominal. The
particular bolts that gave the measurements in Table 5.8 were sampled from a
single machine over a 20-minute period.

Figure 5.19 gives a normal plot of the data. It indicates that (allowing for
the fact that the relatively crude measurement scale employed is responsible for
the discrete/rough appearance of the plot) a normal distribution might well have
been a sensible probability model for the random variable

L = the actual thread length of an additional U-bolt
manufactured in the same time period

The line eye-fit to the plot further suggests appropriate values for the mean and
standard deviation: µ ≈ 10.8 and σ ≈ 2.1. (Direct calculation with the data in
Table 5.8 gives a sample mean and standard deviation of, respectively, l̄ ≈ 10.9
and s ≈ 1.9.)

Table 5.8
Measured Thread Lengths for 25 U-Bolts

Thread Length
(.001 in. over Nominal) Tally Frequency

6 1
7 0
8 3
9 0

10 4
11 10
12 0
13 6
14 1
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Example 14
(continued )
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Figure 5.19 Normal plot of thread lengths and eye-fit line

In manufacturing contexts like the previous example, it is common to use the
fact that an approximate standard deviation can easily be read from the (reciprocal)
slope of a normal plot to obtain a graphical tool for assessing process potential. That
is, the primary limitation on the performance of an industrial machine or process
is typically the basic precision or short-term variation associated with it. Suppose
a dimension of the output of such a process or machine over a short period is
approximately normally distributed with standard deviation σ . Then, since for any
normal random variable X with mean µ and standard deviation σ ,

P[µ − 3σ < X < µ + 3σ ] > .99

it makes some sense to use 6σ (= (µ + 3σ) − (µ − 3σ)) as a measure of process
capability. And it is easy to read such a capability figure off a normal plot. Many6σ as a process

capability companies use specially prepared process capability analysis forms (which are in
essence pieces of normal probability paper) for this purpose.

Example 14
(continued )

Figure 5.20 is a plot of the thread length data from Table 5.8, made on a common
capability analysis sheet. Using the plot, it is very easy, even for someone with
limited quantitative background (and perhaps even lacking a basic understanding
of the concept of a standard deviation), to arrive at the figure

Process capability ≈ 16 − 5 = 11(.001 in.)
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Figure 5.20 Thread length data plotted on a capability analysis form (used with permission of
Reynolds Metals Company)
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5.3.2 Probability Plots for Exponential and Weibull Distributions

To illustrate the application of probability plotting to distributions that are not normal
(Gaussian), the balance of this section considers its use with first exponential and
then general Weibull models.

Example 15 Service Times at a Residence Hall Depot Counter
and Exponential Probability Plotting

Jenkins, Milbrath, and Worth studied service times at a residence hall “depot”
counter. Figure 5.21 gives the times (in seconds) required to complete 65 different
postage stamp sales at the counter.

The shape of the stem-and-leaf diagram is reminiscent of the shape of the
exponential probability densities shown in Figure 5.14. So if one defines the
random variable

T = the next time required to complete a postage stamp sale
at the depot counter

an exponential distribution might somehow be used to describe T .
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Figure 5.21 Stem-and-leaf plot of service times
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The exponential distributions introduced in Definition 17 all have the same
essential shape. Thus the exponential distribution with α = 1 is a convenient
representative of that shape. A plot of α = 1 exponential quantiles versus cor-
responding service time quantiles will give a tool for comparing the empirical
shape to the theoretical exponential shape.

For an exponential distribution with mean α = 1,

F(x) = 1 − e−x for x > 0

So for 0 < p < 1, setting F(x) = p and solving,

x = − ln(1 − p)

That is, − ln(1 − p) = Q(p), the p quantile of this distribution. Thus, for dataI
x1 ≤ x2 ≤ · · · ≤ xn , an exponential probability plot can be made by plotting the
ordered pairs

Points to plot
for an exponential

probability plot

(
xi ,− ln

(
1 − i − .5

n

))
(5.31)

Figure 5.22 is a plot of the points in display (5.31) for the service time data. It
shows remarkable linearity. Except for the fact that the third- and fourth-largest
service times (both 48 seconds) appear to be somewhat smaller than might be
predicted based on the shape of the exponential distribution, the empirical service
time distribution corresponds quite closely to the exponential distribution shape.
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Figure 5.22 Exponential probability plot and eye-fit
line for the service times
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Example 15
(continued )

As was the case in normal-plotting, the character of the linearity in Figure
5.22 also carries some valuable information that can be applied to the modeling
of the random variable T . The positioning of the line sketched onto the plot
indicates the appropriate location of an exponentially shaped distribution for T ,
and the slope of the line indicates the appropriate spread for that distribution.

As introduced in Definition 17, the exponential distributions have positive
density f (x) for positive x . One might term 0 a threshold value for the dis-
tributions defined there. In Figure 5.22 the threshold value (0 = Q(0)) for the
exponential distribution with α = 1 corresponds to a service time of roughly 7.5
seconds. This means that to model a variable related to T with a distribution
exactly of the form given in Definition 17, it is

S = T − 7.5

that should be considered.
Further, a change of one unit on the vertical scale in the plot corresponds to

a change on the horizontal scale of roughly

24 − 7.5 = 16.5 sec

That is, an exponential model for S ought to have an associated spread that is
16.5 times that of the exponential distribution with α = 1.

So ultimately, the data in Figure 5.21 lead via exponential probability plotting
to the suggestion that

S = T − 7.5

= the excess of the next time required to complete a postage stamp sale
over a threshold value of 7.5 seconds

be described with the density

f (s) =


1

16.5
e−(s/16.5) for s > 0

0 otherwise

(5.32)

Probabilities involving T can be computed by first expressing them in terms of
S and then using expression (5.32). If for some reason a density for T itself is
desired, simply shift the density in equation (5.32) to the right 7.5 units to obtain
the density

f (t) =


1

16.5
e−((t−7.5)/16.5) for t > 7.5

0 otherwise

Figure 5.23 shows probability densities for both S and T .
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Figure 5.23 Probability densities for both S and T

To summarize the preceding example: Because of the relatively simple form of
the exponential α = 1 cumulative probability function, it is easy to find quantiles
for this distribution. When these are plotted against corresponding quantiles of a
data set, an exponential probability plot is obtained. On this plot, linearity indicates
exponential shape, the horizontal intercept of a linear plot indicates an appropriate
threshold value, and the reciprocal of the slope indicates an appropriate value for
the exponential parameter α.

Much the same story can be told for the Weibull distributions for any fixed β.

That is, using the form (5.26) of the Weibull cumulative probability function, it is
straightforward to argue that for data x1 ≤ x2 ≤ · · · ≤ xn , a plot of the ordered pairs

Points to plot
for a fixed β

Weibull plot

(
xi ,

(
− ln

(
1 − i − .5

n

))1/β
)

(5.33)

is a tool for investigating whether a variable might be described using a Weibull-
shaped distribution for the particular β in question. On such a plot, linearity indicates
Weibull shape β, the horizontal intercept indicates an appropriate threshold value,
and the reciprocal of the slope indicates an appropriate value for the parameter α.

Although the kind of plot indicated by display (5.33) is easy to make and
interpret, it is not the most common form of probability plotting associated with
the Weibull distributions. In order to plot the points in display (5.33), a value of
β is input (and a threshold and scale parameter are read off the graph). In most
engineering applications of the Weibull distributions, what is needed (instead of a
method that inputs β and can be used to identify a threshold and α) is a method that
tacitly inputs the 0 threshold implicit in Definition 18 and can be used to identify
α and β. This is particularly true in applications to reliability, where the useful life
or time to failure of some device is the variable of interest. It is similarly true in
applications to material science, where intrinsically positive material properties like
yield strength are under study.
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It is possible to develop a probability plotting method that allows identification
of values for both α and β in Definition 18. The trick is to work on a log scale. That
is, if X is a random variable with the Weibull (α, β) distribution, then for x > 0,

F(x) = 1 − e−(x/α)β

so that with Y = ln(X)

P[Y ≤ y] = P[X ≤ ey]

= 1 − e−(ey/α)β

So for 0 < p < 1, setting p = P[Y ≤ y] gives

p = 1 − e−(ey/α)β

After some algebra this implies

βy − β ln(α) = ln (− ln(1 − p)) (5.34)

Now y is (by design) the p quantile of the distribution of Y = ln(X). So equation
(5.34) says that ln(− ln(1 − p)) is a linear function of ln(X)’s quantile function. The
slope of that relationship is β. Further, equation (5.34) shows that when ln(− ln(1 −
p)) = 0, the quantile function of ln(X) has the value ln(α). So exponentiation of
the horizontal intercept gives α. Thus, for data x1 ≤ x2 ≤ · · · ≤ xn , one is led to
consider a plot of ordered pairs

Points to plot for
a 0-threshold
Weibull plot

(
ln xi , ln

(
− ln

(
1 − i − .5

n

)))
(5.35)

If data in hand are consistent with a (0-threshold) Weibull (α, β) model, a reasonablyReading α and β

from a 0-threshold
Weibull plot

linear plot with

1. slope β and

2. horizontal axis intercept equal to ln(α)

may be expected.

WWW

Example 16 Electrical Insulation Failure Voltages and Weibull Plotting

The data given in the stem-and-leaf plot of Figure 5.24 are failure voltages (in
kv/mm) for a type of electrical cable insulation subjected to increasing voltage
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Figure 5.24 Stem-and-leaf plot of
insulation failure voltages

stress. They were taken from Statistical Models and Methods for Lifetime Data
by J. F. Lawless.

Consider the Weibull modeling of

R = the voltage at which one additional specimen
of this insulation will fail

Table 5.9 shows some of the calculations needed to use display (5.35) to produce
Figure 5.25. The near-linearity of the plot in Figure 5.25 suggests that a (0-
threshold) Weibull distribution might indeed be used to describe R. A Weibull
shape parameter of roughly

β ≈ slope of the fitted line ≈ 1 − (−4)

4.19 − 3.67
≈ 9.6I

is indicated. Further, a scale parameter α with

ln(α) ≈ horizontal intercept ≈ 4.08

and thus

α ≈ 59I

appears appropriate.



276 Chapter 5 Probability: The Mathematics of Randomness

Example 16
(continued )

Table 5.9
Example Calculations for a 0-Threshold Weibull Plot of Failure Voltages

i xi = i th Smallest Voltage ln(xi ) p = (i − .5)/20 ln(− ln(1 − p))

1 39.4 3.67 .025 −3.68
2 45.3 3.81 .075 −2.55
3 49.2 3.90 .125 −2.01
4 49.4 3.90 .175 −1.65
...

...
...

...
...

19 67.3 4.21 .925 .95
20 67.7 4.22 .975 1.31

ln
(–

ln
(1

 –
 p

))
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Figure 5.25 0-threshold Weibull plot for insulation
failure voltages

Plotting form (5.35) is quite popular in reliability and materials applications. It is
common to see such Weibull plots made on special Weibull paper (see Figure 5.26).
This is graph paper whose scales are constructed so that instead of using plotting
positions (5.35) on regular graph paper, one can use plotting positions(

xi ,
i − .5

n

)
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Figure 5.26 Weibull probability paper

for data x1 ≤ x2 ≤ · · · ≤ xn . (The determination of β is even facilitated through
the inclusion of the protractor in the upper left corner.) Further, standard statistical
packages often have built-in facilities for Weibull plotting of this type.

It should be emphasized that the idea of probability plotting is a quite general
one. Its use has been illustrated here only with normal, exponential, and Weibull
distributions. But remember that for any probability density f (x), theoretical Q-Q
plotting provides a tool for assessing whether the distributional shape portrayed by
f (x) might be used in the modeling of a random variable.
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1. What is the practical usefulness of the technique of
probability plotting?

2. Explain how an approximate mean µ and standard
deviation σ can be read off a plot of standard normal
quantiles versus data quantiles.
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3. Exercise 3 of Section 3.2 refers to the chemical
process yield data of J. S. Hunter given in Exercise
1 of Section 3.1. There you were asked to make a
normal plot of those data.
(a) If you have not already done so, use a computer

package to make a version of the normal plot.
(b) Use your plot to derive an approximate mean

and a standard deviation for the chemical pro-
cess yields.

4. The article “Statistical Investigation of the Fatigue
Life of Deep Groove Ball Bearings” by J. Leiblein
and M. Zelen (Journal of Research of the National
Bureau of Standards, 1956) contains the data given
below on the lifetimes of 23 ball bearings. The units
are 106 revolutions before failure.

17.88, 28.92, 33.00, 41.52, 42.12, 45.60,

48.40, 51.84, 51.96, 54.12, 55.56, 67.80,

68.64, 68.64, 68.88, 84.12, 93.12, 98.64,

105.12, 105.84, 127.92, 128.04, 173.40

(a) Use a normal plot to assess how well a normal
distribution fits these data. Then determine if
bearing load life can be better represented by
a normal distribution if life is expressed on the
log scale. (Take the natural logarithms of these
data and make a normal plot.) What mean and
standard deviation would you use in a normal
description of log load life? For these parame-
ters, what are the .05 quantiles of ln(life) and
of life?

(b) Use the method of display (5.35) and investi-
gate whether the Weibull distribution might be
used to describe bearing load life. If a Weibull
description is sensible, read appropriate param-
eter values from the plot. Then use the form
of the Weibull cumulative probability function
given in Section 5.2 to find the .05 quantile of
the bearing load life distribution.

5. The data here are from the article “Fiducial Bounds
on Reliability for the Two-Parameter Negative Ex-
ponential Distribution,” by F. Grubbs (Technomet-
rics, 1971). They are the mileages at first failure
for 19 military personnel carriers.

162, 200, 271, 320, 393, 508, 539, 629,

706, 777, 884, 1008, 1101, 1182, 1462,

1603, 1984, 2355, 2880

(a) Make a histogram of these data. How would
you describe its shape?

(b) Plot points (5.31) and make an exponential
probability plot for these data. Does it appear
that the exponential distribution can be used
to model the mileage to failure of this kind of
vehicle? In Example 15, a threshold service
time of 7.5 seconds was suggested by a similar
exponential probability plot. Does the present
plot give a strong indication of the need for a
threshold mileage larger than 0 if an exponen-
tial distribution is to be used here?

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5.4 Joint Distributions and Independence

Most applications of probability to engineering statistics involve not one but several
random variables. In some cases, the application is intrinsically multivariate. It
then makes sense to think of more than one process variable as subject to random
influences and to evaluate probabilities associated with them in combination. Take,
for example, the assembly of a ring bearing with nominal inside diameter 1.00 in.
on a rod with nominal diameter .99 in. If

X = the ring bearing inside diameter

Y = the rod diameter
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one might be interested in

P[X < Y ] = P[there is an interference in assembly]

which involves both variables.
But even when a situation is univariate, samples larger than size 1 are essentially

always used in engineering applications. The n data values in a sample are usually
thought of as subject to chance causes and their simultaneous behavior must then
be modeled. The methods of Sections 5.1 and 5.2 are capable of dealing with only
a single random variable at a time. They must be generalized to create methods for
describing several random variables simultaneously.

Entire books are written on various aspects of the simultaneous modeling of
many random variables. This section can give only a brief introduction to the topic.
Considering first the comparatively simple case of jointly discrete random variables,
the topics of joint and marginal probability functions, conditional distributions,
and independence are discussed primarily through reference to simple bivariate
examples. Then the analogous concepts of joint and marginal probability density
functions, conditional distributions, and independence for jointly continuous random
variables are introduced. Again, the discussion is carried out primarily through
reference to a bivariate example.

5.4.1 Describing Jointly Discrete Random Variables

For several discrete variables the device typically used to specify probabilities is a
joint probability function. The two-variable version of this is defined next.

Definition 19 A joint probability function for discrete random variables X and Y is a
nonnegative function f (x, y), giving the probability that (simultaneously) X
takes the value x and Y takes the value y. That is,

f (x, y) = P[X = x and Y = y]

Example 17
(Example 1 revisited )

The Joint Probability Distribution of Two Bolt Torques

Return again to the situation of Brenny, Christensen, and Schneider and the
measuring of bolt torques on the face plates of a heavy equipment component to
the nearest integer. With

X = the next torque recorded for bolt 3

Y = the next torque recorded for bolt 4
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Example 17
(continued )

the data displayed in Table 3.4 (see page 74) and Figure 3.9 suggest, for exam-
ple, that a sensible value for P[X = 18 and Y = 18] might be 1

34 , the relative
frequency of this pair in the data set. Similarly, the assignments

P[X = 18 and Y = 17] = 2

34

P[X = 14 and Y = 9] = 0

also correspond to observed relative frequencies.
If one is willing to accept the whole set of relative frequencies defined by

the students’ data as defining probabilities for X and Y , these can be collected
conveniently in a two-dimensional table specifying a joint probability function
for X and Y . This is illustrated in Table 5.10. (To avoid clutter, 0 entries in the
table have been left blank.)

Table 5.10
f (x, y) for the Bolt Torque Problem

y
∖

x 11 12 13 14 15 16 17 18 19 20

20 2/34 2/34 1/34
19 2/34
18 1/34 1/34 1/34 1/34 1/34
17 2/34 1/34 1/34 2/34
16 1/34 2/34 2/34 2/34
15 1/34 1/34 3/34
14 1/34 2/34
13 1/34

The probability function given in tabular form in Table 5.10 has two propertiesProperties of a
joint probability

function for X and Y
that are necessary for mathematical consistency. These are that the f (x, y) values
are each in the interval [0, 1] and that they total to 1. By summing up just some
of the f (x, y) values, probabilities associated with X and Y being configured in
patterns of interest are obtained.

Example 17
(continued )

Consider using the joint distribution given in Table 5.10 to evaluate

P[X ≥ Y ] ,

P[|X − Y | ≤ 1] ,

and P[X = 17]

Take first P[X ≥ Y ], the probability that the measured bolt 3 torque is at least
as big as the measured bolt 4 torque. Figure 5.27 indicates with asterisks which
possible combinations of x and y lead to bolt 3 torque at least as large as the



5.4 Joint Distributions and Independence 281

bolt 4 torque. Referring to Table 5.10 and adding up those entries corresponding
to the cells that contain asterisks,

P[X ≥ Y ] = f (15, 13) + f (15, 14) + f (15, 15) + f (16, 16)

+ f (17, 17) + f (18, 14) + f (18, 17) + f (18, 18)

+ f (19, 16) + f (19, 18) + f (20, 20)

= 1

34
+ 1

34
+ 3

34
+ 2

34
+ · · · + 1

34
= 17

34

Similar reasoning allows evaluation of P[|X − Y | ≤ 1]—the probability that
the bolt 3 and 4 torques are within 1 ft lb of each other. Figure 5.28 shows
combinations of x and y with an absolute difference of 0 or 1. Then, adding
probabilities corresponding to these combinations,

P[|X − Y | ≤ 1] = f (15, 14) + f (15, 15) + f (15, 16) + f (16, 16)

+ f (16, 17) + f (17, 17) + f (17, 18) + f (18, 17)

+ f (18, 18) + f (19, 18) + f (19, 20) + f (20, 20) = 18

34

* * *
* *

* *
*
* *

*
*
**
*

* * *
* * *
* * *
* * *
* * *
* * *

* *
*

13

14

15

16

17

18

19

20

11 12 13 14 15 16 17 18 19 20xy

Figure 5.27 Combinations of bolt 3
and bolt 4 torques with x ≥ y
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Figure 5.28 Combinations of bolt 3
and bolt 4 torques with |x − y| ≤ 1
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Example 17
(continued )

Finally, P[X = 17], the probability that the measured bolt 3 torque is 17 ft lb,
is obtained by adding down the x = 17 column in Table 5.10. That is,

P[X = 17] = f (17, 17) + f (17, 18) + f (17, 19)

= 1

34
+ 1

34
+ 2

34

= 4

34

In bivariate problems like the present one, one can add down columns in a two-Finding marginal
probability functions

using a bivariate
joint probability

function

way table giving f (x, y) to get values for the probability function of X , fX (x). And
one can add across rows in the same table to get values for the probability function
of Y , fY (y). One can then write these sums in the margins of the two-way table.
So it should not be surprising that probability distributions for individual random
variables obtained from their joint distribution are called marginal distributions.
A formal statement of this terminology in the case of two discrete variables is
next.

Definition 20 The individual probability functions for discrete random variables X and
Y with joint probability function f (x, y) are called marginal probability
functions. They are obtained by summing f (x, y) values over all possible
values of the other variable. In symbols, the marginal probability function for
X is

fX (x) =
∑

y

f (x, y)

and the marginal probability function for Y is

fY (y) =
∑

x

f (x, y)

Example 17
(continued )

Table 5.11 is a copy of Table 5.10, augmented by the addition of marginal
probabilities for X and Y . Separating off the margins from the two-way table
produces tables of marginal probabilities in the familiar format of Section 5.1.
For example, the marginal probability function of Y is given separately in Table
5.12.
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Table 5.11
Joint and Marginal Probabilities for X and Y

y
∖

x 11 12 13 14 15 16 17 18 19 20 fY (y)

20 2/34 2/34 1/34 5/34
19 2/34 2/34
18 1/34 1/34 1/34 1/34 1/34 5/34
17 2/34 1/34 1/34 2/34 6/34
16 1/34 2/34 2/34 2/34 7/34
15 1/34 1/34 3/34 5/34
14 1/34 2/34 3/34
13 1/34 1/34

fX (x) 1/34 1/34 1/34 2/34 9/34 3/34 4/34 7/34 5/34 1/34

Table 5.12
Marginal
Probability
Function for Y

y fY (y)

13 1/34
14 3/34
15 5/34
16 7/34
17 6/34
18 5/34
19 2/34
20 5/34

Getting marginal probability functions from joint probability functions raises
the natural question whether the process can be reversed. That is, if fX (x) and fY (y)

are known, is there then exactly one choice for f (x, y)? The answer to this question
is “No.” Figure 5.29 shows two quite different bivariate joint distributions that
nonetheless possess the same marginal distributions. The marked difference between
the distributions in Figure 5.29 has to do with the joint, rather than individual,
behavior of X and Y .

5.4.2 Conditional Distributions and Independence
for Discrete Random Variables

When working with several random variables, it is often useful to think about what
is expected of one of the variables, given the values assumed by all others. For
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1

2

3

1 2 3
x

y

.4 .4 .2

.2

.4

.4.4 0 0

0 .4 0

0 0 .2

Distribution 1

1

2

3

1 2 3
x

y

.4 .4 .2

.2

.4

.4.16 .16 .08

.16 .16 .08

.08 .08 .04

Distribution 2

Figure 5.29 Two different joint distributions with the same
marginal distributions

example, in the bolt (X) torque situation, a technician who has just loosened bolt
3 and measured the torque as 15 ft lb ought to have expectations for bolt 4 torque
(Y ) somewhat different from those described by the marginal distribution in Table
5.12. After all, returning to the data in Table 3.4 that led to Table 5.10, the relative
frequency distribution of bolt 4 torques for those components with bolt 3 torque
of 15 ft lb is as in Table 5.13. Somehow, knowing that X = 15 ought to make a
probability distribution for Y like the relative frequency distribution in Table 5.13
more relevant than the marginal distribution given in Table 5.12.

Table 5.13
Relative Frequency Distribution for Bolt 4
Torques When Bolt 3 Torque Is 15 ft lb

y, Torque (ft lb) Relative Frequency

13 1/9
14 1/9
15 3/9
16 2/9
17 2/9

The theory of probability makes allowance for this notion of “distribution of
one variable knowing the values of others” through the concept of conditional
distributions. The two-variable version of this is defined next.

Definition 21 For discrete random variables X and Y with joint probability function f (x, y),
the conditional probability function of X given Y = y is the function of x

fX |Y (x | y) = f (x, y)∑
x

f (x, y)



5.4 Joint Distributions and Independence 285

The conditional probability function of Y given X = x is the function
of y

fY |X (y | x) = f (x, y)∑
y

f (x, y)

Comparing Definitions 20 and 21

The conditional
probability function

for X given Y = y
fX |Y (x | y) = f (x, y)

fY (y)
(5.36)

and

The conditional
probability function

for Y given X = x
fY |X (y | x) = f (x, y)

fX (x)
(5.37)

And formulas (5.36) and (5.37) are perfectly sensible. Equation (5.36) says
that starting from f (x, y) given in a two-way table and looking only at the rowFinding conditional

distributions from
a joint probability

function

specified by Y = y, the appropriate (conditional) distribution for X is given by
the probabilities in that row (the f (x, y) values) divided by their sum ( fY (y) =∑

x f (x, y)), so that they are renormalized to total to 1. Similarly, equation (5.37)
says that looking only at the column specified by X = x , the appropriate conditional
distribution for Y is given by the probabilities in that column divided by their sum.

Example 17
(continued )

To illustrate the use of equations (5.36) and (5.37), consider several of the condi-
tional distributions associated with the joint distribution for the bolt 3 and bolt 4
torques, beginning with the conditional distribution for Y given that X = 15.

From equation (5.37),

fY |X (y | 15) = f (15, y)

fX (15)

Referring to Table 5.11, the marginal probability associated with X = 15 is 9
34 .

So dividing values in the X = 15 column of that table by 9
34 , leads to the

conditional distribution for Y given in Table 5.14. Comparing this to Table 5.13,
indeed formula (5.37) produces a conditional distribution that agrees with
intuition.
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Example 17
(continued )

Table 5.14
The Conditional Probability
Function for Y Given X = 15

y fY |X (y | 15)

13

(
1

34

)
÷

(
9

34

)
= 1

9

14

(
1

34

)
÷

(
9

34

)
= 1

9

15

(
3

34

)
÷

(
9

34

)
= 3

9

16

(
2

34

)
÷

(
9

34

)
= 2

9

17

(
2

34

)
÷

(
9

34

)
= 2

9

Next consider fY |X (y | 18) specified by

fY |X (y | 18) = f (18, y)

fX (18)

Consulting Table 5.11 again leads to the conditional distribution for Y given that
X = 18, shown in Table 5.15. Tables 5.14 and 5.15 confirm that the conditional
distributions of Y given X = 15 and given X = 18 are quite different. For exam-
ple, knowing that X = 18 would on the whole make one expect Y to be larger
than when X = 15.

Table 5.15
The Conditional
Probability Function for
Y Given X = 18

y fY |X (y | 18)

14 2/7
17 2/7
18 1/7
20 2/7

To make sure that the meaning of equation (5.36) is also clear, consider the
conditional distribution of the bolt 3 torque (X ) given that the bolt 4 torque is 20
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(Y = 20). In this situation, equation (5.36) gives

fX |Y (x | 20) = f (x, 20)

fY (20)

(Conditional probabilities for X are the values in the Y = 20 row of Table
5.11 divided by the marginal Y = 20 value.) Thus, fX |Y (x | 20) is given in
Table 5.16.

Table 5.16
The Conditional Probability
Function for X Given Y = 20

x fX |Y (x | 20)

18

(
2

34

)
÷

(
5

34

)
= 2

5

19

(
2

34

)
÷

(
5

34

)
= 2

5

20

(
1

34

)
÷

(
5

34

)
= 1

5

The bolt torque example has the feature that the conditional distributions for Y
given various possible values for X differ. Further, these are not generally the same
as the marginal distribution for Y . X provides some information about Y , in that
depending upon its value there are differing probability assessments for Y . Contrast
this with the following example.

Example 18 Random Sampling Two Bolt 4 Torques

Suppose that the 34 bolt 4 torques obtained by Brenny, Christensen, and Schneider
and given in Table 3.4 are written on slips of paper and placed in a hat. Suppose
further that the slips are mixed, one is selected, the corresponding torque is noted,
and the slip is replaced. Then the slips are again mixed, another is selected, and
the second torque is noted. Define the two random variables

U = the value of the first torque selected

and

V = the value of the second torque selected
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Example 18
(continued )

Intuition dictates that (in contrast to the situation of X and Y in Example 17) the
variables U and V don’t furnish any information about each other. Regardless of
what value U takes, the relative frequency distribution of bolt 4 torques in the hat
is appropriate as the (conditional) probability distribution for V , and vice versa.
That is, not only do U and V share the common marginal distribution given in
Table 5.17 but it is also the case that for all u and v, both

fU |V (u | v) = fU (u) (5.38)

and

fV |U (v | u) = fV (v) (5.39)

Equations (5.38) and (5.39) say that the marginal probabilities in Table 5.17
also serve as conditional probabilities. They also specify how joint probabilities
for U and V must be structured. That is, rewriting the left-hand side of equation
(5.38) using expression (5.36),

f (u, v)

fV (v)
= fU (u)

That is,

f (u, v) = fU (u) fV (v) (5.40)

(The same logic applied to equation (5.39) also leads to equation (5.40).) Ex-
pression (5.40) says that joint probability values for U and V are obtained by
multiplying corresponding marginal probabilities. Table 5.18 gives the joint prob-
ability function for U and V .

Table 5.17
The Common Marginal
Probability Function for U
and V

u or v fU (u) or fV (v)

13 1/34
14 3/34
15 5/34
16 7/34
17 6/34
18 5/34
19 2/34
20 5/35
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Table 5.18
Joint Probabilities for U and V

v
∖

u 13 14 15 16 17 18 19 20 fV (v)

20 5
(34)2

15
(34)2

25
(34)2

35
(34)2

30
(34)2

25
(34)2

10
(34)2

25
(34)2 5/34

19 2
(34)2

6
(34)2

10
(34)2

14
(34)2

12
(34)2

10
(34)2

4
(34)2

10
(34)2 2/34

18 5
(34)2

15
(34)2

25
(34)2

35
(34)2

30
(34)2

25
(34)2

10
(34)2

25
(34)2 5/34

17 6
(34)2

18
(34)2

30
(34)2

42
(34)2

36
(34)2

30
(34)2

12
(34)2

30
(34)2 6/34

16 7
(34)2

21
(34)2

35
(34)2

49
(34)2

42
(34)2

35
(34)2

14
(34)2

35
(34)2 7/34

15 5
(34)2

15
(34)2

25
(34)2

35
(34)2

30
(34)2

25
(34)2

10
(34)2

25
(34)2 5/34

14 3
(34)2

9
(34)2

15
(34)2

21
(34)2

18
(34)2

15
(34)2

6
(34)2

15
(34)2 3/34

13 1
(34)2

3
(34)2

5
(34)2

7
(34)2

6
(34)2

5
(34)2

2
(34)2

5
(34)2 1/34

fU (u) 1/34 3/34 5/34 7/34 6/34 5/34 2/34 5/34

Example 18 suggests that the intuitive notion that several random variables are
unrelated might be formalized in terms of all conditional distributions being equal to
their corresponding marginal distributions. Equivalently, it might be phrased in terms
of joint probabilities being the products of corresponding marginal probabilities. The
formal mathematical terminology is that of independence of the random variables.
The definition for the two-variable case is next.

Definition 22 Discrete random variables X and Y are called independent if their joint prob-
ability function f (x, y) is the product of their respective marginal probability
functions. That is, independence means that

f (x, y) = fX (x) fY (y) for all x, y (5.41)

If formula (5.41) does not hold, the variables X and Y are called dependent.

(Formula (5.41) does imply that conditional distributions are all equal to their cor-
responding marginals, so that the definition does fit its “unrelatedness” motivation.)

U and V in Example 18 are independent, whereas X and Y in Example 17
are dependent. Further, the two joint distributions depicted in Figure 5.29 give an
example of a highly dependent joint distribution (the first) and one of independence
(the second) that have the same marginals.Independence of

observations in
statistical studies

The notion of independence is a fundamental one. When it is sensible to model
random variables as independent, great mathematical simplicity results. Where
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engineering data are being collected in an analytical context, and care is taken to
make sure that all obvious physical causes of carryover effects that might influence
successive observations are minimal, an assumption of independence between
observations is often appropriate. And in enumerative contexts, relatively small
(compared to the population size) simple random samples yield observations that
can typically be considered as at least approximately independent.

Example 18
(continued )

Again consider putting bolt torques on slips of paper in a hat. The method of torque
selection described earlier for producing U and V is not simple random sam-
pling. Simple random sampling as defined in Section 2.2 is without-replacement
sampling, not the with-replacement sampling method used to produce U and V .
Indeed, if the first slip is not replaced before the second is selected, the proba-
bilities in Table 5.18 are not appropriate for describing U and V . For example,
if no replacement is done, since only one slip is labeled 13 ft lb, one clearly
wants

f (13, 13) = P[U = 13 and V = 13] = 0

not the value

f (13, 13) = 1

(34)2

indicated in Table 5.18. Put differently, if no replacement is done, one clearly
wants to use

fV |U (13 | 13) = 0

rather than the value

fV |U (13 | 13) = fV (13) = 1

34

which would be appropriate if sampling is done with replacement. Simple random
sampling doesn’t lead to exactly independent observations.

But suppose that instead of containing 34 slips labeled with torques, the
hat contained 100 × 34 slips labeled with torques with relative frequencies as in
Table 5.17. Then even if sampling is done without replacement, the probabilities
developed earlier for U and V (and placed in Table 5.18) remain at least ap-
proximately valid. For example, with 3,400 slips and using without-replacement
sampling,

fV |U (13 | 13) = 99

3,399
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is appropriate. Then, using the fact that

fV |U (v | u) = f (u, v)

fU (u)

so that

f (u, v) = fV |U (v | u) fU (u)

without replacement, the assignment

f (13, 13) = 99

3,399
· 1

34

is appropriate. But the point is that

99

3,399
≈ 1

34

and so

f (13, 13) ≈ 1

34
· 1

34

For this hypothetical situation where the population size N = 3,400 is much
larger than the sample size n = 2, independence is a suitable approximate de-
scription of observations obtained using simple random sampling.

Where several variables are both independent and have the same marginal
distributions, some additional jargon is used.

Definition 23 If random variables X1, X2, . . . , Xn all have the same marginal distribution
and are independent, they are termed iid or independent and identically
distributed.

For example, the joint distribution of U and V given in Table 5.18 shows U and V
to be iid random variables.

The standard statistical examples of iid random variables are successive mea-
surements taken from a stable process and the results of random sampling with
replacement from a single population. The question of whether an iid model isWhen can

observations be
modeled as iid?

appropriate in a statistical application thus depends on whether or not the data-
generating mechanism being studied can be thought of as conceptually equivalent
to these.
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5.4.3 Describing Jointly Continuous Random
Variables (Optional )

All that has been said about joint description of discrete random variables has its
analog for continuous variables. Conceptually and computationally, however, the
jointly continuous case is more challenging. Probability density functions replace
probability functions, and multivariate calculus substitutes for simple arithmetic.
So most readers will be best served in the following introduction to multivariate
continuous distributions by reading for the main ideas and not getting bogged down
in details.

The counterpart of a joint probability function, the device that is commonly
used to specify probabilities for several continuous random variables, is a joint
probability density. The two-variable version of this is defined next.

Definition 24 A joint probability density for continuous random variables X and Y is a
nonnegative function f (x, y) with

∫ ∫
f (x, y) dx dy = 1

and such that for any regionR, one is willing to assign

P[(X, Y ) ∈ R] =
∫ ∫
R

f (x, y) dx dy (5.42)

Instead of summing values of a probability function to find probabilities for a
discrete distribution, equation (5.42) says (as in Section 5.2) to integrate a probability
density. The new complication here is that the integral is two-dimensional. But it
is still possible to draw on intuition developed in mechanics, remembering that
this is exactly the sort of thing that is done to specify mass distributions in several
dimensions. (Here, mass is probability, and the total mass is 1.)

Example 19
(Example 15 revisited )

Residence Hall Depot Counter Service Time
and a Continuous Joint Distribution

Consider again the depot service time example. As Section 5.3 showed, the
students’ data suggest an exponential model with α = 16.5 for the random
variable

S = the excess (over a 7.5 sec threshold) time required
to complete the next sale
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Imagine that the true value of S will be measured with a (very imprecise) analog
stopwatch, producing the random variable

R = the measured excess service time

Consider the function of two variables

f (s, r) =


1

16.5
e−s/16.5 1√

2π(.25)
e−(r−s)2/2(.25) for s > 0

0 otherwise
(5.43)

as a potential joint probability density for S and R. Figure 5.30 provides a
representation of f (s, r), sketched as a surface in three-dimensional space.

As defined in equation (5.43), f (s, r) is nonnegative, and its integral (the
volume underneath the surface sketched in Figure 5.30 over the region in the
(s, r)-plane where s is positive) is∫ ∫

f (s, r) ds dr =
∫ ∞

0

∫ ∞

−∞

1

16.5
√

2π(.25)
e−(s/16.5)−((r−s)2/2(.25)) dr ds

=
∫ ∞

0

1

16.5
e−s/16.5

{∫ ∞

−∞

1√
2π(.25)

e−(r−s)2/2(.25) dr

}
ds

=
∫ ∞

0

1

16.5
e−s/16.5 ds

= 1

(The integral in braces is 1 because it is the integral of a normal density with

s

r

3020100

10
0

–10

f (s, r)

Figure 5.30 A joint probability density for S and R
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Example 19
(continued )

mean s and standard deviation .5.) Thus, equation (5.43) specifies a mathemati-
cally legitimate joint probability density.

To illustrate the use of a joint probability density in finding probabilities, first
consider evaluating P[R > S]. Figure 5.31 shows the region in the (s, r)-plane
where f (s, r) > 0 and r > s. It is over this region that one must integrate in
order to evaluate P[R > S]. Then,

P[R > S] =
∫ ∫
R

f (s, r) ds dr

=
∫ ∞

0

∫ ∞

s
f (s, r) dr ds

=
∫ ∞

0

1

16.5
e−s/16.5

{∫ ∞

s

1√
2π(.25)

e−(r−s)2/2(.25) dr

}
ds

=
∫ ∞

0

1

16.5
e−s/16.5

{
1

2

}
ds

= 1

2

(once again using the fact that the integral in braces is a normal (mean s and
standard deviation .5) probability).

As a second example, consider the problem of evaluating P[S > 20]. Figure
5.32 shows the region over which f (s, r) must be integrated in order to evaluate
P[S > 20]. Then,

P[S > 20] =
∫ ∫
R

f (s, r) ds dr

=
∫ ∞

20

∫ ∞

−∞
f (s, r) dr ds

=
∫ ∞

20

1

16.5
e−s/16.5

{∫ ∞

−∞

1√
2π(.25)

e−(r−s)2/2(.25)dr

}
ds

=
∫ ∞

20

1

16.5
e−s/16.5 ds

= e−20/16.5

≈ .30
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1

2

1 2 s

Region where r > s and
f (s, r) > 0

3

r

3

Figure 5.31 Region where f (s, r) > 0
and r > s

10

20

10 20 s

Region
where
s > 20

r

–10

–20

0

Figure 5.32 Region where f (s, r) > 0
and s > 20

The last part of the example essentially illustrates the fact that for X and Y with
joint density f (x, y),

F(x) = P[X ≤ x] =
∫ x

−∞

∫ ∞

−∞
f (t, y) dy dt

This is a statement giving the cumulative probability function for X . Differentiation
with respect to x shows that a marginal probability density for X is obtained from
the joint density by integrating out y. Putting this in the form of a definition gives
the following.

Definition 25 The individual probability densities for continuous random variables X and
Y with joint probability density f (x, y) are called marginal probability
densities. They are obtained by integrating f (x, y) over all possible values of
the other variable. In symbols, the marginal probability density function for
X is

fX (x) =
∫ ∞

−∞
f (x, y) dy (5.44)

and the marginal probability density function for Y is

fY (y) =
∫ ∞

−∞
f (x, y) dx (5.45)
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Compare Definitions 20 and 25 (page 282). The same kind of thing is done
for jointly continuous variables to find marginal distributions as for jointly discrete
variables, except that integration is substituted for summation.

Example 19
(continued )

Starting with the joint density specified by equation (5.43), it is possible to arrive
at reasonably explicit expressions for the marginal densities for S and R. First
considering the density of S, Definition 25 declares that for s > 0,

fS(s) =
∫ ∞

−∞

1

16.5
e−s/16.5

{
1√

2π(.25)
e−(r−s)2/2(.25)

}
dr

= 1

16.5
e−s/16.5

Further, since f (s, r) is 0 for negative s, if s < 0,

fS(s) =
∫ ∞

−∞
0 dr = 0

That is, the form of f (s, r) was chosen so that (as suggested by Example 15)
S has an exponential distribution with mean α = 16.5.

The determination of fR(r) is conceptually no different than the determi-
nation of fS(s), but the details are more complicated. Some work (involving
completion of a square in the argument of the exponential function and recogni-
tion of an integral as a normal probability) will show the determined reader that
for any r ,

fR(r) =
∫ ∞

0

1

16.5
√

2π(.25)
e−(s/16.5)−((r−s)2/2(.25)) ds

= 1

16.5

(
1 − 8

(
1

33
− 2r

))
exp

(
1

2,178
− r

16.5

)
(5.46)I

where, as usual, 8 is the standard normal cumulative probability function. A
graph of fR(r) is given in Figure 5.33.

5 10 r

fR(r)

150 20 25 30–5

Figure 5.33 Marginal probability density for R
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The marginal density for R derived from equation (5.43) does not belong to
any standard family of distributions. Indeed, there is generally no guarantee that the
process of finding marginal densities from a joint density will produce expressions
for the densities even as explicit as that in display (5.46).

5.4.4 Conditional Distributions and Independence
for Continuous Random Variables (Optional )

In order to motivate the definition for conditional distributions derived from a joint
probability density, consider again Definition 21 (page 284). For jointly discrete
variables X and Y , the conditional distribution for X given Y = y is specified by
holding y fixed and treating f (x, y) as a probability function for X after appropri-
ately renormalizing it—i.e., seeing that its values total to 1. The analogous operation
for two jointly continuous variables is described next.

Definition 26 For continuous random variables X and Y with joint probability density
f (x, y), the conditional probability density function of X given Y = y,
is the function of x

fX |Y (x | y) = f (x, y)∫ ∞

−∞
f (x, y) dx

The conditional probability density function of Y given X = x is the function
of y

fY |X (y | x) = f (x, y)∫ ∞

−∞
f (x, y) dy

Definitions 25 and 26 lead to

Conditional probability
density for X
given Y = y

fX |Y (x | y) = f (x, y)

fY (y)
(5.47)

and

Conditional probability
density for Y

given X = x

fY |X (y | x) = f (x, y)

fX (x)
(5.48)
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x

y

f (x, y)

Figure 5.34 A Joint probability density f (x, y) and the
shape of a conditional density for X given a value of Y

Expressions (5.47) and (5.48) are formally identical to the expressions (5.36) and
(5.37) relevant for discrete variables. The geometry indicated by equation (5.47) isGeometry of

conditional
densities

that the shape of fX |Y (x | y) as a function of x is determined by cutting the f (x, y)

surface in a graph like that in Figure 5.34 with the Y = y-plane. In Figure 5.34,
the divisor in equation (5.47) is the area of the shaded figure above the (x, y)-plane
below the f (x, y) surface on the Y = y plane. That division serves to produce a
function of x that will integrate to 1. (Of course, there is a corresponding geometric
story told for the conditional distribution of Y given X = x in expression (5.48)).

Example 19
(continued )

In the service time example, it is fairly easy to recognize the conditional distribu-
tion of R given S = s as having a familiar form. For s > 0, applying expression
(5.48),

fR|S(r | s) = f (s, r)

fS(s)
= f (s, r) ÷

(
1

16.5
e−s/16.5

)
which, using equation (5.43), gives

fR|S(r | s) = 1√
2π(.25)

e−(r−s)2/2(.25) (5.49)I

That is, given that S = s, the conditional distribution of R is normal with mean
s and standard deviation .5.

This realization is consistent with the bell-shaped cross sections of f (s, r)

shown in Figure 5.30. The form of fR|S(r | s) given in equation (5.49) says that
the measured excess service time is the true excess service time plus a normally
distributed measurement error that has mean 0 and standard deviation .5.
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It is evident from expression (5.49) (or from the way the positions of the bell-
shaped contours on Figure 5.30 vary with s) that the variables S and R ought to be
called dependent. After all, knowing that S = s gives the value of R except for a
normal error of measurement with mean 0 and standard deviation .5. On the other
hand, had it been the case that all conditional distributions of R given S = s were
the same (and equal to the marginal distribution of R), S and R should be called
independent. The notion of unchanging conditional distributions, all equal to their
corresponding marginal, is equivalently and more conveniently expressed in terms
of the joint probability density factoring into a product of marginals. The formal
version of this for two variables is next.

Definition 27 Continuous random variables X and Y are called independent if their joint
probability density function f (x, y) is the product of their respective marginal
probability densities. That is, independence means that

f (x, y) = fX (x) fY (y) for all x, y (5.50)

If expression (5.50) does not hold, the variables X and Y are called dependent.

Expression (5.50) is formally identical to expression (5.41), which appeared in Def-
inition 22 for discrete variables. The type of factorization given in these expressions
provides great mathematical convenience.

It remains in this section to remark that the concept of iid random variables
introduced in Definition 23 is as relevant to continuous cases as it is to discrete
ones. In statistical contexts, it can be appropriate where analytical problems are free
of carryover effects and in enumerative problems where (relatively) small simple
random samples are being described.

Example 20
(Example 15 revisited )

Residence Hall Depot Counter Service Times and iid Variables

Returning once more to the service time example of Jenkins, Milbrath, and Worth,
consider the next two excess service times encountered,

S1 = the first/next excess (over a threshold of 7.5 sec) time required
to complete a postage stamp sale at the residence hall service counter

S2 = the second excess service time

To the extent that the service process is physically stable (i.e., excess service times
can be thought of in terms of sampling with replacement from a single population),
an iid model seems appropriate for S1 and S2. Treating excess service times as
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Example 20
(continued )

marginally exponential with mean α = 16.5 thus leads to the joint density for S1
and S2:

f (s1, s2) =


1

(16.5)2 e−(s1+s2)/16.5 if s1 > 0 and s2 > 0

0 otherwise
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1. Explain in qualitative terms what it means for two
random variables X and Y to be independent. What
advantage is there when X and Y can be described
as independent?

2. Quality audit records are kept on numbers of major
and minor failures of circuit packs during burn-in
of large electronic switching devices. They indicate
that for a device of this type, the random variables

X = the number of major failures

and

Y = the number of minor failures

can be described at least approximately by the ac-
companying joint distribution.

y
∖

x 0 1 2

0 .15 .05 .01

1 .10 .08 .01

2 .10 .14 .02

3 .10 .08 .03

4 .05 .05 .03

(a) Find the marginal probability functions for
both X and Y — fX (x) and fY (y).

(b) Are X and Y independent? Explain.
(c) Find the mean and variance of X—EX and

Var X .
(d) Find the mean and variance of Y —EY and

Var Y .
(e) Find the conditional probability function for Y ,

given that X = 0—i.e., that there are no major
circuit pack failures. (That is, find fY |X (y | 0).)

What is the mean of this conditional distribu-
tion?

3. A laboratory receives four specimens having iden-
tical appearances. However, it is possible that (a
single unknown) one of the specimens is contam-
inated with a toxic material. The lab must test the
specimens to find the toxic specimen (if in fact one
is contaminated). The testing plan first put forth
by the laboratory staff is to test the specimens one
at a time, stopping when (and if) a contaminated
specimen is found.

Define two random variables

X = the number of contaminated specimens

and

Y = the number of specimens tested

Let p = P[X = 0] and therefore P[X = 1] =
1 − p.
(a) Give the conditional distributions of Y given

X = 0 and X = 1 for the staff’s initial test-
ing plan. Then use them to determine the joint
probability function of X and Y . (Your joint
distribution will involve p, and you may sim-
ply fill out tables like the accompanying ones.)

y fY |X (y | 0) y fY |X (y | 1)

1 1

2 2

3 3

4 3
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f (x, y)

y
∖

x 0 1

1

2

3

4

(b) Based on your work in (a), find the marginal
distribution of Y . What is EY , the mean num-
ber of specimens tested using the staff’s origi-
nal plan?

(c) A second testing method devised by the staff
involves testing composite samples of material
taken from possibly more than one of the origi-
nal specimens. By initially testing a composite
of all four specimens, then (if the first test re-
veals the presence of toxic material) following
up with a composite of two, and then an ap-
propriate single specimen, it is possible to do
the lab’s job in one test if X = 0, and in three
tests if X = 1. Suppose that because testing is
expensive, it is desirable to hold the number
of tests to a minimum. For what values of p
is this second method preferable to the first?
(Hint: What is EY for this second method?)

4. A machine element is made up of a rod and a
ring bearing. The rod must fit through the bearing.
Model

X = the diameter of the rod

and

Y = the inside diameter of the ring bearing

as independent random variables, X uniform on
(1.97, 2.02) and Y uniform on (2.00, 2.06).
( fX (x) = 1/.05 for 1.97 < x < 2.02, while
fX (x) = 0 otherwise. Similarly, fY (y) = 1/.06 for
2.00 < y < 2.06, while fY (y) = 0 otherwise.)
With this model, do the following:
(a) Write out the joint probability density for X

and Y . (It will be positive only when 1.97 <

x < 2.02 and 2.00 < y < 2.06.)

(b) Evaluate P[Y − X < 0], the probability of an
interference in assembly.

5. Suppose that a pair of random variables have the
joint probability density

f (x, y) =


4x(1 − y) if 0 ≤ x ≤ 1

and 0 ≤ y ≤ 1

0 otherwise

(a) Find the marginal probability densities for X
and Y . What is the mean of X?

(b) Are X and Y independent? Explain.
(c) Evaluate P[X + 2Y ≥ 1] .
(d) Find the conditional probability density for X

given that Y = .5. (Find fX |Y (x | .5).) What is
the mean of this (conditional) distribution?

6. An engineering system consists of two subsystems
operating independently of each other. Let

X = the time till failure of the first subsystem

and

Y = the time till failure of the second subsystem

Suppose that X and Y are independent exponen-
tial random variables each with mean α = 1 (in
appropriate time units).
(a) Write out the joint probability density for X

and Y . Be sure to state carefully where the
density is positive and where it is 0.

Suppose first that the system is a series system (i.e.,
one that fails when either of the subsystems fail).
(b) The probability that the system is still func-

tioning at time t > 0 is then

P[X > t and Y > t]

Find this probability using your answer to (a).
(What region in the (x, y)-plane corresponds
to the possibility that the system is still func-
tioning at time t?)

(c) If one then defines the random variable

T = the time until the system fails
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the cumulative probability function for T is

F(t) = 1 − P[X > t and Y > t]

so that your answer to (b) can be used to find
the distribution for T . Use your answer to (b)
and some differentiation to find the probability
density for T . What kind of distribution does
T have? What is its mean?

Suppose now that the system is a parallel system
(i.e., one that fails only when both subsystems fail).

(d) The probability that the system has failed by
time t is

P[X ≤ t and Y ≤ t]

Find this probability using your answer to
part (a).

(e) Now, as before, let T be the time until the
system fails. Use your answer to (d) and some
differentiation to find the probability density
for T . Then calculate the mean of T .

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5.5 Functions of Several Random Variables

The last section introduced the mathematics used to simultaneously model several
random variables. An important engineering use of that material is in the analysis
of system outputs that are functions of random inputs.

This section studies how the variation seen in an output random variable depends
upon that of the variables used to produce it. It begins with a few comments on what
is possible using exact methods of mathematical analysis. Then the simple and
general tool of simulation is introduced. Next, formulas for means and variances
of linear combinations of random variables and the related propagation of error
formulas are presented. Last is the pervasive central limit effect, which often causes
variables to have approximately normal distributions.

5.5.1 The Distribution of a Function of Random Variables

The problem considered in this section is this. Given a joint distribution for the
random variables X, Y, . . . , Z and a function g(x, y, . . . , z), the object is to predict
the behavior of the random variable

U = g(X, Y, . . . , Z) (5.51)

In some special simple cases, it is possible to figure out exactly what distribution U
inherits from X, Y, . . . , Z .

Example 21 The Distribution of the Clearance Between Two Mating Parts
with Randomly Determined Dimensions

Suppose that a steel plate with nominal thickness .15 in. is to rest in a groove
of nominal width .155 in., machined on the surface of a steel block. A lot
of plates has been made and thicknesses measured, producing the relative fre-
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Table 5.19
Relative Frequency Distribution of Plate
Thicknesses

Plate Thickness (in.) Relative Frequency

.148 .4

.149 .3

.150 .3

Table 5.20
Relative Frequency Distribution of Slot
Widths

Slot Width (in.) Relative Frequency

.153 .2

.154 .2

.155 .4

.156 .2

quency distribution in Table 5.19; a relative frequency distribution for the slot
widths measured on a lot of machined blocks is given in Table 5.20.

If a plate is randomly selected and a block is separately randomly selected,
a natural joint distribution for the random variables

X = the plate thickness

Y = the slot width

is one of independence, where the marginal distribution of X is given in Table
5.19 and the marginal distribution of Y is given in Table 5.20. That is, Table 5.21
gives a plausible joint probability function for X and Y .

A variable derived from X and Y that is of substantial potential interest is
the clearance involved in the plate/block assembly,

U = Y − X

Notice that taking the extremes represented in Tables 5.19 and 5.20, U is guaran-
teed to be at least .153 − .150 = .003 in. but no more than .156 − .148 = .008 in.
In fact, much more than this can be said. Looking at Table 5.21, one can see that
the diagonals of entries (lower left to upper right) all correspond to the same value
of Y − X . Adding probabilities on those diagonals produces the distribution of
U given in Table 5.22.
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Example 21
(continued )

Table 5.21
Marginal and Joint Probabilities for X and Y

y
∖

x .148 .149 .150 fY (y)

.156 .08 .06 .06 .2

.155 .16 .12 .12 .4

.154 .08 .06 .06 .2

.153 .08 .06 .06 .2

fX (x) .4 .3 .3

Table 5.22
The Probability Function for the
Clearance U = Y − X

u f (u)

.003 .06

.004 .12 = .06 + .06

.005 .26 = .08 + .06 + .12

.006 .26 = .08 + .12 + .06

.007 .22 = .16 + .06

.008 .08

Example 21 involves a very simple discrete joint distribution and a very simple
function g—namely, g(x, y) = y − x . In general, exact complete solution of the
problem of finding the distribution of U = g(X, Y, . . . , Z) is not practically possi-
ble. Happily, for many engineering applications of probability, approximate and/or
partial solutions suffice to answer the questions of practical interest. The balance
of this section studies methods of producing these approximate and/or partial de-
scriptions of the distribution of U , beginning with a brief look at simulation-based
methods.

5.5.2 Simulations to Approximate the Distribution
of U = g(X, Y, . . . , Z )

Many computer programs and packages can be used to produce pseudorandom
values, intended to behave as if they were realizations of independent random
variables following user-chosen marginal distributions. If the model for X, Y, . . . , ZSimulation for

independent
X, Y, . . . , Z

is one of independence, it is then a simple matter to generate a simulated value for
each of X, Y, . . . , Z and plug those into g to produce a simulated value for U .
If this process is repeated a number of times, a relative frequency distribution for
these simulated values of U is developed. One might reasonably use this relative
frequency distribution to approximate an exact distribution for U .
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Example 22 Uncertainty in the Calculated Efficiency of an Air Solar Collector

The article “Thermal Performance Representation and Testing of Air Solar Col-
lectors” by Bernier and Plett (Journal of Solar Energy Engineering, May 1988)
considers the testing of air solar collectors. Its analysis of thermal performance
based on enthalpy balance leads to the conclusion that under inward leakage
conditions, the thermal efficiency of a collector can be expressed as

Efficiency = MoC(To − Ti) + (Mo − Mi)C(Ti − Ta)

G A

= C

G A

(
MoTo − MiTi − (Mo − Mi)Ta

)
(5.52)

where

C = air specific heat (J/kg◦C)

G = global irradiance incident on the plane of the collector (W/m2)

A = collector gross area (m2)

Mi = inlet mass flowrate (kg/s)

Mo = outlet mass flowrate (kg/s)

Ta = ambient temperature (◦C)

Ti = collector inlet temperature (◦C)

To = collector outlet temperature (◦C)

The authors further give some uncertainty values associated with each of the terms
appearing on the right side of equation (5.52) for an example set of measured
values of the variables. These are given in Table 5.23.

Table 5.23
Reported Uncertainties in the Measured Inputs
to Collector Efficiency

Variable Measured Value Uncertainty

C 1003.8 1.004 (i.e., ± .1%)

G 1121.4 33.6 (i.e., ± 3%)

A 1.58 .005
Mi .0234 .00035 (i.e., ± 1.5%)

Mo .0247 .00037 (i.e., ± 1.5%)

Ta −13.22 .5
Ti −6.08 .5
To 24.72 .5*

*This value is not given explicitly in the article.
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Example 22
(continued )

Plugging the measured values from Table 5.23 into formula (5.52) produces
a measured efficiency of about .44. But how good is the .44 value? That is, how
do the uncertainties associated with the measured values affect the reliability of
the .44 figure? Should you think of the calculated solar collector efficiency as .44
plus or minus .001, or plus or minus .1, or what?

One way of approaching this is to ask the related question, “What would
be the standard deviation of Efficiency if all of C through To were independent
random variables with means approximately equal to the measured values and
standard deviations related to the uncertainties as, say, half of the uncertainty
values?” (This “two sigma” interpretation of uncertainty appears to be at least
close to the intention in the original article.)

Printout 1 is from a MINITAB session in which 100 normally distributed
realizations of variables C through To were generated (using means equal to
measured values and standard deviations equal to half of the corresponding
uncertainties) and the resulting efficiencies calculated. (The routine under the
“Calc/Random Data/Normal” menu was used to generate the realizations of
C through To. The “Calc/Calculator” menu was used to combine these val-
ues according to equation (5.52). Then routines under the “Stat/Basic Statis-
tics/Describe” and “Graph/Character Graphs/Stem-and-Leaf” menus were used
to produce the summaries of the simulated efficiencies.) The simulation produced
a roughly bell-shaped distribution of calculated efficiencies, possessing a mean
value of approximately .437 and standard deviation of about .009. Evidently,
if one continues with the understanding that uncertainty means something like
“2 standard deviations,” an uncertainty of about .02 is appropriate for the nominal
efficiency figure of .44.

WWW

Printout 1 Simulation of Solar Collector Efficiency

Descriptive Statistics

Variable N Mean Median TrMean StDev SE Mean
Efficien 100 0.43729 0.43773 0.43730 0.00949 0.00095

Variable Minimum Maximum Q1 Q3
Efficien 0.41546 0.46088 0.43050 0.44426

Character Stem-and-Leaf Display

Stem-and-leaf of Efficien N = 100
Leaf Unit = 0.0010

5 41 58899
10 42 22334
24 42 66666777788999
39 43 001112233333444
(21) 43 555556666777889999999
40 44 00000011122333444
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23 44 555556667788889
8 45 023344
2 45 7
1 46 0

The beauty of Example 22 is the ease with which a simulation can be employed
to approximate the distribution of U . But the method is so powerful and easy to use
that some cautions need to be given about the application of this whole topic before
going any further.

Be careful not to expect more than is sensible from a derived probability distri-Practical cautions
bution (“exact” or approximate) for

U = g(X, Y, . . . , Z)

The output distribution can be no more realistic than are the assumptions used
to produce it (i.e., the form of the joint distribution and the form of the function
g(x, y, . . . , z)). It is all too common for people to apply the methods of this section
using a g representing some approximate physical law and U some measurable
physical quantity, only to be surprised that the variation in U observed in the real
world is substantially larger than that predicted by methods of this section. The fault
lies not with the methods, but with the naivete of the user. Approximate physical
laws are just that, often involving so-called constants that aren’t constant, using
functional forms that are too simple, and ignoring the influence of variables that
aren’t obvious or easily measured. Further, although independence of X, Y, . . . , Z
is a very convenient mathematical property, its use is not always justified. When
it is inappropriately used as a model assumption, it can produce an inappropriate
distribution for U . For these reasons, think of the methods of this section as useful
but likely to provide only a best-case picture of the variation you should expect
to see.

5.5.3 Means and Variances for Linear Combinations
of Random Variables

For engineering purposes, it often suffices to know the mean and variance for U
given in formula (5.51) (as opposed to knowing the whole distribution of U ). When
this is the case and g is linear, there are explicit formulas for these.

Proposition 1 If X, Y, . . . , Z are n independent random variables and a0, a1, a2, . . . , an are
n + 1 constants, then the random variable U = a0 + a1 X + a2Y + · · · + an Z
has mean

EU = a0 + a1EX + a2 EY + · · · + anEZ (5.53)
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and variance

Var U = a2
1 Var X + a2

2 Var Y + · · · + a2
n Var Z (5.54)

Formula (5.53) actually holds regardless of whether or not the variables X, Y, . . . , Z
are independent, and although formula (5.54) does depend upon independence, there
is a generalization of it that can be used even if the variables are dependent. However,
the form of Proposition 1 given here is adequate for present purposes.

One type of application in which Proposition 1 is immediately useful is that of
geometrical tolerancing problems, where it is applied with a0 = 0 and the other ai ’s
equal to plus and minus 1’s.

Example 21
(continued )

Consider again the situation of the clearance involved in placing a steel plate
in a machined slot on a steel block. With X , Y , and U being (respectively) the
plate thickness, slot width, and clearance, means and variances for these variables
can be calculated from Tables 5.19, 5.20, and 5.22, respectively. The reader is
encouraged to verify that

EX = .1489 and Var X = 6.9 × 10−7

EY = .1546 and Var Y = 1.04 × 10−6

Now, since

U = Y − X = (−1)X + 1Y

Proposition 1 can be applied to conclude that

EU = −1EX + 1EY = −.1489 + .1546 = .0057 in.I
Var U = (−1)26.9 × 10−7 + (1)21.04 × 10−6 = 1.73 × 10−6

so that

√
Var U = .0013 in.I

It is worth the effort to verify that the mean and standard deviation of the clearance
produced using Proposition 1 agree with those obtained using the distribution of
U given in Table 5.22 and the formulas for the mean and variance given in Section
5.1. The advantage of using Proposition 1 is that if all that is needed are EU
and Var U , there is no need to go through the intermediate step of deriving the
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distribution of U . The calculations via Proposition 1 use only characteristics of
the marginal distributions.

Another particularly important use of Proposition 1 concerns n iid random vari-
ables where each ai is 1

n . That is, in cases where random variables X1, X2, . . . , Xn
are conceptually equivalent to random selections (with replacement) from a single
numerical population, Proposition 1 tells how the mean and variance of the random
variable

X = 1

n
X1 + 1

n
X2 + · · · + 1

n
Xn

are related to the population parameters µ and σ 2. For independent variables
X1, X2, . . . , Xn with common mean µ and variance σ 2, Proposition 1 shows that

The mean of an
average of n iid

random variables
EX = 1

n
EX1 + 1

n
EX2 + · · · + 1

n
E Xn = n

(
1

n
µ

)
= µ (5.55)

and

The variance of an
average of n iid

random variables

Var X = (
1
n

)2
Var X1 + (

1
n

)2
Var X2 + · · · + (

1
n

)2
Var Xn

= n

(
1

n

)2

σ 2 = σ 2

n

(5.56)

Since σ 2/n is decreasing in n, equations (5.55) and (5.56) give the reassuring picture
of X having a probability distribution centered at the population mean µ, with spread
that decreases as the sample size increases.

Example 23
(Example 15 revisited )

The Expected Value and Standard Deviation
for a Sample Mean Service Time

To illustrate the application of formulas (5.55) and (5.56), consider again the
stamp sale service time example. Suppose that the exponential model with α =
16.5 that was derived in Example 15 for excess service times continues to be
appropriate and that several more postage stamp sales are observed and excess
service times noted. With

Si = the excess (over a 7.5 sec threshold) time required
to complete the i th additional stamp sale
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Example 23
(continued )

consider what means and standard deviations are associated with the probability
distributions of the sample average, S, of first the next 4 and then the next 100
excess service times.

S1, S2, . . . , S100 are, to the extent that the service process is physically stable,
reasonably modeled as independent, identically distributed, exponential random
variables with mean α = 16.5. The exponential distribution with mean α = 16.5
has variance equal to α2 = (16.5)2. So, using formulas (5.55) and (5.56), for the
first 4 additional service times,

E S = α = 16.5 sec√
Var S =

√
α2

4
= 8.25 sec

Then, for the first 100 additional service times,

E S = α = 16.5 sec√
Var S =

√
α2

100
= 1.65 sec

Notice that going from a sample size of 4 to a sample size of 100 decreases the

standard deviation of S by a factor of 5 (=
√

100
4 ).

Relationships (5.55) and (5.56), which perfectly describe the random behavior
of X under random sampling with replacement, are also approximate descriptions of
the behavior of X under simple random sampling in enumerative contexts. (Recall
Example 18 and the discussion about the approximate independence of observations
resulting from simple random sampling of large populations.)

5.5.4 The Propagation of Error Formulas

Proposition 1 gives exact values for the mean and variance of U = g(X, Y, . . . , Z)

only when g is linear. It doesn’t seem to say anything about situations involving
nonlinear functions like the one specified by the right-hand side of expression (5.52)
in the solar collector example. But it is often possible to obtain useful approximations
to the mean and variance of U by applying Proposition 1 to a first-order multivariate
Taylor expansion of a not-too-nonlinear g. That is, if g is reasonably well-behaved,
then for x, y, . . . , z (respectively) close to EX, EY, . . . , EZ,

g(x, y, . . . , z) ≈ g(EX, EY, . . . , EZ) + ∂g

∂x
· (x − EX) + ∂g

∂y
· (y − EY )

+ · · · + ∂g

∂z
cdot (z − EZ)

 (5.57)
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where the partial derivatives are evaluated at (x, y, . . . , z) = (EX, EY, . . . , EZ).
Now the right side of approximation (5.57) is linear in x, y, . . . , z. Thus, if the vari-
ances of X, Y, . . . , Z are small enough so that with high probability, X, Y, . . . , Z are
such that approximation (5.57) is effective, one might think of plugging X, Y, . . . , Z
into expression (5.57) and applying Proposition 1, thus winding up with approxi-
mations for the mean and variance of U = g(X, Y, . . . , Z).

Proposition 2
(The Propagation of Error

Formulas )

If X, Y, . . . , Z are independent random variables and g is well-behaved, for
small enough variances Var X, Var Y, . . . , Var Z , the random variable U =
g(X, Y, . . . , Z) has approximate mean

EU ≈ g(EX, EY, . . . , EZ) (5.58)

and approximate variance

Var U ≈
(

∂g

∂x

)2

Var X +
(

∂g

∂y

)2

Var Y + · · · +
(

∂g

∂z

)2

Var Z (5.59)

Formulas (5.58) and (5.59) are often called the propagation of error or transmis-
sion of variance formulas. They describe how variability or error is propagated or
transmitted through an exact mathematical function.

Comparison of Propositions 1 and 2 shows that when g is exactly linear, ex-
pressions (5.58) and (5.59) reduce to expressions (5.53) and (5.54), respectively.
(a1 through an are the partial derivatives of g in the case where g(x, y, . . . , z) =
a0 + a1x + a2 y + · · · + anz.) Proposition 2 is purposely vague about when the
approximations (5.58) and (5.59) will be adequate for engineering purposes. Mathe-
matically inclined readers will not have much trouble constructing examples where
the approximations are quite poor. But often in engineering applications, expres-
sions (5.58) and (5.59) are at least of the right order of magnitude and certainly
better than not having any usable approximations.

Example 24 A Simple Electrical Circuit and the Propagation of Error

Figure 5.35 is a schematic of an assembly of three resistors. If R1, R2, and R3 are
the respective resistances of the three resistors making up the assembly, standard
theory says that

R = the assembly resistance
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Example 24
(continued )

is related to R1, R2, and R3 by

R = R1 + R2 R3

R2 + R3

(5.60)

A large lot of resistors is manufactured and has a mean resistance of 100 �

with a standard deviation of resistance of 2 �. If three resistors are taken at
random from this lot and assembled as in Figure 5.35, consider what formulas
(5.58) and (5.59) suggest for an approximate mean and an approximate standard
deviation for the resulting assembly resistance.

The g involved here is g(r1, r2, r3) = r1 + r2r3

r2 + r3

, so

∂g

∂r1

= 1

∂g

∂r2

= (r2 + r3)r3 − r2r3

(r2 + r3)
2 = r2

3

(r2 + r3)
2

∂g

∂r3

= (r2 + r3)r2 − r2r3

(r2 + r3)
2 = r2

2

(r2 + r3)
2

Also, R1, R2, and R3 are approximately independent with means 100 and stan-
dard deviations 2. Then formulas (5.58) and (5.59) suggest that the probability
distribution inherited by R has mean

E R ≈ g(100,100,100) = 100 + (100)(100)

100 + 100
= 150 �I

and variance

Var R ≈ (1)2(2)2 +
(

(100)2

(100 + 100)2

)2

(2)2 +
(

(100)2

(100 + 100)2

)2

(2)2 = 4.5

so that the standard deviation inherited by R is

√
Var R ≈

√
4.5 = 2.12 �I

As something of a check on how good the 150 � and 2.12 � values are, 1,000
sets of normally distributed R1, R2, and R3 values with the specified population
mean and standard deviation were simulated and resulting values of R calculated
via formula (5.60). These simulated assembly resistances had R = 149.80 � and
a sample standard deviation of 2.14 �. A histogram of these values is given in
Figure 5.36.
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Resistor 1

Resistor 2

Resistor 3

Figure 5.35 Schematic of a simple
assembly of three resistors
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Figure 5.36 Histogram of 1,000 simulated values of R

Example 24 is one to which the cautions following Example 22 (page 307)
apply. Suppose you were to actually take a large batch of resistors possessing a
mean resistance of 100 � and a standard deviation of resistances of 2 �, make
up a number of assemblies of the type represented in Figure 5.35, and measure
the assembly resistances. The standard deviation figures in Example 24 will likely
underpredict the variation observed in the assembly resistances.

The propagation of error and simulation methods may do a good job of approx-
imating the (exact) theoretical mean and standard deviation of assembly resistances.
But the extent to which the probability model used for assembly resistances can
be expected to represent the physical situation is another matter. Equation (5.60) is
highly useful, but of necessity only an approximate description of real assemblies.
For example, it ignores small but real temperature, inductance, and other second-
order physical effects on measured resistance. In addition, although the probability
model allows for variation in the resistances of individual components, it does not
account for instrument variation or such vagaries of real-world assembly as the
quality of contacts achieved when several parts are connected.

In Example 24, the simulation and propagation of error methods produce com-
parable results. Since the simulation method is so easy to use, why bother to do
the calculus and arithmetic necessary to use the propagation of error formulas? One
important answer to this question concerns intuition that formula (5.59) provides.
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Figure 5.37 Illustration of the Effect of
∂g
∂x

on Var U

Consider first the effect that g’s partial derivatives have on Var U . Formula (5.59)The effects of
the partial

derivatives of g
on Var U

implies that depending on the size of ∂g
∂x , the variance of X is either inflated or deflated

before becoming an ingredient of Var U . And even though formula (5.59) may not
be an exact expression, it provides correct intuition. If a given change in x produces
a big change in g(x, y, . . . , z), the impact Var X has on Var U will be greater than
if the change in x produces a small change in g(x, y, . . . , z). Figure 5.37 is a rough
illustration of this point. In the case that U = g(X), two different approximately
normal distributions for X with different means but a common variance produce
radically different spreads in the distribution of U , due to differing rates of change
of g (different derivatives).

Then, consider the possibility of partitioning the variance of U into interpretablePartitioning the
variance of U pieces. Formula (5.59) suggests thinking of (for example)(

∂g

∂x

)2

Var X

as the contribution the variation in X makes to the variation inherent in U . Com-
parison of such individual contributions makes it possible to analyze how various
potential reductions in input variation can be expected to affect the output variability
in U .

Example 22
(continued )

Return to the solar collector example. For means of C through To taken to be
the measured values in Table 5.23 (page 305), and standard deviations of C
through To equal to half of the uncertainties listed in the same table, formula
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(5.59) might well be applied to the calculated efficiency given in formula (5.52).
The squared partial derivatives of Efficiency with respect to each of the inputs,
times the variances of those inputs, are as given in Table 5.24. Thus, the ap-
proximate standard deviation for the efficiency variable provided by formula
(5.59) is

√
8.28 × 10−5 ≈ .009I

which agrees quite well with the value obtained earlier via simulation.
What’s given in Table 5.24 that doesn’t come out of a simulation is some

understanding of the biggest contributors to the uncertainty. The largest contri-
bution listed in Table 5.24 corresponds to variable G, followed in order by those
corresponding to variables Mo, To, and Ti. At least for the values of the means
used in this example, it is the uncertainties in those variables that principally
produce the uncertainty in Efficiency. Knowing this gives direction to efforts to
improve measurement methods. Subject to considerations of feasibility and cost,
measurement of the variable G deserves first attention, followed by measurement
of the variables Mo, To, and Ti.

Notice, however, that reduction of the uncertainty in G alone to essentially 0
would still leave a total in Table 5.24 of about 4.01×10−5 and thus an approximate
standard deviation for Efficiency of about

√
4.01 × 10−5 ≈ .006. Calculations of

this kind emphasize the need for reductions in the uncertainties of Mo, To, and
Ti as well, if dramatic (order of magnitude) improvements in overall uncertainty
are to be realized.

Table 5.24
Contributions to the Output Variation in
Collector Efficiency

Variable Contributions to Var Efficiency

C 4.73 × 10−8

G 4.27 × 10−5

A 4.76 × 10−7

Mi 5.01 × 10−7

Mo 1.58 × 10−5

Ta 3.39 × 10−8

Ti 1.10 × 10−5

To 1.22 × 10−5

Total 8.28 × 10−5
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5.5.5 The Central Limit Effect

One of the most frequently used statistics in engineering applications is the sample
mean. Formulas (5.55) and (5.56) relate the mean and variance of the probability
distribution of the sample mean to those of a single observation when an iid model
is appropriate. One of the most useful facts of applied probability is that if the
sample size is reasonably large, it is also possible to approximate the shape of the
probability distribution of X , independent of the shape of the underlying distribution
of individual observations. That is, there is the following fact:

Proposition 3
(The Central Limit

Theorem )

If X1, X2, . . . , Xn are iid random variables (with mean µ and variance σ 2),
then for large n, the variable X is approximately normally distributed. (That is,
approximate probabilities for X can be calculated using the normal distribution
with mean µ and variance σ 2/n.)

A proof of Proposition 3 is outside the purposes of this text. But intuition about the
effect is fairly easy to develop through an example.

Example 25
(Example 2 revisited )

The Central Limit Effect and the Sample Mean of Tool Serial Numbers

Consider again the example from Section 5.1 involving the last digit of essentially
randomly selected serial numbers of pneumatic tools. Suppose now that

W1 = the last digit of the serial number observed next Monday at 9 A.M.

W2 = the last digit of the serial number observed the following Monday at 9 A.M.

A plausible model for the pair of random variables W1, W2 is that they are
independent, each with the marginal probability function

f (w) =
{

.1 if w = 0, 1, 2, . . . , 9

0 otherwise
(5.61)

that is pictured in Figure 5.38.
Using such a model, it is a straightforward exercise (along the lines of

Example 21, page 303) to reason that W = 1
2 (W1 + W2) has the probability

function given in Table 5.25 and pictured in Figure 5.39.
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Figure 5.38 Probability histogram for W
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Figure 5.39 Probability histogram for W based on
n = 2

Table 5.25
The Probability Function for W for n = 2

w̄ f (w̄) w̄ f (w̄) w̄ f (w̄) w̄ f (w̄) w̄ f (w̄)

0.0 .01 2.0 .05 4.0 .09 6.0 .07 8.0 .03
0.5 .02 2.5 .06 4.5 .10 6.5 .06 8.5 .02
1.0 .03 3.0 .07 5.0 .09 7.0 .05 9.0 .01
1.5 .04 3.5 .08 5.5 .08 7.5 .04

Comparing Figures 5.38 and 5.39, it is clear that even for a completely
flat/uniform underlying distribution of W and the small sample size of n = 2,
the probability distribution of W looks far more bell-shaped than the underlying
distribution. It is clear why this is so. As you move away from the mean or central
value of W , there are relatively fewer and fewer combinations of w1 and w2 that
can produce a given value of w̄. For example, to observe W = 0, you must have
W1 = 0 and W2 = 0—that is, you must observe not one but two extreme values.
On the other hand, there are ten different combinations of w1 and w2 that lead to
W = 4.5.

It is possible to use the same kind of logic leading to Table 5.25 to produce
exact probability distributions for W based on larger sample sizes n. But such
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Example 25
(continued )

work is tedious, and for the purpose of indicating roughly how the central limit
effect takes over as n gets larger, it is sufficient to approximate the distribution
of W via simulation for a larger sample size. To this end, 1,000 sets of values for
iid variables W1, W2, . . . , W8 (with marginal distribution (5.61)) were simulated
and each set averaged to produce 1,000 simulated values of W based on n = 8.
Figure 5.40 is a histogram of these 1,000 values. Notice the bell-shaped character
of the plot. (The simulated mean of W was 4.508 ≈ 4.5 = EW = EW , while the
variance of W was 1.025 ≈ 1.013 = Var W = 8.25/8, in close agreement with
formulas (5.55) and (5.56).)
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Mean of n = 8 W ’s

Figure 5.40 Histogram of 1,000 simulated
values of W based on n = 8

What constitutes “large n” in Proposition 3 isn’t obvious. The truth of theSample size and
the central limit

effect
matter is that what sample size is required before X can be treated as essentially
normal depends on the shape of the underlying distribution of a single observation.
Underlying distributions with decidedly nonnormal shapes require somewhat bigger
values of n. But for most engineering purposes, n ≥ 25 or so is adequate to make X
essentially normal for the majority of data-generating mechanisms met in practice.
(The exceptions are those subject to the occasional production of wildly outlying
values.) Indeed, as Example 25 suggests, in many cases X is essentially normal for
sample sizes much smaller than 25.

The practical usefulness of Proposition 3 is that in many circumstances, only a
normal table is needed to evaluate probabilities for sample averages.

Example 23
(continued )

Return one more time to the stamp sale time requirements problem and consider
observing and averaging the next n = 100 excess service times, to produce

S = the sample mean time (over a 7.5 sec threshold) required to
complete the next 100 stamp sales
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And consider approximating P[S > 17].
As discussed before, an iid model with marginal exponential α = 16.5 dis-

tribution is plausible for the individual excess service times, S. Then

E S = α = 16.5 sec

and

√
Var S =

√
α2

100
= 1.65 sec

are appropriate for S, via formulas (5.55) and (5.56). Further, in view of the
fact that n = 100 is large, the normal probability table may be used to find
approximate probabilities for S. Figure 5.41 shows an approximate distribution
for S and the area corresponding to P[S > 17].

16

The approximate probability
distribution of S is normal
with mean 16.5 and standard
deviation 1.65

Approximate P[ S > 17]

17

Figure 5.41 Approximate probability distribution for S
and P [S > 17]

As always, one must convert to z-values before consulting the standard
normal table. In this case, the mean and standard deviation to be used are (re-
spectively) 16.5 sec and 1.65 sec. That is, a z-value is calculated as

z = 17 − 16.5

1.65
= .30

so

P[S > 17] ≈ P[Z > .30] = 1 − 8(.30) = .38



320 Chapter 5 Probability: The Mathematics of Randomness

The z-value calculated in the example is an application of the general form

z-value for a
sample mean z = x̄ − EX√

Var X
= x̄ − µ

σ√
n

(5.62)

appropriate when using the central limit theorem to find approximate probabilities
for a sample mean. Formula (5.62) is relevant because by Proposition 3, X is
approximately normal for large n and formulas (5.55) and (5.56) give its mean and
standard deviation.

The final example in this section illustrates how the central limit theorem and
some idea of a process or population standard deviation can help guide the choice
of sample size in statistical applications.

Example 26
(Example 10 revisited )

Sampling a Jar-Filling Process

The process of filling food containers, discussed by J. Fisher in his 1983 “Quality
Progress” article, appears (from a histogram in the paper) to have an inherent
standard deviation of measured fill weights on the order of 1.6 g. Suppose that
in order to calibrate a fill-level adjustment knob on such a process, you set the
knob and fill a run of n jars. Their sample mean net contents will then serve as
an indication of the process mean fill level corresponding to that knob setting.
Suppose further that you would like to choose a sample size, n, large enough
that a priori there is an 80% chance the sample mean is within .3 g of the actual
process mean.

If the filling process can be thought of as physically stable, it makes sense
to model the n observed net weights as iid random variables with (unknown)
marginal mean µ and standard deviation σ = 1.6 g. For large n,

V = the observed sample average net weight

can be thought of as approximately normal with mean µ and standard deviation
σ/

√
n = 1.6/

√
n (by Proposition 3 and formulas (5.55) and (5.56)).

Now the requirement that V be within .3 g of µ can be written as

µ − .3 < V < µ + .3

so the problem at hand is to choose n such that

P[µ − .3 < V < µ + .3] = .80
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Figure 5.42 pictures the situation. The .90 quantile of the standard normal distri-
bution is roughly 1.28—that is, P[−1.28 < Z < 1.28] = .8. So evidently Figure
5.42 indicates that µ + .3 should have z-value 1.28. That is, you want

1.28 = (µ + .3) − µ

1.6√
n

or

.3 = 1.28
1.6√

n

So, solving for n, a sample size of n ≈ 47 would be required to provide the kind
of precision of measurement desired.

   – .3    + .3

The approximate probability
distribution of V is normal
with mean     and standard
deviation      =       

  n
1.6
 n

P[   – .3 < V <     + .3] = .8
is desired

σ

µ µ

µµ µ

µ

Figure 5.42 Approximate probability distribution for V
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1. A type of nominal 3
4 inch plywood is made of

five layers. These layers can be thought of as hav-
ing thicknesses roughly describable as independent
random variables with means and standard devia-
tions as follows:

Layer Mean (in.) Standard Deviation (in.)

1 .094 .001

2 .156 .002

3 .234 .002

4 .172 .002

5 .094 .001

Find the mean and standard deviation of total thick-
ness associated with the combination of these indi-
vidual values.

2. The coefficient of linear expansion of brass is to be
obtained as a laboratory exercise. For a brass bar
that is L1 meters long at T ◦

1 C and L2 meters long
at T ◦

2 C, this coefficient is

α = L2 − L1

L1(T2 − T1)

Suppose that the equipment to be used in the lab-
oratory is thought to have a standard deviation for
repeated length measurements of about .00005 m
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and a standard deviation for repeated temperature
measurements of about .1◦C.
(a) If using T1 ≈ 50◦C and T2 ≈ 100◦C, L1 ≈

1.00000 m and L2 ≈ 1.00095 m are obtained,
and it is desired to attach an approximate stan-
dard deviation to the derived value of α, find
such an approximate standard deviation two
different ways. First, use simulation as was
done in Printout 1. Then use the propagation
of error formula. How well do your two values
agree?

(b) In this particular lab exercise, the precision of
which measurements (the lengths or the tem-
peratures) is the primary limiting factor in the
precision of the derived coefficient of linear
expansion? Explain.

(c) Within limits, the larger T2 − T1, the better the
value for α. What (in qualitative terms) is the
physical origin of those limits?

3. Consider again the random number generator dis-
cussed in Exercise 1 of Section 5.2. Suppose that
it is used to generate 25 random numbers and that
these may reasonably be thought of as indepen-
dent random variables with common individual
(marginal) distribution as given in Exercise 1 of
Section 5.2. Let X be the sample mean of these 25
values.
(a) What are the mean and standard deviation of

the random variable X?
(b) What is the approximate probability distribu-

tion of X?
(c) Approximate the probability that X exceeds .5.
(d) Approximate the probability that X takes a

value within .02 of its mean.

(e) Redo parts (a) through (d) using a sample size
of 100 instead of 25.

4. Passing a large production run of piston rings
through a grinding operation produces edge widths
possessing a standard deviation of .0004 in. A sim-
ple random sample of rings is to be taken and their
edge widths measured, with the intention of using
X as an estimate of the population mean thickness
µ. Approximate the probabilities that X is within
.0001 in. of µ for samples of size n = 25, 100, and
400.

5. A pendulum swinging through small angles ap-
proximates simple harmonic motion. The period of
the pendulum, τ , is (approximately) given by

τ = 2π

√
L

g

where L is the length of the pendulum and g is
the acceleration due to gravity. This fact can be
used to derive an experimental value for g. Suppose
that the length L of about 5 ft can be measured
with a standard deviation of about .25 in. (about
.0208 foot), and the period τ of about 2.48 sec
can be measured with standard deviation of about
.1 sec. What is a reasonable standard deviation to
attach to a value of g derived using this equipment?
Is the precision of the length measurement or the
precision of the period measurement the principal
limitation on the precision of the derived g?
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1. Suppose 90% of all students taking a beginning
programming course fail to get their first program
to run on first submission. Use a binomial distri-
bution and assign probabilities to the possibilities
that among a group of six such students,
(a) all fail on their first submissions
(b) at least four fail on their first submissions

(c) less than four fail on their first submissions
Continuing to use this binomial model,
(d) what is the mean number who will fail?
(e) what are the variance and standard deviation of

the number who will fail?

2. Suppose that for single launches of a space shuttle,
there is a constant probability of O-ring failure (say,
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.15). Consider ten future launches, and let X be the
number of those involving an O-ring failure. Use
an appropriate probability model and evaluate all
of the following:
(a) P[X = 2] (b) P[X ≥ 1]
(c) EX (d) Var X
(e) the standard deviation of X

3. An injection molding process for making auto
bumpers leaves an average of 1.3 visual defects
per bumper prior to painting. Let Y and Z be the
numbers of visual defects on (respectively) the next
two bumpers produced. Use an appropriate proba-
bility distribution and evaluate the following:
(a) P[Y = 2] (b) P[Y ≥ 1]
(c)

√
Var Y

(d) P[Y + Z ≥ 2] (Hint: What is a sensible
distribution for Y + Z , the number of blem-
ishes on two bumpers?)

4. Suppose that the random number generator sup-
plied in a pocket calculator actually generates val-
ues in such a way that if X is the next value gener-
ated, X can be adequately described using a prob-
ability density of the form

f (x) =
{

k((x − .5)2 + 1) for 0 < x < 1

0 otherwise

(a) Evaluate k and sketch a graph of f (x) .
(b) Evaluate P[X ≥ .5], P[X > .5], P[.75 >

X ≥ .5], and P[|X − .5| ≥ .2].
(c) Compute EX and Var X .
(d) Compute and graph F(x), the cumulative prob-

ability function for X . Read from your graph
the .8 quantile of the distribution of X .

5. Suppose that Z is a standard normal random vari-
able. Evaluate the following probabilities involv-
ing Z :
(a) P[Z ≤ 1.13] (b) P[Z > −.54]
(c) P[−1.02 < Z < .06] (d) P[|Z | ≤ .25]
(e) P[|Z | > 1.51] (f) P[−3.0 < Z < 3.0]
Find numbers # such that the following statements
about Z are true:
(g) P[|Z | < #] = .80 (h) P[Z < #] = .80
(i) P[|Z | > #] = .04

6. Suppose that X is a normal random variable with
mean µ = 10.2 and standard deviation σ = .7.
Evaluate the following probabilities involving X :
(a) P[X ≤ 10.1] (b) P[X > 10.5]
(c) P[9.0 < X < 10.3] (d) P[|X − 10.2| ≤ .25]
(e) P[|X − 10.2| > 1.51]
Find numbers # such that the following statements
about X are true:
(f) P[|X − 10.2| < #] = .80
(g) P[X < #] = .80
(h) P[|X − 10.2| > #] = .04

7. In a grinding operation, there is an upper speci-
fication of 3.150 in. on a dimension of a certain
part after grinding. Suppose that the standard de-
viation of this normally distributed dimension for
parts of this type ground to any particular mean
dimension µ is σ = .002 in. Suppose further that
you desire to have no more than 3% of the parts
fail to meet specifications. What is the maximum
(minimum machining cost) µ that can be used if
this 3% requirement is to be met?

8. A 10 ft cable is made of 50 strands. Suppose that,
individually, 10 ft strands have breaking strengths
with mean 45 lb and standard deviation 4 lb. Sup-
pose further that the breaking strength of a cable
is roughly the sum of the strengths of the strands
that make it up.
(a) Find a plausible mean and standard deviation

for the breaking strengths of such 10 ft cables.
(b) Evaluate the probability that a 10 ft cable

of this type will support a load of 2230 lb.
(Hint: If X is the mean breaking strength of
the strands,

∑
(Strengths) ≥ 2230 is the same

as X ≥ ( 2230
50 ). Now use the central limit the-

orem.)

9. The electrical resistivity, ρ, of a piece of wire is a
property of the material involved and the temper-
ature at which it is measured. At a given tempera-
ture, if a cylindrical piece of wire of length L and
cross-sectional area A has resistance R, the ma-
terial’s resistivity is calculated using the formula
ρ = R A

L . Thus, if a wire’s cross section is assumed
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to be circular with diameter D, the resistivity at a
given temperature is

ρ = Rπ D2

4L

In a lab exercise to determine the resistivity of
copper at 20◦C, students measure lengths, diam-
eters, and resistances of wire nominally 1.0 m in
length (L), 2.0 × 10−3 m in diameter (D), and
of resistance (R) .54 × 10−2 �. Suppose that it
is sensible to describe the measurement preci-
sions in this laboratory with the standard devi-
ations σL ≈ 10−3 m, σD ≈ 10−4 m, and σR ≈
5 × 10−4 �.
(a) Find an approximate standard deviation that

might be used to describe the expected pre-
cision for an experimentally derived value
of ρ.

(b) Imprecision in which of the measurements is
likely to be the largest contributor to impre-
cision in measured resistivity? Explain.

(c) You should expect that the value derived in (a)
underpredict the kind of variation that would
be observed in such laboratory exercises over
a period of years. Explain why this is so.

10. Suppose that the thickness of sheets of a certain
weight of book paper have mean .1 mm and a
standard deviation of .003 mm. A particular text-
book will be printed on 370 sheets of this paper.
Find sensible values for the mean and standard
deviation of the thicknesses of copies of this text
(excluding, of course, the book’s cover).

11. Pairs of resistors are to be connected in paral-
lel and a difference in electrical potential applied
across the resistor assembly. Ohm’s law predicts
that in such a situation, the current flowing in the
circuit will be

I = V

(
1

R1

+ 1

R2

)
where R1 and R2 are the two resistances and V
the potential applied. Suppose that R1 and R2 have

means µR = 10 � and standard deviations σR =
.1 � and that V has mean µV = 9 volt and σV =
.2 volt.
(a) Find an approximate mean and standard de-

viation for I , treating R1, R2, and V as inde-
pendent random variables.

(b) Based on your work in (a), would you say
that the variation in voltage or the combined
variations in R1 and R2 are the biggest con-
tributors to variation in current? Explain.

12. Students in a materials lab are required to ex-
perimentally determine the heat conductivity of
aluminum.
(a) If student-derived values are normally distrib-

uted about a mean of .5 (cal/(cm)(sec)(◦C))
with standard deviation of .03, evaluate the
probability that an individual student will ob-
tain a conductivity from .48 to .52.

(b) If student values have the mean and standard
deviation given in (a), evaluate the probabil-
ity that a class of 25 students will produce a
sample mean conductivity from .48 to .52.

(c) If student values have the mean and standard
deviation given in (a), evaluate the probabil-
ity that at least 2 of the next 5 values pro-
duced by students will be in the range from .48
to .52.

13. Suppose that 10 ft lengths of a certain type of cable
have breaking strengths with mean µ = 450 lb
and standard deviation σ = 50 lb.
(a) If five of these cables are used to support

a single load L , suppose that the cables are
loaded in such a way that support fails if any
one of the cables has strength below L

5 . With
L = 2,000 lb, assess the probability that the
support fails, if individual cable strength is
normally distributed. Do this in two steps.
First find the probability that a particular in-
dividual cable fails, then use that to evaluate
the desired probability.

(b) Approximate the probability that the sample
mean strength of 100 of these cables is below
457 lb.
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14. Find EX and Var X for a continuous distribution
with probability density

f (x) =


.3 if 0 < x < 1

.7 if 1 < x < 2

0 otherwise

15. Suppose that it is adequate to describe the 14-
day compressive strengths of test specimens of a
certain concrete mixture as normally distributed
with mean µ = 2,930 psi and standard deviation
σ = 20 psi.
(a) Assess the probability that the next specimen

of this type tested for compressive strength
will have strength above 2,945 psi.

(b) Use your answer to part (a) and assess the
probability that in the next four specimens
tested, at least one has compressive strength
above 2,945 psi.

(c) Assess the probability that the next 25 speci-
mens tested have a sample mean compressive
strength within 5 psi of µ = 2,930 psi.

(d) Suppose that although the particular concrete
formula under consideration in this problem
is relatively strong, it is difficult to pour in
large quantities without serious air pockets
developing (which can have important impli-
cations for structural integrity). In fact, sup-
pose that using standard methods of pouring,
serious air pockets form at an average rate of
1 per 50 cubic yards of poured concrete. Use
an appropriate probability distribution and as-
sess the probability that two or more serious
air pockets will appear in a 150 cubic yard
pour to be made tomorrow.

16. For X with a continuous distribution specified by
the probability density

f (x) =
{

.5x for 0 < x < 2

0 otherwise

find P[X < 1.0] and find the mean, EX.

17. The viscosity of a liquid may be measured by
placing it in a cylindrical container and determin-
ing the force needed to turn a cylindrical rotor (of
nearly the same diameter as the container) at a
given velocity in the liquid. The relationship be-
tween the viscosity η, force F , area A of the side
of the rotor in contact with the liquid, the size L
of the gap between the rotor and the inside of the
container, and the velocity v at which the rotor
surface moves is

η = FL

vA

Suppose that students are to determine an experi-
mental viscosity for SAE no. 10 oil as a laboratory
exercise and that appropriate means and standard
deviations for the measured variables F , L , v, and
A in this laboratory are as follows:

µF = 151 N
µA = 1257 cm2

µL = .5 cm
µ

v
= 30 cm/sec

σF = .05 N
σA = .2 cm2

σL = .05 cm
σ

v
= 1 cm/sec

(a) Use the propagation of error formulas and
find an approximate standard deviation that
might serve as a measure of precision for an
experimentally derived value of η from this
laboratory.

(b) Explain why, if experimental values of η ob-
tained for SAE no. 10 oil in similar laboratory
exercises conducted over a number of years at
a number of different universities were com-
pared, the approximate standard deviation de-
rived in (a) would be likely to understate the
variability actually observed in those values.

18. The heat conductivity, λ, of a cylindrical bar of
diameter D and length L , connected between two
constant temperature devices of temperatures T1
and T2 (respectively), that conducts Q calories in
t seconds is

λ = 4QL

π(T1 − T2)t D2
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In a materials laboratory exercise to determine
λ for brass, the following means and standard
deviations for the variables D, L , T1, T2, Q, and t
are appropriate, as are the partial derivatives of λ

with respect to the various variables (evaluated at
the means of the variables):

D L T1

µ 1.6 cm 100 cm 100◦C

σ .1 cm .1 cm 1◦C

partial −.249 .199 −.00199

T2 Q t

µ 0◦C 240 cal 600 sec

σ 1◦C 10 cal 1 sec

partial .00199 .000825 .000332

(The units of the partial derivatives are the units
of λ(cal/(cm)(sec)(◦C)) divided by the units of the
variable in question.)
(a) Find an approximate standard deviation to as-

sociate with an experimentally derived value
of λ.

(b) Which of the variables appears to be the
biggest contributor to variation in experimen-
tally determined values of λ? Explain your
choice.

19. Suppose that 15% of all daily oxygen purities
delivered by an air-products supplier are below
99.5% purity and that it is plausible to think of
daily purities as independent random variables.
Evaluate the probability that in the next five-day
workweek, 1 or less delivered purities will fall
below 99.5%.

20. Suppose that the raw daily oxygen purities de-
livered by an air-products supplier have a stan-
dard deviation σ ≈ .1 (percent), and it is plausi-
ble to think of daily purities as independent ran-
dom variables. Approximate the probability that
the sample mean X of n = 25 delivered purities
falls within .03 (percent) of the raw daily purity
mean, µ.

21. Students are going to measure Young’s Modulus
for copper by measuring the elongation of a piece
of copper wire under a tensile force. For a cylin-
drical wire of diameter D subjected to a tensile
force F , if the initial length (length before apply-
ing the force) is L0 and final length is L1, Young’s
Modulus for the material in question is

Y = 4FL0

π D2(L1 − L0)

The test and measuring equipment used in a par-
ticular lab are characterized by the standard devi-
ations

σF ≈ 10 lb σD ≈ .001 in.

σL0
= σL1

= .01 in.

and in the setup employed, F ≈ 300 lb, D ≈
.050 in., L0 ≈ 10.00 in., and L1 ≈ 10.10 in.
(a) Treating the measured force, diameter, and

lengths as independent variables with the pre-
ceding means and standard deviations, find an
approximate standard deviation to attach to
an experimentally derived value of Y . (Partial
derivatives of Y at the nominal values of F , D,
L0, and L1 are approximately ∂Y

∂ F ≈ 5.09 ×
104, ∂Y

∂ D ≈ −6.11 × 108, ∂Y
∂L0

≈ 1.54 × 108,

and ∂Y
∂L1

≈ −1.53 × 108 in the appropriate
units.)

(b) Uncertainty in which of the variables is the
biggest contributor to uncertainty in Y ?

(c) Notice that the equation for Y says that for
a particular material (and thus supposedly
constant Y ), circular wires of constant initial
lengths L0, but of different diameters and sub-
jected to different tensile forces, will undergo
elongations 1L = L1 − L0 of approximately

1L ≈ κ
F

D2

for κ a constant depending on the material and
the initial length. Suppose that you decide to
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measure 1L for a factorial arrangement of
levels of F and D. Does the equation predict
that F and D will or will not have important
interactions? Explain.

22. Exercise 6 of Chapter 3 concerns the lifetimes (in
numbers of 24 mm deep holes drilled in 1045 steel
before failure) of 12 D952-II (8 mm) drills.
(a) Make a normal plot of the data given in Ex-

ercise 6 of Chapter 3. In what specific way
does the shape of the data distribution appear
to depart from a Gaussian shape?

(b) The 12 lifetimes have mean ȳ = 117.75 and
standard deviation s ≈ 51.1. Simply using
these in place of µ and σ for the underly-
ing drill life distribution, use the normal table
to find an approximate fraction of drill lives
below 40 holes.

(c) Based on your answer to (a), if your answer to
(b) is seriously different from the real fraction
of drill lives below 40, is it most likely high
or low? Explain.

23. Metal fatigue causes cracks to appear on the skin
of older aircraft. Assume that it is reasonable to
model the number of cracks appearing on a 1 m2

surface of planes of a certain model and vintage
as Poisson with mean λ = .03.
(a) If 1 m2 is inspected, assess the probability that

at least one crack is present on that surface.
(b) If 10 m2 are inspected, assess the probability

that at least one crack (total) is present.
(c) If ten areas, each of size 1 m2, are inspected,

assess the probability that exactly one of these
has cracks.

24. If a dimension on a mechanical part is normally
distributed, how small must the standard devi-
ation be if 95% of such parts are to be within
specifications of 2 cm ± .002 cm when the mean
dimension is ideal (µ = 2 cm)?

25. The fact that the “exact” calculation of normal
probabilities requires either numerical integration
or the use of tables (ultimately generated using
numerical integration) has inspired many peo-
ple to develop approximations to the standard
normal cumulative distribution function. Several

of the simpler of these approximations are dis-
cussed in the articles “A Simpler Approximation
for Areas Under the Standard Normal Curve,”
by A. Shah (The American Statistician, 1985),
“Pocket-Calculator Approximation for Areas un-
der the Standard Normal Curve,” by R. Norton
(The American Statistician, 1989), and “Approx-
imations for Hand Calculators Using Small In-
teger Coefficients,” by S. Derenzo (Mathematics
of Computation, 1977). For z > 0, consider the
approximations offered in these articles:

8(z) ≈ gS(z) =


.5 + z(4.4 − z)

10
0 ≤ z ≤ 2.2

.99 2.2 < z < 2.6

1.00 2.6 ≤ z

8(z) ≈ gN(z) = 1 − 1

2
exp

(
− z2 + 1.2z.8

2

)
8(z) ≈ gD(z)

= 1 − 1

2
exp

(
− (83z + 351)z + 562

703/z + 165

)
Evaluate gS(z), gN(z), and gD(z) for z = .5, 1.0,
1.5, 2.0, and 2.5. How do these values compare to
the corresponding entries in Table B.3?

26. Exercise 25 concerned approximations for nor-
mal probabilities. People have also invested a fair
amount of effort in finding useful formulas ap-
proximating standard normal quantiles. One such
approximation was given in formula (3.3). A more
complicated one, again taken from the article by
S. Derenzo mentioned in Exercise 25, is as fol-
lows. For p > .50, let y = − ln (2(1 − p)) and

Qz(p) ≈
√

((4y + 100)y + 205) y2

((2y + 56)y + 192) y + 131

For p < .50, let y = − ln (2p) and

Qz(p) ≈ −
√

((4y + 100)y + 205) y2

((2y + 56)y + 192) y + 131
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Use these formulas to approximate Qz(p) for
p = .01, .05, .1, .3, .7, .9, .95, and .99. How do the
values you obtain compare with the correspond-
ing entries in Table 3.10 and the results of using
formula (3.3)?

27. The article “Statistical Strength Evaluation of
Hot-pressed Si3N4” by R. Govila (Ceramic Bul-
letin, 1983) contains summary statistics from an
extensive study of the flexural strengths of two
high-strength hot-pressed silicon nitrides in 1

4
point, 4 point bending. The values below are frac-
ture strengths of 30 specimens of one of the ma-
terials tested at 20◦C. (The units are MPa, and
the data were read from a graph in the paper
and may therefore individually differ by perhaps
as much as 10 MPa from the actual measured
values.)

514, 533, 543, 547, 584, 619, 653, 684,

689, 695, 700, 705, 709, 729, 729, 753,

763, 800, 805, 805, 814, 819, 819, 839,

839, 849, 879, 900, 919, 979

(a) The materials researcher who collected the
original data believed the Weibull distribution
to be an adequate model for flexural strength
of this material. Make a Weibull probability
plot using the method of display (5.35) of
Section 5.3 and investigate this possibility.
Does a Weibull model fit these data?

(b) Eye-fit a line through your plot from part (a).
Use it to help you determine an appropriate
shape parameter, β, and an appropriate scale
parameter, α, for a Weibull distribution used
to describe flexural strength of this material
at 20◦C. For a Weibull distribution with your
fitted values of α and β, what is the median
strength? What is a strength exceeded by 80%
of such Si3N4 specimens? By 90% of such
specimens? By 99% of such specimens?

(c) Make normal plots of the raw data and of the
logarithms of the raw data. Comparing the
three probability plots made in this exercise, is
there strong reason to prefer a Weibull model,
a normal model, or a lognormal model over

the other two possibilities as a description of
the flexural strength?

(d) Eye-fit lines to your plots from part (c). Use
them to help you determine appropriate means
and standard deviations for normal distribu-
tions used to describe flexural strength and
the logarithm of flexural strength. Compare
the .01, .10, .20, and .50 quantiles of the fit-
ted normal and lognormal distributions for
strength to the quantiles you computed in
part (b).

28. The article “Using Statistical Thinking to Solve
Maintenance Problems” by Brick, Michael, and
Morganstein (Quality Progress, 1989) contains
the following data on lifetimes of sinker rollers.
Given are the numbers of 8-hour shifts that 17
sinker rollers (at the bottom of a galvanizing pot
and used to direct steel sheet through a coating
operation) lasted before failing and requiring re-
placement.

10, 12, 15, 17, 18, 18, 20, 20,

21, 21, 23, 25, 27, 29, 29, 30, 35

(a) The authors of the article considered a Weibull
distribution to be a likely model for the life-
times of such rollers. Make a zero-threshold
Weibull probability plot for use in assessing
the reasonableness of such a description of
roller life.

(b) Eye-fit a line to your plot in (a) and use it to
estimate parameters for a Weibull distribution
for describing roller life.

(c) Use your estimated parameters from (a) and
the form of the Weibull cumulative distribu-
tion function given in Section 5.2 to estimate
the .10 quantile of the roller life distribution.

29. The article “Elementary Probability Plotting for
Statistical Data Analysis” by J. King (Quality
Progress, 1988) contains 24 measurements of de-
viations from nominal of a distance between two
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holes drilled in a steel plate. These are reproduced
here. The units are mm.

−2,−2, 7,−10, 4,−3, 0, 8,−5, 5,−6, 0,

2,−2, 1, 3, 3,−4,−6,−13,−7,−2, 2, 2

(a) Make a dot diagram for these data and com-
pute x̄ and s.

(b) Make a normal plot for these data. Eye-fit a
line on the plot and use it to find graphical
estimates of a process mean and standard de-
viation for this deviation from nominal. Com-
pare these graphical estimates with the values
you calculated in (a).

(c) Engineering specifications on this deviation
from nominal were ±10 mm. Suppose that x̄
and s from (a) are adequate approximations
of the process mean and standard deviation
for this variable. Use the normal distribution
with those parameters and compute a frac-
tion of deviations that fall outside specifica-
tions. Does it appear from this exercise that
the drilling operation is capable (i.e., precise)
enough to produce essentially all measured
deviations in specifications, at least if prop-
erly aimed? Explain.

30. An engineer is responsible for setting up a mon-
itoring system for a critical diameter on a turned
metal part produced in his plant. Engineering
specifications for the diameter are 1.180 in. ±
.004 in. For ease of communication, the engineer
sets up the following nomenclature for measured
diameters on these parts:

Green Zone Diameters: 1.178 in. ≤ Diameter
≤ 1.182 in.

Red Zone Diameters: Diameter ≤ 1.176 in. or
Diameter ≥ 1.184 in.

Yellow Zone Diameters: any other Diameter

Suppose that in fact the diameters of parts com-
ing off the lathe in question can be thought of as
independent normal random variables with mean
µ = 1.181 in. and standard deviation σ = .002 in.

(a) Find the probabilities that a given diameter
falls into each of the three zones.

(b) Suppose that a technician simply begins mea-
suring diameters on consecutive parts and
continues until a Red Zone measurement is
found. Assess the probability that more than
ten parts must be measured. Also, give the
expected number of measurements that must
be made.

The engineer decides to use the Green/Yellow/Red
gauging system in the following way. Every hour,
parts coming off the lathe will be checked. First,
a single part will be measured. If it is in the Green
Zone, no further action is needed that hour. If the
initial part is in the Red Zone, the lathe will be
stopped and a supervisor alerted. If the first part
is in the Yellow Zone, a second part is measured.
If this second measurement is in the Green Zone,
no further action is required, but if it is in the
Yellow or the Red Zone, the lathe is stopped and
a supervisor alerted. It is possible to argue that
under this scheme (continuing to suppose that
measurements are independent normal variables
with mean 1.181 in. and standard deviation .002
in.), the probability that the lathe is stopped in any
given hour is .1865.
(c) Use the preceding fact and evaluate the prob-

ability that the lathe is stopped exactly twice
in 8 consecutive hours. Also, what is the
expected number of times the lathe will be
stopped in 8 time periods?

31. A random variable X has a cumulative distribution
function

F(x) =


0 for x ≤ 0

sin(x) for 0 < x ≤ π/2

1 for π/2 < x

(a) Find P[X ≤ .32].
(b) Give the probability density for X , f (x).
(c) Evaluate EX and Var X .

32. Return to the situation of Exercise 2 of Section
5.4.
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Suppose that demerits are assigned to devices
of the type considered there according to the for-
mula D = 5X + Y .
(a) Find the mean value of D, ED. (Use your an-

swers to (c) and (d) Exercise 2 of Section 5.4
and formula (5.53) of Section 5.5. Formula
(5.53) holds whether or not X and Y are in-
dependent.)

(b) Find the probability a device of this type
scores 7 or less demerits. That is, find
P[D ≤ 7].

(c) On average, how many of these devices will
have to be inspected in order to find one that
scores 7 or less demerits? (Use your answer
to (b).)

33. Consider jointly continuous random variables X
and Y with density

f (x, y) =
{

x + y for 0 < x < 1 and 0 < y < 1

0 otherwise

(a) Find the probability that the product of X and
Y is at least 1

4 .
(b) Find the marginal probability density for X .

(Notice that Y ’s is similar.) Use this to find the
expected value and standard deviation of X .

(c) Are X and Y independent? Explain.
(d) Compute the mean of X + Y . Why can’t for-

mula (5.54) of Section 5.5 be used to find the
variance of X + Y ?

34. Return to the situation of Exercise 4 of Section
5.4.
(a) Find EX, Var X , EY , and Var Y using the

marginal densities for X and Y .
(b) Use your answer to (a) and Proposition 1 to

find the mean and variance of Y − X .

35. Visual inspection of integrated circuit chips, even
under high magnification, is often less than per-
fect. Suppose that an inspector has an 80% chance
of detecting any given flaw. We will suppose that
the inspector never “cries wolf”—that is, sees a
flaw where none exists. Then consider the random
variables

X = the true number of flaws on a chip

Y = the number of flaws identified by the inspector

(a) What is a sensible conditional distribution for
Y given that X = 5? Given that X = 5, find
the (conditional) probability that Y = 3.

In general, a sensible conditional probability func-
tion for Y given X = x is the binomial probability
function with number of trials x and success prob-
ability .8. That is, one could use

fY |X (y | x) =


(

x

y

)
.8y.2x−y for y = 0,

1, 2, . . . , x

0 otherwise

Now suppose that X is modeled as Poisson with
mean λ = 3—i.e.,

fX (x) =


e−33x

x!
for x = 0, 1, 2, 3, . . .

0 otherwise

Multiplication of the two formulas gives a joint
probability function for X and Y .
(b) Find the (marginal) probability that Y = 0.

(Note that this is obtained by summing
f (x , 0) over all possible values of x .)

(c) Find fY (y) in general. What (marginal) dis-
tribution does Y have?

36. Suppose that cans to be filled with a liquid are cir-
cular cylinders. The radii of these cans have mean
µr = 1.00 in. and standard deviation σr = .02 in.
The volumes of liquid dispensed into these cans
have mean µ

v
= 15.10 in.3 and standard devia-

tion σ
v

= .05 in.3.
(a) If the volumes dispensed into the cans are ap-

proximately normally distributed, about what
fraction will exceed 15.07 in.3?

(b) Approximate the probability that the total vol-
ume dispensed into the next 100 cans exceeds
1510.5 in.3 (if the total exceeds 1510.5, X ex-
ceeds 15.105).

(c) Approximate the mean µh and standard de-
viation σh of the heights of the liquid in the
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filled cans. (Recall that the volume of a cir-
cular cylinder is v = πr2h, where h is the
height of the cylinder.)

(d) Does the variation in bottle radius or the vari-
ation in volume of liquid dispensed into the
bottles have the biggest impact on the varia-
tion in liquid height? Explain.

37. Suppose that a pair of random variables have the
joint probability density

f (x, y) =
{

exp(x − y) if 0 ≤ x ≤ 1 and x ≤ y

0 otherwise

(a) Evaluate P[Y ≤ 1.5].
(b) Find the marginal probability densities for X

and Y .
(c) Are X and Y independent? Explain.
(d) Find the conditional probability density for

Y given X = .25, fY |X (y | .25). Given that
X = .25, what is the mean of Y ? (Hint: Use
fY |X (y | .25).)

38. (Defects per Unit Acceptance Sampling) Sup-
pose that in the inspection of an incoming prod-
uct, nonconformities on an inspection unit are
counted. If too many are seen, the incoming lot
is rejected and returned to the manufacturer. (For
concreteness, you might think of blemishes on
rolled paper or wire, where an inspection unit con-
sists of a certain length of material from the roll.)
Suppose further that the number of nonconformi-
ties on a piece of product of any particular size
can be modeled as Poisson with an appropriate
mean.
(a) Suppose that this rule is followed: “Accept

the lot if on a standard size inspection unit,
1 or fewer nonconformities are seen.” The
operating characteristic curve of this accep-
tance sampling plan is a plot of the proba-
bility that the lot is accepted as a function of
λ = the mean defects per inspection unit. (For
X = the number of nonconformities seen, X
has Poisson distribution with mean λ and
OC(λ) = P[X ≤ 1].) Make a plot of the op-
erating characteristic curve. List values of the

operating characteristic for λ = .25, .5, and
1.0.

(b) Suppose that instead of the rule in (a), this
rule is followed: “Accept the lot if on 2 stan-
dard size inspection units, 2 or fewer total
nonconformities are seen.” Make a plot of the
operating characteristic curve for this second
plan and compare it with the plot from part
(a). (Note that here, for X = the total number
of nonconformities seen, X has a Poisson dis-
tribution with mean 2λ and OC(λ) = P[X ≤
2].) List values of the operating characteristic
for λ = .25, .5, and 1.0.

39. A discrete random variable X can be described
using the following probability function:

x 1 2 3 4 5

f (x) .61 .24 .10 .04 .01

(a) Make a probability histogram for X . Also
plot F(x), the cumulative probability func-
tion for X .

(b) Find the mean and standard deviation for the
random variable X .

(c) Evaluate P[X ≥ 3] and then find P[X < 3].

40. A classical data set of Rutherford and Geiger (re-
ferred to in Example 6) suggests that for a partic-
ular experimental setup involving a small bar of
polonium, the number of collisions of α particles
with a small screen placed near the bar during
an 8-minute period can be modeled as a Poisson
variable with mean λ = 3.87. Consider an exper-
imental setup of this type, and let X and Y be (re-
spectively) the numbers of collisions in the next
two 8-minute periods. Evaluate the following:
(a) P[X ≥ 2] (b)

√
Var X

(c) P[X + Y = 6] (d) P[X + Y ≥ 3]
(Hint for parts (c) and (d): What is a sensible
probability distribution for X + Y , the number of
collisions in a 16-minute period?)
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41. Suppose that X is a continuous random variable
with probability density of the form

f (x) =
{

k
(
x2(1 − x)

)
for 0 < x < 1

0 otherwise

(a) Evaluate k and sketch a graph of f (x).
(b) Evaluate P[X ≤ .25], P[X ≤ .75], P[.25 <

X ≤ .75], and P[|X − .5| > .1].
(c) Compute EX and

√
Var X .

(d) Compute and graph F(x), the cumulative
distribution function for X . Read from your
graph the .6 quantile of the distribution of X .

42. Suppose that engineering specifications on the
shelf depth of a certain slug to be turned on a
CNC lathe are from .0275 in. to .0278 in. and that
values of this dimension produced on the lathe
can be described using a normal distribution with
mean µ and standard deviation σ .
(a) If µ = .0276 and σ = .0001, about what frac-

tion of shelf depths are in specifications?
(b) What machine precision (as measured by σ)

would be required in order to produce about
98% of shelf depths within engineering spec-
ifications (assuming that µ is at the midpoint
of the specifications)?

43. The resistance of an assembly of several resistors
connected in series is the sum of the resistances of
the individual resistors. Suppose that a large lot of
nominal 10 � resistors has mean resistance µ =
9.91 � and standard deviation of resistances σ =
.08 �. Suppose that 30 resistors are randomly
selected from this lot and connected in series.
(a) Find a plausible mean and variance for the

resistance of the assembly.
(b) Evaluate the probability that the resistance

of the assembly exceeds 298.2 �. (Hint: If
X is the mean resistance of the 30 resistors
involved, the resistance of the assembly ex-
ceeding 298.2 � is the same as X exceeding
9.94 �. Now apply the central limit theorem.)

44. At a small metal fabrication company, steel rods
of a particular type cut to length have lengths with
standard deviation .005 in.

(a) If lengths are normally distributed about a
mean µ (which can be changed by altering
the setup of a jig) and specifications on this
length are 33.69 in. ± .01 in., what appears
to be the best possible fraction of the lengths
in specifications? What does µ need to be in
order to achieve this fraction?

(b) Suppose now that in an effort to determine
the mean length produced using the current
setup of the jig, a sample of rods is to be taken
and their lengths measured, with the intention
of using the value of X as an estimate of µ.
Approximate the probabilities that X is within
.0005 in. of µ for samples of size n = 25, 100,
and 400. Do your calculations for this part of
the question depend for their validity on the
length distribution being normal? Explain.

45. Suppose that the measurement of the diameters of
#10 machine screws produced on a particular ma-
chine yields values that are normally distributed
with mean µ and standard deviation σ = .03 mm.
(a) If µ = 4.68 mm, about what fraction of all

measured diameters will fall in the range from
4.65 mm to 4.70 mm?

(b) Use your value from (a) and an appropri-
ate discrete probability distribution to evalu-
ate the probability (assuming µ = 4.68) that
among the next five measurements made, ex-
actly four will fall in the range from 4.65 mm
to 4.70 mm.

(c) Use your value from (a) and an appropriate
discrete probability distribution to evaluate
the probability (assuming that µ = 4.68) that
if one begins sampling and measuring these
screws, the first diameter in the range from
4.65 mm to 4.70 mm will be found on the
second, third, or fourth screw measured.

(d) Now suppose that µ is unknown but is to be
estimated by X obtained from measuring a
sample of n = 25 screws. Evaluate the prob-
ability that the sample mean, X , takes a value
within .01 mm of the long-run (population)
mean µ.
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(e) What sample size, n, would be required in
order to a priori be 90% sure that X from n
measurements will fall within .005 mm of µ?

46. The random variable X = the number of hours
till failure of a disk drive is described using an
exponential distribution with mean 15,000 hours.
(a) Evaluate the probability that a given drive

lasts at least 20,000 hours.
(b) A new computer network has ten of these

drives installed on computers in the network.
Use your answer to (a) and an assumption of
independence of the ten drive lifetimes and
evaluate the probability that at least nine of
these drives are failure-free through 20,000
hours.

47. Miles, Baumhover, and Miller worked with a
company on a packaging problem. Cardboard
boxes, nominally 9.5 in. in length were supposed
to hold four units of product stacked side by side.
They did some measuring and found that in fact
the individual product units had widths with mean
approximately 2.577 in. and standard deviation
approximately .061 in. Further, the boxes had (in-
side) lengths with mean approximately 9.566 in.
and standard deviation approximately .053 in.

(a) If X1, X2, X3, and X4 are the actual widths of
four of the product units and Y is the actual
inside length of a box into which they are to
be packed, then the “head space” in the box is
U = Y − (X1 + X2 + X3 + X4). What are a
sensible mean and standard deviation for U?

(b) If X1, X2, X3, X4, and Y are normally dis-
tributed and independent, it turns out that U
is also normal. Suppose this is the case. About
what fraction of the time should the company
expect to experience difficulty packing a box?
(What is the probability that the head space
as calculated in (a) is negative?)

(c) If it is your job to recommend a new mean
inside length of the boxes and the company
wishes to have packing problems in only .5%
of the attempts to load four units of product
into a box, what is the minimum mean inside
length you would recommend? (Assume that
standard deviations will remain unchanged.)




