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Describing
Relationships
Between Variables

The methods of Chapter 3 are really quite simple. They require little in the way of
calculations and are most obviously relevant to the analysis of a single engineering
variable. This chapter provides methods that address the more complicated prob-
lem of describing relationships between variables and are computationally more
demanding.

The chapter begins with least squares fitting of a line to bivariate quantitative
data and the assessment of the goodness of that fit. Then the line-fitting ideas are
generalized to the fitting of curves to bivariate data and surfaces to multivariate
quantitative data. The next topic is the summarization of data from full factorial
studies in terms of so-called factorial effects. Next, the notion of data transforma-
tions is discussed. Finally, the chapter closes with a short transitional section that
argues that further progress in statistics requires some familiarity with the subject
of probability.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

4.1 Fitting a Line by Least Squares

Bivariate data often arise because a quantitative experimental variable x has been
varied between several different settings, producing a number of samples of a
response variable y. For purposes of summarization, interpolation, limited extrap-
olation, and/or process optimization/adjustment, it is extremely helpful to have an
equation relating y to x . A linear (or straight line) equation

y ≈ β0 + β1x (4.1)

123
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relating y to x is about the simplest potentially useful equation to consider after
making a simple (x, y) scatterplot.

In this section, the principle of least squares is used to fit a line to (x, y)

data. The appropriateness of that fit is assessed using the sample correlation and
the coefficient of determination. Plotting of residuals is introduced as an important
method for further investigation of possible problems with the fitted equation. A
discussion of some practical cautions and the use of statistical software in fitting
equations to data follows.

4.1.1 Applying the Least Squares Principle

Example 1 Pressing Pressures and Specimen Densities for a Ceramic Compound

Benson, Locher, and Watkins studied the effects of varying pressing pressures on
the density of cylindrical specimens made by dry pressing a ceramic compound.
A mixture of Al2O3, polyvinyl alcohol, and water was prepared, dried overnight,
crushed, and sieved to obtain 100 mesh size grains. These were pressed into
cylinders at pressures from 2,000 psi to 10,000 psi, and cylinder densities were
calculated. Table 4.1 gives the data that were obtained, and a simple scatterplot
of these data is given in Figure 4.1.

Table 4.1
Pressing Pressures and Resultant
Specimen Densities

x, y,

Pressure (psi) Density (g/cc)

2,000 2.486
2,000 2.479
2,000 2.472
4,000 2.558
4,000 2.570
4,000 2.580
6,000 2.646
6,000 2.657
6,000 2.653
8,000 2.724
8,000 2.774
8,000 2.808

10,000 2.861
10,000 2.879
10,000 2.858
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Figure 4.1 Scatterplot of density vs. pressing pressure

It is very easy to imagine sketching a straight line through the plotted points in
Figure 4.1. Such a line could then be used to summarize how density depends upon
pressing pressure. The principle of least squares provides a method of choosing a
“best” line to describe the data.

Definition 1 To apply the principle of least squares in the fitting of an equation for y to
an n-point data set, values of the equation parameters are chosen to minimize

n∑
i=1

(
yi − ŷi

)2
(4.2)

where y1, y2, . . . , yn are the observed responses and ŷ1, ŷ2, . . . , ŷn are corre-
sponding responses predicted or fitted by the equation.

In the context of fitting a line to (x, y) data, the prescription offered by Def-
inition 1 amounts to choosing a slope and intercept so as to minimize the sum of
squared vertical distances from (x, y) data points to the line in question. This notion
is shown in generic fashion in Figure 4.2 for a fictitious five-point data set. (It is the
squares of the five indicated differences that must be added and minimized.)

Looking at the form of display (4.1), for the fitting of a line,

ŷ = β0 + β1x
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y

x

y1 – y1

is positive

y2 – y2

is negative

y3 – y3

is positive

y4 – y4

is positive

y5 – y5

is negative

A possible
fitted line

Figure 4.2 Five data points (x, y) and a possible
fitted line

Therefore, the expression to be minimized by choice of slope (β1) and intercept
(β0) is

S(β0, β1) =
n∑

i=1

(
yi − (β0 + β1xi )

)2
(4.3)

The minimization of the function of two variables S(β0, β1) is an exercise in calculus.
The partial derivatives of S with respect to β0 and β1 may be set equal to zero, and the
two resulting equations may be solved simultaneously for β0 and β1. The equations
produced in this way are

nβ0 +
(

n∑
i=1

xi

)
β1 =

n∑
i=1

yi (4.4)

and (
n∑

i=1

xi

)
β0 +

(
n∑

i=1

x2
i

)
β1 =

n∑
i=1

xi yi (4.5)

For reasons that are not obvious, equations (4.4) and (4.5) are sometimes called
the normal (as in perpendicular) equations for fitting a line. They are two linear
equations in two unknowns and can be fairly easily solved for β0 and β1 (provided
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there are at least two different xi ’s in the data set). Simultaneous solution of equations
(4.4) and (4.5) produces values of β1 and β0 given by

Slope of the
least squares

line, b1

b1 =
∑ (

xi − x̄
) (

yi − ȳ
)∑ (

xi − x̄
)2 (4.6)

and

Intercept of
the least

squares line, b0

b0 = ȳ − b1 x̄ (4.7)

Notice the notational convention here. The particular numerical slope and intercept
minimizing S(β0, β1) are denoted (not as β’s but) as b1 and b0.

In display (4.6), somewhat standard practice has been followed (and the sum-
mation notation abused) by not indicating the variable or range of summation (i ,
from 1 to n).

Example 1
(continued )

It is possible to verify that the data in Table 4.1 yield the following summary
statistics:

∑
xi = 2,000 + 2,000 + · · · + 10,000 = 90,000,

so x̄ = 90,000

15
= 6,000∑(

xi − x̄
)2 = (2,000 − 6,000)2 + (2,000 − 6,000)2 + · · ·+

(10,000 − 6,000)2 = 120,000,000∑
yi = 2.486 + 2.479 + · · · + 2.858 = 40.005,

so ȳ = 40.005

15
= 2.667∑(

yi − ȳ
)2 = (2.486 − 2.667)2 + (2.479 − 2.667)2 + · · ·+

(2.858 − 2.667)2 = .289366∑ (
xi − x̄

)(
yi − ȳ

) = (2,000 − 6,000)(2.486 − 2.667) + · · ·+
(10,000 − 6,000)(2.858 − 2.667) = 5,840
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Example 1
(continued )

Then the least squares slope and intercept, b1 and b0, are given via equations
(4.6) and (4.7) as

b1 = 5,840

120,000,000
= .0000486 (g/cc)/psiI

and

b0 = 2.667 − (.0000486)(6,000) = 2.375 g/ccI
Figure 4.3 shows the least squares line

ŷ = 2.375 + .0000487xI
sketched on a scatterplot of the (x, y) points from Table 4.1. Note that the slope onInterpretation of

the slope of the
least squares

line

this plot, b1 ≈ .0000487 (g/cc)/psi, has physical meaning as the (approximate)
increase in y (density) that accompanies a unit (1 psi) increase in x (pressure).
The intercept on the plot, b0 = 2.375 g/cc, positions the line vertically and is the
value at which the line cuts the y axis. But it should probably not be interpreted
as the density that would accompany a pressing pressure of x = 0 psi. The point
is that the reasonably linear-looking relation that the students found for pressures
between 2,000 psi and 10,000 psi could well break down at larger or smaller
pressures. Thinking of b0 as a 0 pressure density amounts to an extrapolationExtrapolation
outside the range of data used to fit the equation, something that ought always to
be approached with extreme caution.
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Figure 4.3 Scatterplot of the pressure/density data
and the least squares line
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As indicated in Definition 1, the value of y on the least squares line correspond-
ing to a given x can be termed a fitted or predicted value. It can be used to represent
likely y behavior at that x .

Example 1
(continued )

Consider the problem of determining a typical density corresponding to a pressure
of 4,000 psi and one corresponding to 5,000 psi.

First, looking at x = 4,000, a simple way of representing a typical y is to
note that for the three data points having x = 4,000,

ȳ = 1

3
(2.558 + 2.570 + 2.580) = 2.5693 g/cc

and so to use this as a representative value. But assuming that y is indeed
approximately linearly related to x , the fitted value

ŷ = 2.375 + .0000486(4,000) = 2.5697 g/cc

might be even better for representing average density for 4,000 psi pressure.
Looking then at the situation for x = 5,000 psi, there are no data with this

x value. The only thing one can do to represent density at that pressure is to ask
whether interpolation is sensible from a physical viewpoint. If so, the fitted valueInterpolation

ŷ = 2.375 + .0000486(5,000) = 2.6183 g/cc

can be used to represent density for 5,000 psi pressure.

4.1.2 The Sample Correlation and Coefficient of Determination

Visually, the least squares line in Figure 4.3 seems to do a good job of fitting the
plotted points. However, it would be helpful to have methods of quantifying the
quality of that fit. One such measure is the sample correlation.

Definition 2 The sample (linear) correlation between x and y in a sample of n data pairs
(xi , yi ) is

r =
∑(

xi − x̄
) (

yi − ȳ
)√∑ (

xi − x̄
)2 · ∑ (

yi − ȳ
)2

(4.8)

The sample correlation always lies in the interval from −1 to 1. Further, it is −1Interpreting the
sample correlation or 1 only when all (x, y) data points fall on a single straight line. Comparison of
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formulas (4.6) and (4.8) shows that r = b1

(∑ (
xi − x̄

)2
/
∑ (

yi − ȳ
)2

)1/2
so that

b1 and r have the same sign. So a sample correlation of −1 means that y decreases
linearly in increasing x , while a sample correlation of +1 means that y increases
linearly in increasing x .

Real data sets do not often exhibit perfect (+1 or −1) correlation. Instead r is
typically between −1 and 1. But drawing on the facts about how it behaves, people
take r as a measure of the strength of an apparent linear relationship: r near +1
or −1 is interpreted as indicating a relatively strong linear relationship; r near 0
is taken as indicating a lack of linear relationship. The sign of r is thought of as
indicating whether y tends to increase or decrease with increased x .

Example 1
(continued )

For the pressure/density data, the summary statistics in the example following
display (4.7) (page 127) produces

r = 5,840√
(120,000,000)(.289366)

= .9911I

This value of r is near +1 and indicates clearly the strong positive linear rela-
tionship evident in Figures 4.1 and 4.3.

The coefficient of determination is another measure of the quality of a fitted
equation. It can be applied not only in the present case of the simple fitting of a line
to (x, y) data but more widely as well.

Definition 3 The coefficient of determination for an equation fitted to an n-point data set
via least squares and producing fitted y values ŷ1, ŷ2, . . . , ŷn is

R2 =
∑ (

yi − ȳ
)2 − ∑ (

yi − ŷi

)2∑ (
yi − ȳ

)2 (4.9)

R2 may be interpreted as the fraction of the raw variation in y accounted forInterpretation
of R2 using the fitted equation. That is, provided the fitted equation includes a constant

term,
∑

(yi − ȳ)2 ≥ ∑
(yi − ŷi )

2. Further,
∑

(yi − ȳ)2 is a measure of raw variabil-
ity in y, while

∑
(yi − ŷi )

2 is a measure of variation in y remaining after fitting the
equation. So the nonnegative difference

∑
(yi − ȳ)2 − ∑

(yi − ŷi )
2 is a measure of

the variability in y accounted for in the equation-fitting process. R2 then expresses
this difference as a fraction (of the total raw variation).
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Example 1
(continued )

Using the fitted line, one can find ŷ values for all n = 15 data points in the original
data set. These are given in Table 4.2.

Table 4.2
Fitted Density Values

x , Pressure ŷ, Fitted Density

2,000 2.4723
4,000 2.5697
6,000 2.6670
8,000 2.7643

10,000 2.8617

Then, referring again to Table 4.1,

∑
(yi − ŷi )

2 = (2.486 − 2.4723)2 + (2.479 − 2.4723)2 + (2.472 − 2.4723)2

+ (2.558 − 2.5697)2 + · · · + (2.879 − 2.8617)2

+ (2.858 − 2.8617)2

= .005153

Further, since
∑

(yi − ȳ)2 = .289366, from equation (4.9)

R2 = .289366 − .005153

.289366
= .9822I

and the fitted line accounts for over 98% of the raw variability in density, reducing
the “unexplained” variation from .289366 to .005153.

The coefficient of determination has a second useful interpretation. For equa-R2 as a squared
correlation tions that are linear in the parameters (which are the only ones considered in this

text), R2 turns out to be a squared correlation. It is the squared correlation between
the observed values yi and the fitted values ŷi . (Since in the present situation of
fitting a line, the ŷi values are perfectly correlated with the xi values, R2 also turns
out to be the squared correlation between the yi and xi values.)

Example 1
(continued )

For the pressure/density data, the correlation between x and y is

r = .9911
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Example 1
(continued )

Since ŷ is perfectly correlated with x , this is also the correlation between ŷ and y.
But notice as well that

r2 = (.9911)2 = .9822 = R2

so R2 is indeed the squared sample correlation between y and ŷ.

4.1.3 Computing and Using Residuals

When fitting an equation to a set of data, the hope is that the equation extracts the
main message of the data, leaving behind (unpredicted by the fitted equation) only
the variation in y that is uninterpretable. That is, one hopes that the yi ’s will look like
the ŷi ’s except for small fluctuations explainable only as random variation. A way
of assessing whether this view is sensible is through the computation and plotting
of residuals.

Definition 4 If the fitting of an equation or model to a data set with responses y1, y2, . . . , yn
produces fitted values ŷ1, ŷ2, . . . , ŷn , then the corresponding residuals are the
values

ei = yi − ŷi

If a fitted equation is telling the whole story contained in a data set, then its
residuals ought to be patternless. So when they’re plotted against time order of
observation, values of experimental variables, fitted values, or any other sensible
quantities, the plots should look randomly scattered. When they don’t, the patterns
can themselves suggest what has gone unaccounted for in the fitting and/or how the
data summary might be improved.

Example 2 Compressive Strength of Fly Ash Cylinders as a Function
of Amount of Ammonium Phosphate Additive

As an exaggerated example of the previous point, consider the naive fitting of a
line to some data of B. Roth. Roth studied the compressive strength of concrete-
like fly ash cylinders. These were made using varying amounts of ammonium
phosphate as an additive. Part of Roth’s data are given in Table 4.3. The ammo-
nium phosphate values are expressed as a percentage by weight of the amount of
fly ash used.
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Table 4.3
Additive Concentrations and Compressive Strengths for Fly Ash Cylinders

x , Ammonium y, Compressive x , Ammonium y, Compressive
Phosphate (%) Strength (psi) Phosphate (%) Strength (psi)

0 1221 3 1609
0 1207 3 1627
0 1187 3 1642
1 1555 4 1451
1 1562 4 1472
1 1575 4 1465
2 1827 5 1321
2 1839 5 1289
2 1802 5 1292

Using formulas (4.6) and (4.7), it is possible to show that the least squares
line through the (x, y) data in Table 4.3 is

ŷ = 1498.4 − .6381x (4.10)

Then straightforward substitution into equation (4.10) produces fitted values ŷi
and residuals ei = yi − ŷi , as given in Table 4.4. The residuals for this straight-
line fit are plotted against x in Figure 4.4.

The distinctly “up-then-back-down-again” curvilinear pattern of the plot
in Figure 4.4 is not typical of random scatter. Something has been missed in

Table 4.4
Residuals from a Straight-Line Fit to the Fly Ash Data

x y ŷ e = y − ŷ x y ŷ e = y − ŷ

0 1221 1498.4 −277.4 3 1609 1496.5 112.5
0 1207 1498.4 −291.4 3 1627 1496.5 130.5
0 1187 1498.4 −311.4 3 1642 1496.5 145.5
1 1555 1497.8 57.2 4 1451 1495.8 −44.8
1 1562 1497.8 64.2 4 1472 1495.8 −23.8
1 1575 1497.8 77.2 4 1465 1495.8 −30.8
2 1827 1497.2 329.8 5 1321 1495.2 −174.2
2 1839 1497.2 341.8 5 1289 1495.2 −206.2
2 1802 1497.2 304.8 5 1292 1495.2 −203.2
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Example 2
(continued )
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Figure 4.4 Plot of residuals vs. x for a linear fit to
the fly ash data

the fitting of a line to Roth’s data. Figure 4.5 is a simple scatterplot of Roth’s
data (which in practice should be made before fitting any curve to such data).
It is obvious from the scatterplot that the relationship between the amount of
ammonium phosphate and compressive strength is decidedly nonlinear. In fact,
a quadratic function would come much closer to fitting the data in Table 4.3.
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ei

Plot 1
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ei
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yi 1 2

Figure 4.6 Patterns in residual plots

Figure 4.6 shows several patterns that can occur in plots of residuals againstInterpreting
patterns on

residual plots
various variables. Plot 1 of Figure 4.6 shows a trend on a plot of residuals versus
time order of observation. The pattern suggests that some variable changing in time
is acting on y and has not been accounted for in fitting ŷ values. For example,
instrument drift (where an instrument reads higher late in a study than it did early
on) could produce a pattern like that in Plot 1. Plot 2 shows a fan-shaped pattern on
a plot of residuals versus fitted values. Such a pattern indicates that large responses
are fitted (and quite possibly produced and/or measured) less consistently than small
responses. Plot 3 shows residuals corresponding to observations made by Technician
1 that are on the whole smaller than those made by Technician 2. The suggestion is
that Technician 1’s work is more precise than that of Technician 2.

Another useful way of plotting residuals is to normal-plot them. The idea is thatNormal-plotting
residuals the normal distribution shape is typical of random variation and that normal-plotting

of residuals is a way to investigate whether such a distributional shape applies to
what is left in the data after fitting an equation or model.

Example 1
(continued )

Table 4.5 gives residuals for the fitting of a line to the pressure/density data. The
residuals ei were treated as a sample of 15 numbers and normal-plotted (using
the methods of Section 3.2) to produce Figure 4.7.

The central portion of the plot in Figure 4.7 is fairly linear, indicating a gen-
erally bell-shaped distribution of residuals. But the plotted point corresponding to
the largest residual, and probably the one corresponding to the smallest residual,
fail to conform to the linear pattern established by the others. Those residuals
seem big in absolute value compared to the others.

From Table 4.5 and the scatterplot in Figure 4.3, one sees that these large
residuals both arise from the 8,000 psi condition. And the spread for the three
densities at that pressure value does indeed look considerably larger than those at
the other pressure values. The normal plot suggests that the pattern of variation
at 8,000 psi is genuinely different from those at other pressures. It may be that
a different physical compaction mechanism was acting at 8,000 psi than at the
other pressures. But it is more likely that there was a problem with laboratory
technique, or recording, or the test equipment when the 8,000 psi tests were made.
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Example 1
(continued )

In any case, the normal plot of residuals helps draw attention to an idiosyncrasy
in the data of Table 4.1 that merits further investigation, and perhaps some further
data collection.

Table 4.5
Residuals from the Linear Fit to the Pressure/Density
Data

x , Pressure y, Density ŷ e = y − ŷ

2,000 2.486 2.4723 .0137
2,000 2.479 2.4723 .0067
2,000 2.472 2.4723 −.0003
4,000 2.558 2.5697 −.0117
4,000 2.570 2.5697 .0003
4,000 2.580 2.5697 .0103
6,000 2.646 2.6670 −.0210
6,000 2.657 2.6670 −.0100
6,000 2.653 2.6670 −.0140
8,000 2.724 2.7643 −.0403
8,000 2.774 2.7643 .0097
8,000 2.808 2.7643 .0437

10,000 2.861 2.8617 −.0007
10,000 2.879 2.8617 .0173
10,000 2.858 2.8617 −.0037
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Figure 4.7 Normal plot of residuals from a
linear fit to the pressure/density data
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4.1.4 Some Cautions

The methods of this section are extremely useful engineering tools when thoughtfully
applied. But a few additional comments are in order, warning against some errors
in logic that often accompany their use.

The first warning regards the correlation. It must be remembered that r measuresr Measures only
linear association only the linear relationship between x and y. It is perfectly possible to have a strong

nonlinear relationship between x and y and yet have a value of r near 0. In fact,
Example 2 is an excellent example of this. Compressive strength is strongly related
to the ammonium phosphate content. But r = −.005, very nearly 0, for the data set
in Table 4.3.

The second warning is essentially a restatement of one implicit in the early partCorrelation and
causation of Section 1.2: Correlation is not necessarily causation. One may observe a large

correlation between x and y in an observational study without it being true that x
drives y or vice versa. It may be the case that another variable (say, z) drives the
system under study and causes simultaneous changes in both x and y.

The last warning is that both R2(r) and least squares fitting can be drasticallyThe influence
of extreme

observations
affected by a few unusual data points. As an example of this, consider the ages and
heights of 36 students from an elementary statistics course plotted in Figure 4.8. By
the time people reach college age, there is little useful relationship between age and
height, but the correlation between ages and heights is .73. This fairly large value
is produced by essentially a single data point. If the data point corresponding to the
30-year-old student who happened to be 6 feet 8 inches tall is removed from the
data set, the correlation drops to .03.

An engineer’s primary insurance against being misled by this kind of phe-
nomenon is the habit of plotting data in as many different ways as are necessary to
get a feel for how they are structured. Even a simple boxplot of the age data or height
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Figure 4.8 Scatterplot of ages and heights of 36
students
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data alone would have identified the 30-year-old student in Figure 4.8 as unusual.
That would have raised the possibility of that data point strongly influencing both r
and any curve that might be fitted via least squares.

4.1.5 Computing

The examples in this section have no doubt left the impression that computations
were done “by hand.” In practice, such computations are almost always done with
a statistical analysis package. The fitting of a line by least squares is done using a
regression program. Such programs usually also compute R2 and have an option
that allows the computing and plotting of residuals.

It is not the purpose of this text to teach or recommend the use of any particular
statistical package, but annotated printouts will occasionally be included to show
how MINITAB formats its output. Printout 1 is such a printout for an analysis of
the pressure/density data in Table 4.1, paralleling the discussion in this section.
(MINITAB’s regression routine is found under its “Stat/Regression/Regression”
menu.) MINITAB gives its user much more in the way of analysis for least squares
curve fitting than has been discussed to this point, so your understanding of Printout 1
will be incomplete. But it should be possible to locate values of the major summary
statistics discussed here. The printout shown doesn’t include plots, but it’s worth
noting that the program has options for saving fitted values and residuals for later
plotting.

WWW

Printout 1 Fitting the Least Squares Line to the Pressure/Density Data

Regression Analysis

The regression equation is
density = 2.38 +0.000049 pressure

Predictor Coef StDev T P
Constant 2.37500 0.01206 197.01 0.000
pressure 0.00004867 0.00000182 26.78 0.000

S = 0.01991 R-Sq = 98.2% R-Sq(adj) = 98.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.28421 0.28421 717.06 0.000
Residual Error 13 0.00515 0.00040
Total 14 0.28937

Obs pressure density Fit StDev Fit Residual St Resid
1 2000 2.48600 2.47233 0.00890 0.01367 0.77
2 2000 2.47900 2.47233 0.00890 0.00667 0.37
3 2000 2.47200 2.47233 0.00890 -0.00033 -0.02
4 4000 2.55800 2.56967 0.00630 -0.01167 -0.62
5 4000 2.57000 2.56967 0.00630 0.00033 0.02
6 4000 2.58000 2.56967 0.00630 0.01033 0.55
7 6000 2.64600 2.66700 0.00514 -0.02100 -1.09
8 6000 2.65700 2.66700 0.00514 -0.01000 -0.52
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9 6000 2.65300 2.66700 0.00514 -0.01400 -0.73
10 8000 2.72400 2.76433 0.00630 -0.04033 -2.14R
11 8000 2.77400 2.76433 0.00630 0.00967 0.51
12 8000 2.80800 2.76433 0.00630 0.04367 2.31R
13 10000 2.86100 2.86167 0.00890 -0.00067 -0.04
14 10000 2.87900 2.86167 0.00890 0.01733 0.97
15 10000 2.85800 2.86167 0.00890 -0.00367 -0.21

R denotes an observation with a large standardized residual

At the end of Section 3.3 we warned that using spreadsheet software in place of
high-quality statistical software can, without warning, produce spectacularly wrong
answers. The example provided at the end of Section 3.3 concerns a badly wrong
sample variance of only three numbers. It is important to note that the potential
for numerical inaccuracy shown in that example carries over to the rest of the
statistical methods discussed in this book, including those of the present section.
For example, consider the n = 6 hypothetical (x, y) pairs listed in Table 4.6. For
fitting a line to these data via least squares, MINITAB correctly produces R2 = .997.
But as recently as late 1999, the current version of the leading spreadsheet program
returned the ridiculously wrong value, R2 = −.81648. (This data set comes from a
posting by Mark Eakin on the “edstat” electronic bulletin board that can be found
at http://jse.stat.ncsu.edu/archives/.)

Table 4.6
6 Hypothetical Data Pairs

x y x y

10,000,000.1 1.1 10,000,000.4 3.9
10,000,000.2 1.9 10,000,000.5 4.9
10,000,000.3 3.1 10,000,000.6 6.1
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1. The following is a small set of artificial data. Show
the hand calculations necessary to do the indicated
tasks.

x 1 2 3 4 5

y 8 8 6 6 4

(a) Obtain the least squares line through these data.
Make a scatterplot of the data and sketch this
line on that scatterplot.

(b) Obtain the sample correlation between x and y
for these data.

(c) Obtain the sample correlation between y and
ŷ for these data and compare it to your answer
to part (b).

(d) Use the formula in Definition 3 and compute
R2 for these data. Compare it to the square of
your answers to parts (b) and (c).

(e) Find the five residuals from your fit in part (a).
How are they portrayed geometrically on the
scatterplot for (a)?

2. Use a computer package and redo the computations
and plotting required in Exercise 1. Annotate your
output, indicating where on the printout you can
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find the equation of the least squares line, the value
of r , the value of R2, and the residuals.

3. The article “Polyglycol Modified Poly (Ethylene
Ether Carbonate) Polyols by Molecular Weight Ad-
vancement” by R. Harris (Journal of Applied Poly-
mer Science, 1990) contains some data on the effect
of reaction temperature on the molecular weight of
resulting poly polyols. The data for eight experi-
mental runs at temperatures 165◦C and above are
as follows:

Pot Temperature, x (◦C) Average Molecular Weight, y

165 808

176 940

188 1183

205 1545

220 2012

235 2362

250 2742

260 2935

Use a statistical package to help you complete the
following (both the plotting and computations):
(a) What fraction of the observed raw variation in

y is accounted for by a linear equation in x?
(b) Fit a linear relationship y ≈ β0 + β1x to these

data via least squares. About what change in
average molecular weight seems to accompany
a 1◦C increase in pot temperature (at least over
the experimental range of temperatures)?

(c) Compute and plot residuals from the linear re-
lationship fit in (b). Discuss what they suggest
about the appropriateness of that fitted equa-
tion. (Plot residuals versus x , residuals versus
ŷ, and make a normal plot of them.)

(d) These data came from an experiment where the
investigator managed the value of x . There is
a fairly glaring weakness in the experimenter’s
data collection efforts. What is it?

(e) Based on your analysis of these data, what
average molecular weight would you predict
for an additional reaction run at 188◦C? At
200◦C? Why would or wouldn’t you be willing
to make a similar prediction of average molec-
ular weight if the reaction is run at 70◦C?

4. Upon changing measurement scales, nonlinear re-
lationships between two variables can sometimes
be made linear. The article “The Effect of Experi-
mental Error on the Determination of the Optimum
Metal-Cutting Conditions” by Ermer and Wu (The
Journal of Engineering for Industry, 1967) con-
tains a data set gathered in a study of tool life in
a turning operation. The data here are part of that
data set.

Cutting Speed, x (sfpm) Tool Life, y (min)

800 1.00, 0.90, 0.74, 0.66

700 1.00, 1.20, 1.50, 1.60

600 2.35, 2.65, 3.00, 3.60

500 6.40, 7.80, 9.80, 16.50

400 21.50, 24.50, 26.00, 33.00

(a) Plot y versus x and calculate R2 for fitting a
linear function of x to y. Does the relationship
y ≈ β0 + β1x look like a reasonable explana-
tion of tool life in terms of cutting speed?

(b) Take natural logs of both x and y and repeat
part (a) with these log cutting speeds and log
tool lives.

(c) Using the logged variables as in (b), fit a lin-
ear relationship between the two variables us-
ing least squares. Based on this fitted equation,
what tool life would you predict for a cutting
speed of 550? What approximate relationship
between x and y is implied by a linear approx-
imate relationship between ln(x) and ln(y)?
(Give an equation for this relationship.) By the
way, Taylor’s equation for tool life is yxα = C .
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4.2 Fitting Curves and Surfaces by Least Squares

The basic ideas introduced in Section 4.1 generalize to produce a powerful engi-
neering tool: multiple linear regression, which is introduced in this section. (Since
the term regression may seem obscure, the more descriptive terms curve fitting and
surface fitting will be used here, at least initially.)

This section first covers fitting curves defined by polynomials and other func-
tions that are linear in their parameters to (x, y) data. Next comes the fitting of
surfaces to data where a response y depends upon the values of several variables
x1, x2, . . . , xk . In both cases, the discussion will stress how useful R2 and resid-
ual plotting are and will consider the question of choosing between possible fitted
equations. Lastly, we include some additional practical cautions.

4.2.1 Curve Fitting by Least Squares

In the previous section, a straight line did a reasonable job of describing the pres-
sure/density data. But in the fly ash study, the ammonium phosphate/compressive
strength data were very poorly described by a straight line. This section first investi-
gates the possibility of fitting curves more complicated than a straight line to (x, y)

data. As an example, an attempt will be made to find a better equation for describing
the fly ash data.

A natural generalization of the linear equation

y ≈ β0 + β1x (4.11)

is the polynomial equation

y ≈ β0 + β1x + β2x2 + · · · + βk xk (4.12)

The least squares fitting of equation (4.12) to a set of n pairs (xi , yi ) is conceptually
only slightly more difficult than the task of fitting equation (4.11). The function of
k + 1 variables

S(β0, β1, β2, . . . , βk) =
n∑

i=1

(yi − ŷi )
2 =

n∑
i=1

(
yi − (β0 + β1xi + β2x2

i + · · · + βk xk
i )

)2

must be minimized. Upon setting the partial derivatives of S(β0, β1, . . . , βk) equal to
0, the set of normal equations is obtained for this least squares problem, generaliz-
ing the pair of equations (4.4) and (4.5). There are k + 1 linear equations in the k + 1
unknowns β0, β1, . . . , βk . And typically, they can be solved simultaneously for a
single set of values, b0, b1, . . . , bk , minimizing S(β0, β1, . . . , βk). The mechanics
of that solution are carried out using a multiple linear regression program.
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Example 3
(Example 2 continued )

More on the Fly Ash Data of Table 4.3

Return to the fly ash study of B. Roth. A quadratic equation might fit the data
better than the linear one. So consider fitting the k = 2 version of equation (4.12)

y ≈ β0 + β1x + β2x2 (4.13)

to the data of Table 4.3. Printout 2 shows the MINITAB run. (After entering x
and y values from Table 4.3 into two columns of the worksheet, an additional
column was created by squaring the x values.)

WWW

Printout 2 Quadratic Fit to the Fly Ash Data

Regression Analysis

The regression equation is
y = 1243 + 383 x - 76.7 x**2

Predictor Coef StDev T P
Constant 1242.89 42.98 28.92 0.000
x 382.67 40.43 9.46 0.000
x**2 -76.661 7.762 -9.88 0.000

S = 82.14 R-Sq = 86.7% R-Sq(adj) = 84.9%

Analysis of Variance

Source DF SS MS F P
Regression 2 658230 329115 48.78 0.000
Residual Error 15 101206 6747
Total 17 759437

Source DF Seq SS
x 1 21
x**2 1 658209

The fitted quadratic equation is

ŷ = 1242.9 + 382.7x − 76.7x2

Figure 4.9 shows the fitted curve sketched on a scatterplot of the (x, y) data.
Although the quadratic curve is not an altogether satisfactory summary of Roth’s
data, it does a much better job of following the trend of the data than the line
sketched in Figure 4.5.
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Figure 4.9 Scatterplot and fitted quadratic for the fly
ash data

The previous section showed that when fitting a line to (x, y) data, it is helpful
to quantify the goodness of that fit using R2. The coefficient of determination can
also be used when fitting a polynomial of form (4.12). Recall once more from
Definition 3 that

Coefficient of
determination

R2 =
∑

(yi − ȳ)2 − ∑
(yi − ŷi )

2∑
(yi − ȳ)2 (4.14)

is the fraction of the raw variability in y accounted for by the fitted equation.
Calculation by hand from formula (4.14) is possible, but of course the easiest way
to obtain R2 is to use a computer package.

Example 3
(continued )

Consulting Printout 2, it can be seen that the equation ŷ = 1242.9 + 382.7x −
76.7x2 produces R2 = .867. So 86.7% of the raw variability in compressive
strength is accounted for using the fitted quadratic. The sample correlation be-
tween the observed strengths yi and fitted strengths ŷi is +√

.867 = .93.
Comparing what has been done in the present section to what was done in

Section 4.1, it is interesting that for the fitting of a line to the fly ash data, R2

obtained there was only .000 (to three decimal places). The present quadratic is
a remarkable improvement over a linear equation for summarizing these data.

A natural question to raise is “What about a cubic version of equation (4.12)?”
Printout 3 shows some results of a MINITAB run made to investigate this possi-
bility, and Figure 4.10 shows a scatterplot of the data and a plot of the fitted cubic
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Example 3
(continued )

equation. (x values were squared and cubed to provide x, x2, and x3 for each y
value to use in the fitting.)

Printout 3 Cubic Fit to the Fly Ash Data

Regression Analysis

The regression equation is
y = 1188 + 633 x - 214 x**2 + 18.3 x**3

Predictor Coef StDev T P
Constant 1188.05 28.79 41.27 0.000
x 633.11 55.91 11.32 0.000
x**2 -213.77 27.79 -7.69 0.000
x**3 18.281 3.649 5.01 0.000

S = 50.88 R-Sq = 95.2% R-Sq(adj) = 94.2%

Analysis of Variance

Source DF SS MS F P
Regression 3 723197 241066 93.13 0.000
Residual Error 14 36240 2589
Total 17 759437
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Figure 4.10 Scatterplot and fitted cubic for the fly ash
data
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R2 for the cubic equation is .952, somewhat larger than for the quadratic.
But it is fairly clear from Figure 4.10 that even a cubic polynomial is not totally
satisfactory as a summary of these data. In particular, both the fitted quadratic in
Figure 4.9 and the fitted cubic in Figure 4.10 fail to fit the data adequately near
an ammonium phosphate level of 2%. Unfortunately, this is where compressive
strength is greatest—precisely the area of greatest practical interest.

The example illustrates that R2 is not the only consideration when it comes to
judging the appropriateness of a fitted polynomial. The examination of plots is also
important. Not only scatterplots of y versus x with superimposed fitted curves but
plots of residuals can be helpful. This can be illustrated on a data set where y is
expected to be nearly perfectly quadratic in x .

Example 4 Analysis of the Bob Drop Data of Section 1.4

Consider again the experimental determination of the acceleration due to gravity
(through the dropping of the steel bob) data given in Table 1.4 and reproduced here
in the first two columns of Table 4.7. Recall that the positions y were recorded
at 1

60 sec intervals beginning at some unknown time t0 (less than 1
60 sec) after

the bob was released. Since Newtonian mechanics predicts the bob displacement
to be

displacement = gt2

2

one expects

y ≈ 1

2
g

(
t0 + 1

60
(x − 1)

)2

= g

2

( x

60

)2
+ g

(
t0 − 1

60

) ( x

60

)
+ g

2

(
t0 − 1

60

)2

(4.15)

= g

7200
x2 + g

60

(
t0 − 1

60

)
x + g

2

(
t0 − 1

60

)2

That is, y is expected to be approximately quadratic in x and, indeed, the plot of
(x, y) points in Figure 1.8 (p. 22) appears to have that character.

As a slight digression, note that expression () shows that if a quadratic is
fitted to the data in Table 4.7 via least squares,

ŷ = b0 + b1x + b2x2 (4.16)

is obtained and an experimentally determined value of g (in mm/sec2) will be
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Example 4
(continued )

Table 4.7
Data, Fitted Values, and Residuals for a Quadratic Fit to the Bob
Displacement

x , Point ŷ, Fitted
Number y, Displacement Displacement e, Residual

1 .8 .95 −.15
2 4.8 4.56 .24
3 10.8 10.89 −.09
4 20.1 19.93 .17
5 31.9 31.70 .20
6 45.9 46.19 −.29
7 63.3 63.39 −.09
8 83.1 83.31 −.21
9 105.8 105.96 −.16

10 131.3 131.32 −.02
11 159.5 159.40 .10
12 190.5 190.21 .29
13 223.8 223.73 .07
14 260.0 259.97 .03
15 299.2 298.93 .27
16 340.5 340.61 −.11
17 385.0 385.01 −.01
18 432.2 432.13 .07
19 481.8 481.97 −.17
20 534.2 534.53 −.33
21 589.8 589.80 .00
22 647.7 647.80 −.10
23 708.8 708.52 .28

7200b2. This is in fact how the value 9.79 m/sec2, quoted in Section 1.4, was
obtained.

A multiple linear regression program fits equation (4.16) to the bob drop data
giving

ŷ = .0645 − .4716x + 1.3597x2

(from which g ≈ 9790 mm/sec2) with R2 that is 1.0 to 6 decimal places. Residuals
for this fit can be calculated using Definition 4 and are also given in Table 4.7.
Figure 4.11 is a normal plot of the residuals. It is reasonably linear and thus not
remarkable (except for some small suggestion that the largest residual or two may
not be as extreme as might be expected, a circumstance that suggests no obvious
physical explanation).
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However, a plot of residuals versus x (the time variable) is interesting. Fig-
ure 4.12 is such a plot, where successive plotted points have been connected with
line segments. There is at least a hint in Figure 4.12 of a cyclical pattern in the
residuals. Observed displacements are alternately too big, too small, too big, etc.
It would be a good idea to look at several more tapes, to see if a cyclical pattern
appears consistently, before seriously thinking about its origin. But should the
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Example 4
(continued )

pattern suggested by Figure 4.12 reappear consistently, it would indicate that
something in the mechanism generating the 60 cycle current may cause cycles
to be alternately slightly shorter then slightly longer than 1

60 sec. The practical
implication of this would be that if a better determination of g were desired, the
regularity of the AC current waveform is one matter to be addressed.

Examples 3 and 4 (respectively) illustrate only partial success and then greatWhat if a
polynomial
doesn’t fit

(x, y) data?

success in describing an (x, y) data set by means of a polynomial equation. Situations
like Example 3 obviously do sometimes occur, and it is reasonable to wonder what
to do when they happen. There are two simple things to keep in mind.

For one, although a polynomial may be unsatisfactory as a global description
of a relationship between x and y, it may be quite adequate locally—i.e., for
a relatively restricted range of x values. For example, in the fly ash study, the
quadratic representation of compressive strength as a function of percent ammonium
phosphate is not appropriate over the range 0 to 5%. But having identified the region
around 2% as being of practical interest, it would make good sense to conduct a
follow-up study concentrating on (say) 1.5 to 2.5% ammonium phosphate. It is quite
possible that a quadratic fit only to data with 1.5 ≤ x ≤ 2.5 would be both adequate
and helpful as a summarization of the follow-up data.

The second observation is that the terms x, x2, x3, . . . , xk in equation (4.12) can
be replaced by any (known) functions of x and what we have said here will remain
essentially unchanged. The normal equations will still be k + 1 linear equations
in β0, β1, . . . , βk , and a multiple linear regression program will still produce least
squares values b0, b1, . . . , bk . This can be quite useful when there are theoretical
reasons to expect a particular (nonlinear but) simple functional relationship between
x and y. For example, Taylor’s equation for tool life is of the form

y ≈ αxβ

for y tool life (e.g., in minutes) and x the cutting speed used (e.g., in sfpm). Taking
logarithms,

ln(y) ≈ ln(α) + β ln(x)

This is an equation for ln(y) that is linear in the parameters ln(α) and β involving
the variable ln(x). So, presented with a set of (x, y) data, empirical values for α and
β could be determined by

1. taking logs of both x’s and y’s,

2. fitting the linear version of (4.12), and

3. identifying ln(α) with β0 (and thus α with exp(β0)) and β with β1.
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4.2.2 Surface Fitting by Least Squares

It is a small step from the idea of fitting a line or a polynomial curve to realizing
that essentially the same methods can be used to summarize the effects of several
different quantitative variables x1, x2, . . . , xk on some response y. Geometrically
the problem is fitting a surface described by an equation

y ≈ β0 + β1x1 + β2x2 + · · · + βk xk (4.17)

to the data using the least squares principle. This is pictured for a k = 2 case in
Figure 4.13, where six (x1, x2, y) data points are pictured in three dimensions, along
with a possible fitted surface of the form (4.17). To fit a surface defined by equation
(4.17) to a set of n data points (x1i , x2i , . . . , xki , yi ) via least squares, the function
of k + 1 variables

S(β0, β1, β2, . . . , βk) =
n∑

i=1

(yi − ŷi )
2 =

n∑
i=1

(
yi − (β0 + β1x1i + · · · + βk xki )

)2

must be minimized by choice of the coefficients β0, β1, . . . , βk . Setting partial
derivatives with respect to the β’s equal to 0 gives normal equations generalizing
equations (4.4) and (4.5). The solution of these k + 1 linear equations in the k + 1
unknowns β0, β1, . . . , βk is the first task of a multiple linear regression program. The
fitted coefficients b0, b1, . . . , bk that it produces minimize S(β0, β1, β2, . . . , βk).

y

x2

x1

Possible fitted surface

Figure 4.13 Six data points (x1, x2, y) and a possible
fitted plane
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Example 5 Surface Fitting and Brownlee’s Stack Loss Data

Table 4.8 contains part of a set of data on the operation of a plant for the oxidation
of ammonia to nitric acid that appeared first in Brownlee’s Statistical Theory and
Methodology in Science and Engineering. In plant operation, the nitric oxides
produced are absorbed in a countercurrent absorption tower.

The air flow variable, x1, represents the rate of operation of the plant. The
acid concentration variable, x3, is the percent circulating minus 50 times 10. The
response variable, y, is ten times the percentage of ingoing ammonia that escapes
from the absorption column unabsorbed (i.e., an inverse measure of overall plant
efficiency). For purposes of understanding, predicting, and possibly ultimately
optimizing plant performance, it would be useful to have an equation describing
how y depends on x1, x2, and x3. Surface fitting via least squares is a method of
developing such an empirical equation.

Printout 4 shows results from a MINITAB run made to obtain a fitted equation
of the form

ŷ = b0 + b1x1 + b2x2 + b3x3

Table 4.8
Brownlee’s Stack Loss Data

i , x2i , x3i ,
Observation x1i , Cooling Water Acid yi ,

Number Air Flow Inlet Temperature Concentration Stack Loss

1 80 27 88 37
2 62 22 87 18
3 62 23 87 18
4 62 24 93 19
5 62 24 93 20
6 58 23 87 15
7 58 18 80 14
8 58 18 89 14
9 58 17 88 13

10 58 18 82 11
11 58 19 93 12
12 50 18 89 8
13 50 18 86 7
14 50 19 72 8
15 50 19 79 8
16 50 20 80 9
17 56 20 82 15
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The equation produced by the program is

ŷ = −37.65 + .80x1 + .58x2 − .07x3 (4.18)I

with R2 = .975. The coefficients in this equation can be thought of as rates ofInterpreting
fitted coefficients

from a multiple
regression

change of stack loss with respect to the individual variables x1, x2, and x3, holding
the others fixed. For example, b1 = .80 can be interpreted as the increase in stack
loss y that accompanies a one-unit increase in air flow x1 if inlet temperature x2
and acid concentration x3 are held fixed. The signs on the coefficients indicate
whether y tends to increase or decrease with increases in the corresponding x . For
example, the fact that b1 is positive indicates that the higher the rate at which the
plant is run, the larger y tends to be (i.e., the less efficiently the plant operates).
The large value of R2 is a preliminary indicator that the equation (4.18) is an
effective summarization of the data.

WWW

Printout 4 Multiple Regression for the Stack Loss Data

Regression Analysis

The regression equation is
stack = - 37.7 + 0.798 air + 0.577 water - 0.0671 acid

Predictor Coef StDev T P
Constant -37.652 4.732 -7.96 0.000
air 0.79769 0.06744 11.83 0.000
water 0.5773 0.1660 3.48 0.004
acid -0.06706 0.06160 -1.09 0.296

S = 1.253 R-Sq = 97.5% R-Sq(adj) = 96.9%

Analysis of Variance

Source DF SS MS F P
Regression 3 795.83 265.28 169.04 0.000
Residual Error 13 20.40 1.57
Total 16 816.24

Source DF Seq SS
air 1 775.48
water 1 18.49
acid 1 1.86

Unusual Observations
Obs air stack Fit StDev Fit Residual St Resid
10 58.0 11.000 13.506 0.552 -2.506 -2.23R

R denotes an observation with a large standardized residual

Although the mechanics of fitting equations of the form (4.17) to multivariate
data are relatively straightforward, the choice and interpretation of appropriate
equations are not so clear-cut. Where many x variables are involved, the number
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of potential equations of form (4.17) is huge. To make matters worse, there is no
completely satisfactory way to plot multivariate (x1, x2, . . . , xk, y) data to “see”
how an equation is fitting. About all that we can do at this point is to (1) offer the
broad advice that what is wanted is the simplest equation that adequately fits theThe goal of

multiple
regression

data and then (2) provide examples of how R2 and residual plotting can be helpful
tools in clearing up the difficulties that arise.

Example 5
(continued )

In the context of the nitrogen plant, it is sensible to ask whether all three variables,
x1, x2, and x3, are required to adequately account for the observed variation in
y. For example, the behavior of stack loss might be adequately explained using
only one or two of the three x variables. There would be several consequences
of practical engineering importance if this were so. For one, in such a case, a
simple or parsimonious version of equation (4.17) could be used in describing
the oxidation process. And if a variable is not needed to predict y, then it is
possible that the expense of measuring it might be saved. Or, if a variable doesn’t
seem to have much impact on y (because it doesn’t seem to be essential to include
it when writing an equation for y), it may be possible to choose its level on purely
economic grounds, without fear of degrading process performance.

As a means of investigating whether indeed some subset of x1, x2, and x3
is adequate to explain stack loss behavior, R2 values for equations based on all
possible subsets of x1, x2, and x3 were obtained and placed in Table 4.9. This
shows, for example, that 95% of the raw variability in y can be accounted for
using a linear equation in only the air flow variable x1. Use of both x1 and the
water temperature variable x2 can account for 97.3% of the raw variability in
stack loss. Inclusion of x3, the acid concentration variable, in an equation already
involving x1 and x2, increases R2 only from .973 to .975.

If identifying a simple equation for stack loss that seems to fit the data well
is the goal, the message in Table 4.9 would seem to be “Consider an x1 term first,
and then possibly an x2 term.” On the basis of R2, including an x3 term in an
equation for y seems unnecessary. And in retrospect, this is entirely consistent
with the character of the fitted equation (4.18): x3 varies from 72 to 93 in the
original data set, and this means that ŷ changes only a total amount

.07(93 − 72) ≈ 1.5

based on changes in x3. (Remember that .07 = b3 = the fitted rate of change in
y with respect to x3.) 1.5 is relatively small in comparison to the range in the
observed y values.

Once R2 values have been used to identify potential simplifications of the
equation

ŷ = b0 + b1x1 + b2x2 + b3x3

these can and should go through thorough residual analyses before they are
adopted as data summaries. As an example, consider a fitted equation involving
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Table 4.9
R2’s for Equations Predicting Stack Loss

Equation Fit R2

y ≈ β0 + β1x1 .950
y ≈ β0 + β2x2 .695
y ≈ β0 + β3x3 .165
y ≈ β0 + β1x1 + β2x2 .973
y ≈ β0 + β1x1 + β3x3 .952
y ≈ β0 + β2x2 + β3x3 .706
y ≈ β0 + β1x1 + β2x2 + β3x3 .975

x1 and x2. A multiple linear regression program can be used to produce the fitted
equation

ŷ = −42.00 − .78x1 + .57x2 (4.19)

(Notice that b0, b1, and b2 in equation (4.19) differ somewhat from the corre-Dropping variables
from a fitted

equation typically
changes coefficients

sponding values in equation (4.18). That is, equation (4.19) was not obtained
from equation (4.18) by simply dropping the last term in the equation. In general,
the values of the coefficients b will change depending on which x variables are
and are not included in the fitting.)

Residuals for equation (4.19) can be computed and plotted in any number
of potentially useful ways. Figure 4.14 shows a normal plot of the residuals and
three other plots of the residuals against, respectively, x1, x2, and ŷ. There are
no really strong messages carried by the plots in Figure 4.14 except that the
data set contains one unusually large x1 value and one unusually large ŷ (which
corresponds to the large x1). But there is enough of a curvilinear “up-then-down-
then-back-up-again” pattern in the plot of residuals against x1 to suggest the
possibility of adding an x2

1 term to the fitted equation (4.19).
You might want to verify that fitting the equation

y ≈ β0 + β1x1 + β2x2 + β3x2
1

to the data of Table 4.8 yields approximately

ŷ = −15.409 − .069x1 + .528x2 + .007x2
1 (4.20)I

with corresponding R2 = .980 and residuals that show even less of a pattern than
those for the fitted equation (4.19). In particular, the hint of curvature on the plot
of residuals versus x1 for equation (4.19) is not present in the corresponding plot
for equation (4.20). Interestingly, looking back over this example, one sees that
fitted equation (4.20) has a better R2 value than even fitted equation (4.18), in
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Figure 4.14 Plots of residuals from a two-variable equation fit to the stack loss data
( ŷ = −42.00 − .78x1 + .57x2)

Example 5
(continued )

spite of the fact that equation (4.18) involves the process variable x3 and equation
(4.20) does not.

Equation (4.20) is somewhat more complicated than equation (4.19). But
because it still really only involves two different input x’s and also eliminates the
slight pattern seen on the plot of residuals for equation (4.19) versus x1, it seems
an attractive choice for summarizing the stack loss data. A two-dimensional rep-
resentation of the fitted surface defined by equation (4.20) is given in Figure 4.15.
The slight curvature on the plotted curves is a result of the x2

1 term appearing in
equation (4.20). Since most of the data have x1 from 50 to 62 and x2 from 17 to
24, the curves carry the message that over these ranges, changes in x1 seem to
produce larger changes in stack loss than do changes in x2. This conclusion is
consistent with the discussion centered around Table 4.9.
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Figure 4.15 Plots of fitted stack loss from equation
(4.20)

The plots of residuals used in Example 5 are typical. They areCommon residual
plots in multiple

regression
1. normal plots of residuals,

2. plots of residuals against all x variables,

3. plots of residuals against ŷ,

4. plots of residuals against time order of observation, and

5. plots of residuals against variables (like machine number or operator) not
used in the fitted equation but potentially of importance.

All of these can be used to help assess the appropriateness of surfaces fit to multivari-
ate data, and they all have the potential to tell an engineer something not previously
discovered about a set of data and the process that generated them.

Earlier in this section, there was a discussion of the fact that an “x term” in
the equations fitted via least squares can be a known function (e.g., a logarithm)
of a basic process variable. In fact, it is frequently helpful to allow an “x term” in
equation (4.17) (page 149) to be a known function of several basic process variables.
The next example illustrates this point.
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Example 6 Lift/Drag Ratio for a Three-Surface Configuration

P. Burris studied the effects of the positions relative to the wing of a canard (a
forward lifting surface) and tail on the lift/drag ratio for a three-surface configu-
ration. Part of his data are given in Table 4.10, where

x1 = canard placement in inches above the plane defined by the main wing

x2 = tail placement in inches above the plane defined by the main wing

(The front-to-rear positions of the three surfaces were constant throughout the
study.)

A straightforward least squares fitting of the equation

y ≈ β0 + β1x1 + β2x2

to these data produces R2 of only .394. Even the addition of squared terms in
both x1 and x2, i.e., the fitting of

y ≈ β0 + β1x1 + β2x2 + β3x2
1 + β4x2

2

produces an increase in R2 to only .513. However, Printout 5 shows that fitting
the equation

y ≈ β0 + β1x1 + β2x2 + β3x1x2

yields R2 = .641 and the fitted relationship

ŷ = 3.4284 + .5361x1 + .3201x2 − .5042x1x2 (4.21)I

Table 4.10
Lift/Drag Ratios for 9 Canard/Tail Position Combinations

x1, x2, y,
Canard Position Tail Position Lift/Drag Ratio

−1.2 −1.2 .858
−1.2 0.0 3.156
−1.2 1.2 3.644

0.0 −1.2 4.281
0.0 0.0 3.481
0.0 1.2 3.918
1.2 −1.2 4.136
1.2 0.0 3.364
1.2 1.2 4.018
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Printout 5 Multiple Regression for the Lift/Drag Ratio Data

Regression Analysis

The regression equation is
y = 3.43 + 0.536 x1 + 0.320 x2 - 0.504 x1*x2

Predictor Coef StDev T P
Constant 3.4284 0.2613 13.12 0.000
x1 0.5361 0.2667 2.01 0.101
x2 0.3201 0.2667 1.20 0.284
x1*x2 -0.5042 0.2722 -1.85 0.123

S = 0.7839 R-Sq = 64.1% R-Sq(adj) = 42.5%

Analysis of Variance

Source DF SS MS F P
Regression 3 5.4771 1.8257 2.97 0.136
Residual Error 5 3.0724 0.6145
Total 8 8.5495

(After reading x1, x2, and y values from Table 4.10 into columns of MINITAB’s
worksheet, x1x2 products were created and y fitted to the three predictor variables
x1, x2, and x1x2 in order to create this printout.)

Figure 4.16 shows the nature of the fitted surface (4.21). Raising the canard
(increasing x1) has noticeably different predicted impacts on y, depending on the
value of x2 (the tail position). (It appears that the canard and tail should not be
lined up—i.e., x1 should not be near x2. For large predicted response, one wants
small x1 for large x2 and large x1 for small x2.) It is the cross-product term x1x2
in relationship (4.21) that allows the response curves to have different characters
for different x2 values. Without it, the slices of the fitted (x1, x2, ŷ) surface would
be parallel for various x2, much like the situation in Figure 4.15.
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Figure 4.16 Plots of fitted lift/drag from
equation (4.21)
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Example 6
(continued )

Although the main new point of this example has by now been made, it
probably should be mentioned that equation (4.21) is not the last word for fitting
the data of Table 4.10. Figure 4.17 gives a plot of the residuals for relationship
(4.21) versus canard position x1, and it shows a strong curvilinear pattern. In fact,
the fitted equation

ŷ = 3.9833 + .5361x1 + .3201x2 − .4843x2
1 − .5042x1x2 (4.22)I

provides R2 = .754 and generally random-looking residuals. It can be verified
by plotting ŷ versus x1 curves for several x2 values that the fitted relationship
(4.22) yields nonparallel parabolic slices of the fitted (x1, x2, ŷ) surface, instead
of the nonparallel linear slices seen in Figure 4.16.
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Figure 4.17 Plot of residuals from equation
(4.21) vs. x1

4.2.3 Some Additional Cautions

Least squares fitting of curves and surfaces is of substantial engineering impor-
tance—but it must be handled with care and thought. Before leaving the subject
until Chapter 9, which explains methods of formal inference associated with it, a
few more warnings must be given.

First, it is necessary to warn of the dangers of extrapolation substantially outsideExtrapolation
the “range” of the (x1, x2, . . . , xk, y) data. It is sensible to count on a fitted equation
to describe the relation of y to a particular set of inputs x1, x2, . . . , xk only if they
are like the sets used to create the equation. The challenge surface fitting affords is
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Figure 4.18 Hypothetical plot of (x1, x2) pairs

that when several different x variables are involved, it is difficult to tell whether a
particular (x1, x2, . . . , xk) vector is a large extrapolation. About all one can do is
check to see that it comes close to matching some single data point in the set on
each coordinate x1, x2, . . . , xk . It is not sufficient that there be some point with x1
value near the one of interest, another point with x2 value near the one of interest,
etc. For example, having data with 1≤ x1 ≤ 5 and 10≤ x2 ≤ 20 doesn’t mean that
the (x1, x2) pair (3, 15) is necessarily like any of the pairs in the data set. This fact
is illustrated in Figure 4.18 for a fictitious set of (x1, x2) values.

Another potential pitfall is that the fitting of curves and surfaces via least squaresThe influence
of outlying

data vectors
can be strongly affected by a few outlying or extreme data points. One can try to
identify such points by examining plots and comparing fits made with and without
the suspicious point(s).

Example 5
(continued )

Figure 4.14 earlier called attention to the fact that the nitrogen plant data set
contains one point with an extreme x1 value. Figure 4.19 is a scatterplot of
(x1, x2) pairs for the data in Table 4.8 (page 150). It shows that by most qualitative
standards, observation 1 in Table 4.8 is unusual or outlying.

If the fitting of equation (4.20) is redone using only the last 16 data points in
Table 4.8, the equation

ŷ = −56.797 + 1.404x1 + .601x2 − .007x2
1 (4.23)

and R2 = .942 are obtained. Using equation (4.23) as a description of stack loss
and limiting attention to x1 in the range 50 to 62 could be considered. But it
is possible to verify that though some of the coefficients (the b’s) in equations
(4.20) and (4.23) differ substantially, the two equations produce comparable ŷ
values for the 16 data points with x1 between 50 and 62. In fact, the largest
difference in fitted values is about .4. So, since point 1 in Table 4.8 doesn’t
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Example 5
(continued )
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Figure 4.19 Plot of (x1, x2) pairs for the stack loss data

radically change predictions made using the fitted equation, it makes sense to
leave it in consideration, adopt equation (4.20), and use it to describe stack loss
for (x1, x2) pairs interior to the pattern of scatter in Figure 4.19.

A third warning has to do with the notion of replication (first discussed inReplication and
surface fitting Section 2.3). It is the fact that the fly ash data of Example 3 has several y’s for

each x that makes it so clear that even the quadratic and cubic curves sketched
in Figures 4.9 and 4.10 are inadequate descriptions of the relationship between
phosphate and strength. The fitted curves pass clearly outside the range of what look
like believable values of y for some values of x . Without such replication, what is
permissible variation about a fitted curve or surface can’t be known with confidence.
For example, the structure of the lift/drag data set in Example 6 is weak from this
viewpoint. There is no replication represented in Table 4.10, so an external value for
typical experimental precision would be needed in order to identify a fitted value as
obviously incompatible with an observed one.

The nitrogen plant data set of Example 5 was presumably derived from a
primarily observational study, where no conscious attempt was made to replicate
(x1, x2, x3) settings. However, points number 4 and 5 in Table 4.8 (page 150) do
represent the replication of a single (x1, x2, x3) combination and show a difference
in observed stack loss of 1. And this makes the residuals for equation (4.20) (which
range from −2.0 to 2.3) seem at least not obviously out of line.

Section 9.2 discusses more formal and precise ways of using data from studies
with some replication to judge whether or not a fitted curve or surface misses some
observed y’s too badly. For now, simply note that among replication’s many virtues
is the fact that it allows more reliable judgments about the appropriateness of a fitted
equation than are otherwise possible.

The fourth caution is that the notion of equation simplicity ( parsimony) isThe possibility
of overfitting important for reasons in addition to simplicity of interpretation and reduced expense

involved in using the equation. It is also important from the point of view of typically
giving smooth interpolation and not overfitting a data set. As a hypothetical example,
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Figure 4.20 Scatterplot of 11 pairs
(x, y)

consider the artificial, generally linear (x, y) data plotted in Figure 4.20. It would be
possible to run a (wiggly) k = 10 version of the polynomial (4.12) through each of
these points. But in most physical problems, such a curve would do a much worse
job of predicting y at values of x not represented by a data point than would a simple
fitted line. A tenth-order polynomial would overfit the data in hand.

As a final point in this section, consider how the methods discussed here fitEmpirical models
and engineering into the broad picture of using models for attacking engineering problems. It must

be said that physical theories of physics, chemistry, materials, etc. rarely produce
equations of the forms (4.12) or (4.17). Sometimes pertinent equations from those
theories can be rewritten in such forms, as was possible with Taylor’s equation for
tool life earlier in this section. But the majority of engineering applications of the
methods in this section are to the large number of problems where no commonly
known and simple physical theory is available, and a simple empirical description
of the situation would be helpful. In such cases, the tool of least squares fitting of
curves and surfaces can function as a kind of “mathematical French curve,” allowing
an engineer to develop approximate empirical descriptions of how a response y is
related to system inputs x1, x2, . . . , xk .

Section 2 Exercises ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1. Return to Exercise 3 of Section 4.1. Fit a quadratic
relationship y ≈ β0 + β1x + β2x2 to the data via
least squares. By appropriately plotting residuals
and examining R2 values, determine the advis-
ability of using a quadratic rather than a linear
equation to describe the relationship between x
and y. If a quadratic fitted equation is used, how
does the predicted mean molecular weight at 200◦C
compare to that obtained in part (e) of the earlier
exercise?

2. Here are some data taken from the article “Chemi-
thermomechanical Pulp from Mixed High Den-
sity Hardwoods” by Miller, Shankar, and Peterson
(Tappi Journal, 1988). Given are the percent NaOH
used as a pretreatment chemical, x1, the pretreat-
ment time in minutes, x2, and the resulting value
of a specific surface area variable, y (with units of
cm3/g), for nine batches of pulp produced from a
mixture of hardwoods at a treatment temperature
of 75◦C in mechanical pulping.
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% NaOH, x1 Time, x2 Specific Surface Area, y

3.0 30 5.95

3.0 60 5.60

3.0 90 5.44

9.0 30 6.22

9.0 60 5.85

9.0 90 5.61

15.0 30 8.36

15.0 60 7.30

15.0 90 6.43

(a) Fit the approximate relationship y ≈ β0 +
β1x1 + β2x2 to these data via least squares.
Interpret the coefficients b1 and b2 in the fit-
ted equation. What fraction of the observed
raw variation in y is accounted for using this
equation?

(b) Compute and plot residuals for your fitted
equation from (a). Discuss what these plots
indicate about the adequacy of your fitted equa-
tion. (At a minimum, you should plot residuals
against all of x1, x2, and ŷ and normal-plot the
residuals.)

(c) Make a plot of y versus x1 for the nine data
points and sketch on that plot the three different
linear functions of x1 produced by setting x2
first at 30, then 60, and then 90 in your fitted
equation from (a). How well do fitted responses
appear to match observed responses?

(d) What specific surface area would you predict
for an additional batch of pulp of this type
produced using a 10% NaOH treatment for a
time of 70 minutes? Would you be willing to
make a similar prediction for 10% NaOH used
for 120 minutes based on your fitted equation?
Why or why not?

(e) There are many other possible approximate re-
lationships that might be fitted to these data via
least squares, one of which is y ≈ β0 + β1x1 +
β2x2 + β3x1x2. Fit this equation to the preced-
ing data and compare the resulting coefficient
of determination to the one found in (a). On the
basis of these alone, does the use of the more
complicated equation seem necessary?

(f) For the equation fit in part (e), repeat the steps
of part (c) and compare the plot made here to
the one made earlier.

(g) What is an intrinsic weakness of this real pub-
lished data set?

(h) What terminology (for data structures) intro-
duced in Section 1.2 describes this data set? It
turns out that since the data set has this special
structure and all nine sample sizes are the same
(i.e., are all 1), some special relationships hold
between the equation fit in (a) and what you get
by separately fitting linear equations in x1 and
then in x2 to the y data. Fit such one-variable
linear equations and compare coefficients and
R2 values to what you obtained in (a). What
relationships exist between these?

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

4.3 Fitted Effects for Factorial Data

The previous two sections have centered on the least squares fitting of equations
to data sets where a quantitative response y is presumed to depend on the lev-
els x1, x2, . . . , xk of quantitative factors. In many engineering applications, at least
some of the system “knobs” whose effects must be assessed are basically qualitative
rather than quantitative. When a data set has complete factorial structure (review the
meaning of this terminology in Section 1.2), it is still possible to describe it in terms
of an equation. This equation involves so-called fitted factorial effects. Sometimes,
when a few of these fitted effects dominate the rest, a parsimonious version of this
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equation can adequately describe the data and have intuitively appealing and under-
standable interpretations. The use of simple plots and residuals will be discussed,
as tools helpful in assessing whether such a simple structure holds.

The discussion begins with the 2-factor case, then considers three (or, by anal-
ogy, more) factors. Finally, the special case where each factor has only two levels is
discussed.

4.3.1 Fitted Effects for 2-Factor Studies

Example 9 of Chapter 3 (page 101) illustrated how informative a plot of sample
means versus levels of one of the factors can be in a 2-factor study. Such plotting
is always the place to begin in understanding the story carried by two-way factorial
data. In addition, it is helpful to calculate the factor level (marginal) averages of the
sample means and the grand average of the sample means. For factor A having I
levels and factor B having J levels, the following notation will be used:

Notation for
sample means

and their
averages

ȳi j = the sample mean response when factor A is at
level i and factor B is at level j

ȳi. = 1

J

J∑
j=1

ȳi j

= the average sample mean when factor A is at level i

ȳ
. j = 1

I

I∑
i=1

ȳi j

= the average sample mean when factor B is at level j

ȳ
..

= 1

I J

∑
i, j

ȳi j

= the grand average sample mean

The ȳi. and ȳ
. j are row and column averages when one thinks of the ȳi j laid out in

a two-dimensional format, as shown in Figure 4.21.

Example 7 Joint Strengths for Three Different Joint Types in Three Different Woods

Kotlers, MacFarland, and Tomlinson studied the tensile strength of three differ-
ent types of joints made on three different types of wood. Butt, lap, and beveled
joints were made in nominal 1′′ × 4′′ × 12′′ pine, oak, and walnut specimens
using a resin glue. The original intention was to test two specimens of each Joint
Type/Wood Type combination. But one operator error and one specimen failure
not related to its joint removed two of the original data points from consideration
and gave the data in Table 4.11. These data have complete 3 × 3 factorial struc-
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Level 1

Level 2

Factor A

Level I

Level 1 Level 2 Level J

Factor B

y11 y12 y1J y1.

y21 y22 y2J y2.

yI1 yI2 yIJ yI.

y.1 y.2 y.J y..

Figure 4.21 Cell sample means and row, column, and
grand average sample means for a two-way factorial

Example 7
(continued )

Table 4.11
Measured Strengths of 16 Wood Joints

Specimen Joint Wood y, Stress at Failure (psi)

1 beveled oak 1518
2 butt pine 829
3 beveled walnut 2571
4 butt oak 1169
5 beveled oak 1927
6 beveled pine 1348
7 lap walnut 1489
8 beveled walnut 2443
9 butt walnut 1263

10 lap oak 1295
11 lap oak 1561
12 lap pine 1000
13 butt pine 596
14 lap pine 859
15 butt walnut 1029
16 beveled pine 1207
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Table 4.12
Sample Means for Nine Wood/Joint Combinations

Wood

1 (Pine) 2 (Oak) 3 (Walnut)

1 (Butt) ȳ11 = 712.5 ȳ12 = 1169.0 ȳ13 = 1146.0 ȳ1.
= 1009.17

Joint 2 (Beveled) ȳ21 = 1277.5 ȳ22 = 1722.5 ȳ23 = 2507.0 ȳ2.
= 1835.67

3 (Lap) ȳ31 = 929.5 ȳ32 = 1428.0 ȳ33 = 1489.0 ȳ3.
= 1282.17

ȳ
.1 = 973.17 ȳ

.2 = 1439.83 ȳ
.3 = 1714.00 ȳ

..
= 1375.67

ture. Collecting y’s for the nine different combinations into separate samples and
calculating means, the ȳi j ’s are as presented in tabular form in Table 4.12 and
plotted in Figure 4.22. This figure is a so-called interaction plot of these means.Interaction

Plot The qualitative messages given by the plot are as follows:

1. Joint types ordered by strength are “beveled is stronger than lap, which
in turn is stronger than butt.”
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Figure 4.22 Interaction plot of joint strength sample
means
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Example 7
(continued )

2. Woods ordered by overall strength seem to be “walnut is stronger than
oak, which in turn is stronger than pine.”

3. The strength pattern across woods is not consistent from joint type to joint
type (or equivalently, the strength pattern across joints is not consistent
from wood type to wood type).

The idea of fitted effects is to invent a way of quantifying such qualitative
summaries.

The row and column average means (ȳi ·’s and ȳ· j ’s, respectively) might be
taken as measures of average response behavior at different levels of the factors in
question. If so, it then makes sense to use the differences between these and the
grand average mean ȳ

..
as measures of the effects of those levels on mean response.

This leads to Definition 5.

Definition 5 In a two-way complete factorial study with factors A and B, the fitted main
effect of factor A at its ith level is

ai = ȳi. − ȳ
..

Similarly, the fitted main effect of factor B at its jth level is

bj = ȳ
. j − ȳ

..

Example 7
(continued )

Simple arithmetic and the ȳ’s in Table 4.12 yield the fitted main effects for the
joint strength study of Kotlers, MacFarland, and Tomlinson. First for factor A
(the Joint Type),

a1 = the Joint Type fitted main effect for butt joints

= 1009.17 − 1375.67

= −366.5 psi

a2 = the Joint Type fitted main effect for beveled joints

= 1835.67 − 1375.67

= 460.0 psi

a3 = the Joint Type fitted main effect for lap joints

= 1282.17 − 1375.67

= −93.5 psi
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Similarly for factor B (the Wood Type),

b1 = the Wood Type fitted main effect for pine

= 973.17 − 1375.67

= −402.5 psi

b2 = the Wood Type fitted main effect for oak

= 1439.83 − 1375.67

= 64.17 psi

b3 = the Wood Type fitted main effect for walnut

= 1714.00 − 1375.67

= 338.33 psi

These fitted main effects quantify the first two qualitative messages carried by
the data and listed as (1) and (2) before Definition 5. For example,

a2 > a3 > a1

says that beveled joints are strongest and butt joints the weakest. Further, the fact
that the ai ’s and bj ’s are of roughly the same order of magnitude says that the
Joint Type and Wood Type factors are of comparable importance in determining
tensile strength.

A difference between fitted main effects for a factor amounts to a difference be-
tween corresponding row or column averages and quantifies how different response
behavior is for those two levels.

Example 7
(continued )

For example, comparing pine and oak wood types,

b1 − b2 = (ȳ
.1 − ȳ

..
) − (ȳ

.2 − ȳ
..
)

= ȳ
.1 − ȳ

.2

= 973.17 − 1439.83

= −466.67 psi

which indicates that pine joint average strength is about 467 psi less than oak
joint average strength.
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In some two-factor factorial studies, the fitted main effects as defined in Defini-
tion 5 pretty much summarize the story told by the means ȳi j , in the sense that

ȳi j ≈ ȳ
..
+ ai + bj for every i and j (4.24)

Display (4.24) implies, for example, that the pattern of mean responses for level 1
of factor A is the same as for level 2 of A. That is, changing levels of factor B (from
say j to j ′) produces the same change in mean response for level 2 as for level 1
(namely, bj ′ − bj ). In fact, if relation (4.24) holds, there are parallel traces on an
interaction plot of means.

Example 7
(continued )

To illustrate the meaning of expression (4.24), the fitted effects for the Joint
Type/Wood Type data have been used to calculate 3 × 3 = 9 values of ȳ

..
+

ai + bj corresponding to the nine experimental combinations. These are given in
Table 4.13.

For comparison purposes, the ȳi j from Table 4.12 and the ȳ
..
+ ai + bj from

Table 4.13 are plotted on the same sets of axes in Figure 4.23. Notice the parallel
traces for the ȳ

..
+ ai + bj values for the three different joint types. The traces for
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Figure 4.23 Plots of ȳij and ȳ
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Table 4.13
Values of ȳ

..
+ ai + bj for the Joint Strength Study

Wood

1 (Pine) 2 (Oak) 3 (Walnut)

1 (Butt) ȳ
..
+ a1 + b1 = ȳ

..
+ a1 + b2 = ȳ

..
+ a1 + b3 =

606.67 1073.33 1347.50
Joint 2 (Beveled) ȳ

..
+ a2 + b1 = ȳ

..
+ a2 + b2 = ȳ

..
+ a2 + b3 =

1433.17 1899.83 2174.00
3 (Lap) ȳ

..
+ a3 + b1 = ȳ

..
+ a3 + b2 = ȳ

..
+ a3 + b3 =

879.67 1346.33 1620.50

the ȳi j values for the three different joint types are not parallel (particularly when
walnut is considered), so there are apparently substantial differences between the
ȳi j ’s and the ȳ

..
+ ai + bj ’s.

When relationship (4.24) fails to hold, the patterns in mean response across
levels of one factor depend on the levels of the second factor. In such cases, the
differences between the combination means ȳi j and the values ȳ

..
+ ai + bj can

serve as useful measures of lack of parallelism on the plots of means, and this leads
to another definition.

Definition 6 In a two-way complete factorial study with factors A and B, the fitted inter-
action of factor A at its ith level and factor B at its jth level is

abi j = ȳi j − (ȳ
..
+ ai + bj )

The fitted interactions in some sense measure how much pattern the combinationInterpretation of
interactions in a

two-way
factorial study

means ȳi j carry that is not explainable in terms of the factors A and B acting
separately. Clearly, when relationship (4.24) holds, the fitted interactions abi j are all
small (nearly 0), and system behavior can be thought of as depending separately on
level of A and level of B. In such cases, an important practical consequence is that it
is possible to develop recommendations for levels of the two factors independently
of each other. For example, one need not recommend one level of A if B is at its
level 1 and another if B is at its level 2.

Consider a study of the effects of factors Tool Type and Turning Speed on the
metal removal rate for a lathe. If the fitted interactions are small, turning speed
recommendations that remain valid for all tool types can be made. However, if
the fitted interactions are important, turning speed recommendations might vary
according to tool type.



170 Chapter 4 Describing Relationships Between Variables

Example 7
(continued )

Again using the Joint Type/Wood Type data, consider calculating the fitted in-
teractions. The raw material for these calculations already exists in Tables 4.12
and 4.13. Simply taking differences between entries in these tables cell-by-cell
yields the fitted interactions given in Table 4.14.

It is interesting to compare these fitted interactions to themselves and to
the fitted main effects. The largest (in absolute value) fitted interaction (ab23)
corresponds to beveled walnut joints. This is consistent with one visual message
in Figures 4.22 and 4.23: This Joint Type/Wood Type combination is in some
sense most responsible for destroying any nearly parallel structure that might
otherwise appear. The fact that (on the whole) the abi j ’s are not as large as the
ai ’s or bj ’s is consistent with a second visual message in Figures 4.22 and 4.23:
The lack of parallelism, while important, is not as important as differences in
Joint Types or Wood Types.

Table 4.14
Fitted Interactions for the Joint Strength Study

Wood

1 (Pine) 2 (Oak) 3 (Walnut)

1 (Butt) ab11 = 105.83 ab12 = 95.67 ab13 = −201.5
Joint 2 (Beveled) ab21 = −155.66 ab22 = −177.33 ab23 = 333.0

3 (Lap) ab31 = 49.83 ab32 = 81.67 ab33 = −131.5

Example 7 has proceeded “by hand.” But using a statistical package can make
the calculations painless. For example, Printout 6 illustrates that most of the results
of Example 7 are readily available in MINITAB’s “General Linear Model” routine
(found under the “Stat/ANOVA/General Linear Model” menu). Comparing this
printout to the example does bring up one point regarding the fitted effects defined
in Definitions 5 and 6. Note that the printout provides values of only two (of three)
Joint main effects, two (of three) Wood main effects, and four (of nine) Joint × Wood
interactions. These are all that are needed, since it is a consequence of Definition 5Fitted effects

sum to zero that fitted main effects for a given factor must total to 0, and it is a consequence of
Definition 6 that fitted interactions must sum to zero across any row or down any
column of the two-way table of factor combinations. The fitted effects not provided
by the printout are easily deduced from the ones that are given.

WWW

Printout 6 Computations for the Joint Strength Data

General Linear Model

Factor Type Levels Values
joint fixed 3 beveled butt lap
wood fixed 3 oak pine walnut
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Analysis of Variance for strength, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
joint 2 2153879 1881650 940825 32.67 0.000
wood 2 1641095 1481377 740689 25.72 0.001
joint*wood 4 468408 468408 117102 4.07 0.052
Error 7 201614 201614 28802
Total 15 4464996

Term Coef StDev T P
Constant 1375.67 44.22 31.11 0.000
joint

beveled 460.00 59.63 7.71 0.000
butt -366.50 63.95 -5.73 0.001
wood

oak 64.17 63.95 1.00 0.349
pine -402.50 59.63 -6.75 0.000
joint* wood

beveled oak -177.33 85.38 -2.08 0.076
beveled pine -155.67 82.20 -1.89 0.100
butt oak 95.67 97.07 0.99 0.357
butt pine 105.83 85.38 1.24 0.255

Unusual Observations for strength

Obs strength Fit StDev Fit Residual St Resid
4 1169.00 1169.00 169.71 0.00 * X
7 1489.00 1489.00 169.71 0.00 * X

X denotes an observation whose X value gives it large influence.

Least Squares Means for strength

joint Mean StDev
beveled 1835.7 69.28
butt 1009.2 80.00
lap 1282.2 80.00
wood

oak 1439.8 80.00
pine 973.2 69.28
walnut 1714.0 80.00
joint* wood

beveled oak 1722.5 120.00
beveled pine 1277.5 120.00
beveled walnut 2507.0 120.00
butt oak 1169.0 169.71
butt pine 712.5 120.00
butt walnut 1146.0 120.00
lap oak 1428.0 120.00
lap pine 929.5 120.00
lap walnut 1489.0 169.71

4.3.2 Simpler Descriptions for Some Two-Way Data Sets

Rewriting the equation for abi j from Definition 6,

ȳi j = ȳ
..
+ ai + bj + abi j (4.25)
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That is, ȳ
..
, the fitted main effects, and the fitted interactions provide a decomposition

or breakdown of the combination sample means into interpretable pieces. These
pieces correspond to an overall effect, the effects of factors acting separately, and
the effects of factors acting jointly.

Taking a hint from the equation fitting done in the previous two sections, it
makes sense to think of (4.25) as a fitted version of an approximate relationship,

y ≈ µ + αi + βj + αβi j (4.26)

where µ, α1, α2, . . . , αI , β1, β2, . . . , βJ , αβ11, . . ., αβ1J , αβ21, . . . , αβIJ are some
constants and the levels of factors A and B associated with a particular response y
pick out which of the αi ’s, βj ’s, and αβi j ’s are appropriate in equation (4.26). By
analogy with the previous two sections, the possibility should be considered that
a relationship even simpler than equation (4.26) might hold, perhaps not involving
αβi j ’s or even αi ’s or perhaps βj ’s.

It has already been said that when relationship (4.24) is in force, or equivalently

abi j ≈ 0 for every i and j

it is possible to understand an observed set of ȳi j ’s in simplified terms of the factors
acting separately. This possibility corresponds to the simplified version of equation
(4.26),

y ≈ µ + αi + βj

and there are other simplified versions of equation (4.26) that also have appealing
interpretations. For example, the simplified version of equation (4.26),

y ≈ µ + αi

says that only factor A (not factor B) is important in determining response y.
(α1, α2, . . . , αI still allow for different response behavior for different levels of A.)

Two questions naturally follow on this kind of reasoning: “How is a reduced or
simplified version of equation (4.26) fitted to a data set? And after fitting such an
equation, how is the appropriateness of the result determined?” General answers to
these questions are subtle. But there is one circumstance in which it is possible to
give fairly straightforward answers. That is the case where the data are balanced—
in the sense that all of the samples (leading to the ȳi j ’s) have the same size. With
balanced data, the fitted effects from Definitions 5 and 6 and simple addition produce
fitted responses. And based on such fitted values, the R2 and residual plotting ideas
from the last two sections can be applied here as well. That is, when working with
balanced data, least squares fitting of a simplified version of equation (4.26) can be
accomplished by

1. calculating fitted effects according to Definitions 5 and 6 and then
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2. adding those corresponding to terms in the reduced equation to compute
fitted responses, ŷ.

Residuals are then (as always)

Residuals e = y − ŷ

(and should look like noise if the simplified equation is an adequate description of
the data set). Further, the fraction of raw variation in y accounted for in the fitting
process is (as always)

Coefficient of
determination R2 =

∑
(y − ȳ)2 − ∑

(y − ŷ)2∑
(y − ȳ)2 (4.27)

where the sums are over all observed y’s. (Summation notation is being abused even
further than usual, by not even subscripting the y’s and ŷ’s.)

Example 8
(Example 12, Chapter 2,

revisited—p. 49 )

Simplified Description of Two-Way Factorial Golf Ball Flight Data

G. Gronberg tested drive flight distances for golf balls of several different com-
pressions on several different evenings. Table 4.15 gives a small part of the data
that he collected, representing 80 and 100 compression flight distances (in yards)
from two different evenings. Notice that these data are balanced, all four sample
sizes being 10.

Table 4.15
Golf Ball Flight Distances for Four Compression/Evening Combinations

Evening (B)

1 2

180 192 196 180
193 190 192 195

80 197 182 191 197
189 192 194 192
187 179 186 193

Compression (A)
180 175 190 185
185 190 195 167

100 167 185 180 180
162 180 170 180
170 185 180 165
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Example 8
(continued )

These data have complete two-way factorial structure. The factor Evening is
not really of primary interest. Rather, it is a blocking factor, its levels creating
homogeneous environments in which to compare 80 and 100 compression flight
distances. Figure 4.24 is a graphic using boxplots to represent the four samples
and emphasizing the factorial structure.

Calculating sample means corresponding to the four cells in Table 4.15 and
then finding fitted effects is straightforward. Table 4.16 displays cell, row, column,
and grand average means. And based on those values,

a1 = 189.85 − 184.20 = 5.65 yards
a2 = 178.55 − 184.20 = −5.65 yards
b1 = 183.00 − 184.20 = −1.20 yards
b2 = 185.40 − 184.20 = 1.20 yards

ab11 = 188.1 − (184.20 + 5.65 + (−1.20)) = −.55 yards
ab12 = 191.6 − (184.20 + 5.65 + 1.20) = .55 yards
ab21 = 177.9 − (184.20 + (−5.65) + (−1.20)) = .55 yards
ab22 = 179.2 − (184.20 + (−5.65) + 1.20) = −.55 yards
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Figure 4.24 Golf ball flight distance
boxplots for four combinations of
Compression and Evening

Table 4.16
Cell, Row, Column, and Grand Average Means for the Golf Ball Flight Data

Evening (B)

1 2

80 ȳ11 = 188.1 ȳ12 = 191.6 189.85
Compression (A)

100 ȳ21 = 177.9 ȳ22 = 179.2 178.55

183.00 185.40 184.20
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Figure 4.25 Interaction plot for the
golf ball flight data

The fitted effects indicate that most of the differences in the cell means in Ta-
ble 4.16 are understandable in terms of differences between 80 and 100 compres-
sion balls. The effect of differences between evenings appears to be on the order
of one-fourth the size of the effect of differences between ball compressions.
Further, the pattern of flight distances across the two compressions changed rela-
tively little from evening to evening. These facts are portrayed graphically in the
interaction plot of Figure 4.25.

The story told by the fitted effects in this example probably agrees with most
readers’ intuition. There is little reason a priori to expect the relative behaviors of
80 and 100 compression flight distances to change much from evening to evening.
But there is slightly more reason to expect the distances to be longer overall on
some nights than on others.

It is worth investigating whether the data in Table 4.15 allow the simplest

“Compression effects only”

description, or require the somewhat more complicated

“Compression effects and Evening effects but no interactions”

description, or really demand to be described in terms of

“Compression, Evening, and interaction effects”

To do so, fitted responses are first calculated corresponding to the three different
possible corresponding relationships

y ≈ µ + αi (4.28)

y ≈ µ + αi + βj (4.29)

y ≈ µ + αi + βj + αβi j (4.30)
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Example 8
(continued )

Table 4.17
Fitted Responses Corresponding to Equations (4.28), (4.29), and (4.30)

For (4.28) For (4.29) For (4.30)
Compression Evening ȳ

..
+ ai = ȳi. ȳ

..
+ ai + bj ȳ

..
+ ai + bj + abi j = ȳi j

80 1 189.85 188.65 188.10
100 1 178.55 177.35 177.90
80 2 189.85 191.05 191.60

100 2 178.55 179.75 179.20

These are generated using the fitted effects. They are collected in Table 4.17
(not surprisingly, the first and third sets of fitted responses are, respectively, row
average and cell means).

Residuals e = y − ŷ for fitting the three equations (4.28), (4.29), and (4.30)
are obtained by subtracting the appropriate entries in, respectively, the third,
fourth, or fifth column of Table 4.17 from each of the data values listed in
Table 4.15. For example, 40 residuals for the fitting of the “A main effects only”
equation (4.28) would be obtained by subtracting 189.85 from every entry in the
upper left cell of Table 4.15, subtracting 178.55 from every entry in the lower
left cell, 189.85 from every entry in the upper right cell, and 178.55 from every
entry in the lower right cell.

Figure 4.26 provides normal plots of the residuals from the fitting of the three
equations (4.28), (4.29), and (4.30). None of the normal plots is especially linear,
but at the same time, none of them is grossly nonlinear either. In particular, the
first two, corresponding to simplified versions of relationship 4.26, are not signif-
icantly worse than the last one, which corresponds to the use of all fitted effects
(both main effects and interactions). From the limited viewpoint of producing
residuals with an approximately bell-shaped distribution, the fitting of any of the
three equations (4.28), (4.29), and (4.30) would appear approximately equally
effective.

The calculation of R2 values for equations (4.28), (4.29), and (4.30) proceeds
as follows. First, since the grand average of all 40 flight distances is ȳ = 184.2
yards (which in this case also turns out to be ȳ

..
) ,∑

(y − ȳ)2 = (180 − 184.2)2 + · · · + (179 − 184.2)2

+ (180 − 184.2)2 + · · · + (185 − 184.2)2

+ (196 − 184.2)2 + · · · + (193 − 184.2)2

+ (190 − 184.2)2 + · · · + (165 − 184.2)2

= 3,492.4

(This value can easily be obtained on a pocket calculator by using 39 (= 40 − 1 =
n − 1) times the sample variance of all 40 flight distances.) Then

∑
(y − ŷ)2
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Figure 4.26 Normal plots of residuals from three different equations fitted to the golf data

values for the three equations are obtained as the sums of the squared residuals.
For example, using Tables 4.15 and 4.17, for equation (4.29),∑

(y − ŷ)2 = (180 − 188.65)2 + · · · + (179 − 188.65)2

+ (180 − 177.35)2 + · · · + (185 − 177.35)2

+ (196 − 191.05)2 + · · · + (193 − 191.05)2

+ (190 − 179.75)2 + · · · + (165 − 179.75)2

= 2,157.90

Finally, equation (4.27) is used. Table 4.18 gives the three values of R2.
The story told by the R2 values is consistent with everything else that’s been

said in this example. None of the values is terribly big, which is consistent with
the large within-sample variation in flight distances evident in Figure 4.24. But

Table 4.18
R2 Values for Fitting Equations
(4.28), (4.29), and (4.30) to
Gronberg’s Data

Equation R2

y ≈ µ + αi .366
y ≈ µ + αi + βj .382
y ≈ µ + αi + βj + αβi j .386
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Example 8
(continued )

considering A (Compression) main effects does account for some of the observed
variation in flight distance, and the addition of B (Evening) main effects adds
slightly to the variation accounted for. Introducing interactions into consideration
adds little additional accounting power.

The computations in Example 8 are straightforward but tedious. The kind of
software used to produce Printout 6 typically allows for the painless fitting of
simplified relationships like (4.28), (4.29), and (4.30) and computation (and later
plotting) of the associated residuals.

4.3.3 Fitted Effects for Three-Way (and Higher) Factorials

The reasoning that has been applied to two-way factorial data is naturally general-
ized to complete factorial data structures that are three-way and higher. First, fitted
main effects and various kinds of interactions are computed. Then one hopes to
discover that a data set can be adequately described in terms of a few of these
that are interpretable when taken as a group. This subsection shows how this
is carried out for 3-factor situations. Once the pattern has been made clear, the
reader can carry it out for situations involving more than three factors, working by
analogy.

In order to deal with three-way factorial data, yet more notation is needed.
Unfortunately, this involves triple subscripts. For factor A having I levels, factor B
having J levels, and factor C having K levels, the following notation will be used:

Notation for sample
means and their

averages (for three-way
factorial data)

ȳi jk = the sample mean response when factor A is at level i ,
factor B is at level j , and factor C is at level k

ȳ
...

= 1

IJK

∑
i, j,k

ȳi jk

= the grand average sample mean

ȳi.. = 1

JK

∑
j,k

ȳi jk

= the average sample mean when factor A is at level i

ȳ
. j. = 1

IK

∑
i,k

ȳi jk

= the average sample mean when factor B is at level j

ȳ
..k = 1

IJ

∑
i, j

ȳi jk

= the average sample mean when factor C is at level k
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ȳi j. = 1

K

∑
k

ȳi jk

= the average sample mean when factor A is at level i and factor B
is at level j

ȳi.k = 1

J

∑
j

ȳi jk

= the average sample mean when factor A is at level i and factor C
is at level k

ȳ
. jk = 1

I

∑
i

ȳi jk

= the average sample mean when factor B is at level j and factor C
is at level k

In these expressions, where a subscript is used as an index of summation, the
summation is assumed to extend over all of its I, J , or K possible values.

It is most natural to think of the means from a 3-factor study laid out in three
dimensions. Figure 4.27 illustrates this general situation, and the next example
employs another common three-dimensional display in a 23 context.
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J21
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2

Factor B level

Factor A level

Fac
tor

 C
 le

ve
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K

Figure 4.27 IJK cells in a three-dimensional table
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Example 9 A 23 Factorial Experiment on the Strength of a Composite Material

In his article “Application of Two-Cubed Factorial Designs to Process Stud-
ies” (ASQC Technical Supplement Experiments in Industry, 1985), G. Kinzer
discusses a successful 3-factor industrial experiment.

The strength of a proprietary composite material was thought to be related to
three process variables, as indicated in Table 4.19. Five specimens were produced
under each of the 23 = 8 combinations of factor levels, and their moduli of rupture
were measured (in psi) and averaged to produce the means in Table 4.20. (There
were also apparently 10 specimens made with an autoclave temperature of 315◦F,
an autoclave time of 8 hr, and a time span of 8 hr, but this will be ignored for
present purposes.)

A helpful display of these means can be made using the corners of a cube,Cube plot for
displaying
23 means

as in Figure 4.28. Using this three-dimensional picture, one can think of average
sample means as averages of ȳi jk’s sharing a face or edge of the cube.

Table 4.19
Levels of Three Process Variables in a 23 Study of Material Strength

Factor Process Variable Level 1 Level 2

A Autoclave temperature 300◦F 330◦F
B Autoclave time 4 hr 12 hr
C Time span (between product 4 hr 12 hr

formation and autoclaving)

Table 4.20
Sample Mean Strengths for 23 Treatment Combinations

ȳi jk ,
i , j , k, Sample Mean

Factor A Level Factor B Level Factor C Level Strength (psi)

1 1 1 1520
2 1 1 2450
1 2 1 2340
2 2 1 2900
1 1 2 1670
2 1 2 2540
1 2 2 2230
2 2 2 3230
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y122 = 2230

y121 = 2340y111 = 1520

y211 = 2450

21
1

2

Factor B level

Factor A level

y212 = 2540

y221 = 2900

y222 = 3230

y112 = 1670
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tor

 C
 le

ve
l

2

1

Figure 4.28 23 sample mean strengths displayed on a
cube plot

For example,

ȳ1..
= 1

2 · 2
(1520 + 2340 + 1670 + 2230) = 1940 psi

is the average mean on the bottom face, while

ȳ11.
= 1

2
(1520 + 1670) = 1595 psi

is the average mean on the lower left edge. For future reference, all of the average
sample means are collected here:

ȳ
...

= 2360 psi
ȳ1..

= 1940 psi ȳ2..
= 2780 psi

ȳ
.1.

= 2045 psi ȳ
.2.

= 2675 psi
ȳ

..1 = 2302.5 psi ȳ
..2 = 2417.5 psi

ȳ11.
= 1595 psi ȳ12.

= 2285 psi
ȳ21.

= 2495 psi ȳ22.
= 3065 psi

ȳ1.1 = 1930 psi ȳ1.2 = 1950 psi
ȳ2.1 = 2675 psi ȳ2.2 = 2885 psi
ȳ

.11 = 1985 psi ȳ
.12 = 2105 psi

ȳ
.21 = 2620 psi ȳ

.22 = 2730 psi

Analogy with Definition 5 provides definitions of fitted main effects in a 3-factor
study as the differences between factor-level average means and the grand average
mean.
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Definition 7 In a three-way complete factorial study with factors A, B, and C, the fitted
main effect of factor A at its ith level is

ai = ȳi.. − ȳ
...

The fitted main effect of factor B at its jth level is

bj = ȳ
. j. − ȳ

...

And the fitted main effect of factor C at its kth level is

ck = ȳ
..k − ȳ

...

Using the geometrical representation of factor-level combinations given in Fig-
ure 4.28, these fitted effects are averages of ȳi jk’s along planes (parallel to one set
of faces of the rectangular solid) minus the grand average sample mean.

Next, analogy with Definition 6 produces definitions of fitted two-way interac-
tions in a 3-factor study.

Definition 8 In a three-way complete factorial study with factors A, B, and C, the fitted
2-factor interaction of factor A at its ith level and factor B at its jth level is

abi j = ȳi j. − (ȳ
...

+ ai + bj )

the fitted 2-factor interaction of factor A at its ith level and factor C at its
kth level is

acik = ȳi.k − (ȳ
...

+ ai + ck)

and the fitted 2-factor interaction of factor B at its jth level and factor C at
its kth level is

bcjk = ȳ
. jk − (ȳ

...
+ bj + ck)
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These fitted 2-factor interactions can be thought of in two equivalent ways:Interpreting two-
way interactions

in a three-way study
1. as what one gets as fitted interactions upon averaging across all levels of

the factor that is not under consideration to obtain a single two-way table of
(average) means and then calculating as per Definition 6 (page 169);

2. as what one gets as averages, across all levels of the factor not under consid-
eration, of the fitted two-factor interactions calculated as per Definition 6,
one level of the excluded factor at a time.

Example 9
(continued )

To illustrate the meaning of Definitions 7 and 8, return to the composite material
strength study. For example, the fitted A main effects are

a1 = ȳ1..
− ȳ

...
= 1940 − 2360 = −420 psi

a2 = ȳ2..
− ȳ

...
= 2780 − 2360 = 420 psi

And the fitted AB 2-factor interaction for levels 1 of A and 1 of B is

ab11 = ȳ11.
− (ȳ

...
+ a1 + b1) = 1595 − (2360 + (−420) + (2045 − 2360))

= −30 psi

The entire set of fitted effects for the means of Table 4.20 is as follows.

a1 = −420 psi b1 = −315 psi c1 = −57.5 psi
a2 = 420 psi b2 = 315 psi c2 = 57.5 psi

ab11 = −30 psi ac11 = 47.5 psi bc11 = −2.5 psi
ab12 = 30 psi ac12 = −47.5 psi bc12 = 2.5 psi
ab21 = 30 psi ac21 = −47.5 psi bc21 = 2.5 psi
ab22 = −30 psi ac22 = 47.5 psi bc22 = −2.5 psi

Remember equation (4.25) (page 171). It says that in 2-factor studies, the fitted
grand mean, main effects, and two-factor interactions completely describe a factorial
set of sample means. Such is not the case in three-factor studies. Instead, a new pos-
sibility arises: 3-factor interaction. Roughly speaking, the fitted three-factor interac-Interpretation of

three-way interactions tions in a 3-factor study measure how much pattern the combination means carry that
is not explainable in terms of the factors A, B, and C acting separately and in pairs.

Definition 9 In a three-way complete factorial study with factors A, B, and C, the fitted
3-factor interaction of A at its ith level, B at its jth level, and C at its kth
level is

abci jk = ȳi jk − (ȳ
...

+ ai + bj + ck + abi j + acik + bcjk)



184 Chapter 4 Describing Relationships Between Variables

Example 9
(continued )

To illustrate the meaning of Definition 9, consider again the composite ma-
terial study. Using the previously calculated fitted main effects and 2-factor
interactions,

abc111 = 1520 − (2360 + (−420) + (−315) + (−57.5) + (−30)

+ 47.5 + (−2.5)) = −62.5psi

Similar calculations can be made to verify that the entire set of 3-factor interac-
tions for the means of Table 4.20 is as follows:

abc111 = −62.5 psi abc211 = 62.5 psi
abc121 = 62.5 psi abc221 = −62.5 psi
abc112 = 62.5 psi abc212 = −62.5 psi
abc122 = −62.5 psi abc222 = 62.5 psi

Main effects and 2-factor interactions are more easily interpreted than 3-factor
interactions. One insight into their meaning was given immediately before Defi-
nition 9. Another is the following. If at the different levels of (say) factor C, theA second

interpretation
of three-way
interactions

fitted AB interactions are calculated and the fitted AB interactions (the pattern of
parallelism or nonparallelism) are essentially the same on all levels of C, then the
3-factor interactions are small (near 0). Otherwise, large 3-factor interactions allow
the pattern of AB interaction to change, from one level of C to another.

4.3.4 Simpler Descriptions of Some Three-Way Data Sets

Rewriting the equation in Definition 9,

ȳi jk = ȳ
...

+ ai + bj + ck + abi j + acik + bcjk + abci jk (4.31)

This is a breakdown of the combination sample means into somewhat interpretable
pieces, corresponding to an overall effect, the factors acting separately, the factors
acting in pairs, and the factors acting jointly. Display (4.31) may be thought of as a
fitted version of an approximate relationship

y ≈ µ + αi + βj + γk + αβi j + αγik + βγjk + αβγi jk (4.32)

When beginning the analysis of three-way factorial data, one hopes to discover
a simplified version of equation (4.32) that is both interpretable and an adequate
description of the data. (Indeed, if it is not possible to do so, little is gained by
using the factorial breakdown rather than simply treating the data in question as IJK
unstructured samples.)

As was the case earlier with two-way factorial data, the process of fitting a
simplified version of display (4.32) via least squares is, in general, unfortunately
somewhat complicated. But when all sample sizes are equal (i.e., the data are
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balanced), the fitting process can be accomplished by simply adding appropriate
fitted effects defined in Definitions 7, 8, and 9. Then the fitted responses lead to
residuals that can be used in residual plotting and the calculation of R2.

Example 9
(continued )

Looking over the magnitudes of the fitted effects for Kinzer’s composite material
strength study, the A and B main effects clearly dwarf the others, suggesting the
possibility that the relationship

y ≈ µ + αi + βj (4.33)

could be used as a description of the physical system. This relationship doesn’t
involve factor C at all (either by itself or in combination with A or B) and indicates
that responses for a particular AB combination will be comparable for both time
spans studied. Further, the fact that display (4.33) doesn’t include the αβi j term
says that factors A and B act on product strength separately, so that their levels
can be chosen independently. In geometrical terms corresponding to the cube plot
in Figure 4.28, display (4.33) means that observations from the cube’s back face
will be comparable to corresponding ones on the front face and that parallelism
will prevail on both the front and back faces.

Kinzer’s article gives only ȳi jk values, not raw data, so a residual analysis
and calculation of R2 are not possible. But because of the balanced nature of the
original data set, fitted values are easily obtained. For example, with factor A at
level 1 and B at level 1, using the simplified relationship (4.33) and the fitted
main effects found earlier produces the fitted value

ŷ = ȳ
...

+ a1 + b1 = 2360 + (−420) + (−315) = 1625 psi

1625 2255

2465

22551625

21

1

2

Factor B

Factor A

2465 3095

3095

Fitted y values, y

2

1
Fac

tor
 C

Figure 4.29 Eight fitted responses for
relationship (4.33) and the composite
strength study



186 Chapter 4 Describing Relationships Between Variables

Example 9
(continued )

All eight fitted values corresponding to equation (4.33) are shown geometrically
in Figure 4.29. The fitted values given in the figure might be combined with
product requirements and cost information to allow a process engineer to make
sound decisions about autoclave temperature, autoclave time, and time span.

In Example 9, the simplified version of display (4.32) was especially inter-
pretable because it involved only main effects. But sometimes even versions of
relation (4.32) involving interactions can draw attention to what is going on in a
data set.

Example 10 Interactions in a 3-Factor Paper Airplane Experiment

Schmittenberg and Riesterer studied the effects of three factors, each at two levels,
on flight distance of paper airplanes. The factors were Plane Design (A) (design 1
versus design 2), Plane Size (B) (large versus small), and Paper Type (C) (heavy
versus light). The means of flight distances they obtained for 15 flights of each
of the 8 = 2 × 2 × 2 types of planes are given in Figure 4.30.

Calculate the fitted effects corresponding to the ȳi jk’s given in Figure 4.30
“by hand.” (Printout 7 also gives the fitted effects.) By far the biggest fitted effects
(more than three times the size of any others) are the AC interactions. This makes
perfect sense. The strongest message in Figure 4.30 is that plane design 1 should
be made with light paper and plane design 2 with heavy paper. This is a perfect
example of a strong 2-factor interaction in a 3-factor study (where, incidentally,
the fitted 3-factor interactions are roughly 1

4 the size of any other fitted effects).
Any simplified version of display (4.32) used to represent this situation would
certainly have to include the αγik term.
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Figure 4.30 23 sample mean flight distances
displayed on the corners of a cube
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Printout 7 Calculation of Fitted Effects for the Airplane Experiment

General Linear Model

Factor Type Levels Values
design fixed 2 1 2
size fixed 2 1 2
paper fixed 2 1 2

Analysis of Variance for mean dis, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F P
design 1 2.000 2.000 2.000 **
size 1 2.645 2.645 2.645 **
paper 1 7.605 7.605 7.605 **
design*size 1 8.000 8.000 8.000 **
design*paper 1 95.220 95.220 95.220 **
size*paper 1 4.205 4.205 4.205 **
design*size*paper 1 0.180 0.180 0.180 **
Error 0 0.000 0.000 0.000
Total 7 119.855

** Denominator of F-test is zero.

Term Coef StDev T P
Constant 20.0750 0.0000 * *
design
1 -0.500000 0.000000 * *
size
1 0.575000 0.000000 * *
paper
1 0.975000 0.000000 * *
design*size
1 1 -1.00000 0.00000 * *
design*paper
1 1 -3.45000 0.00000 * *
size*paper
1 1 -0.725000 0.000000 * *
design*size*paper
1 1 1 -0.150000 0.000000 * *

4.3.5 Special Devices for 2p Studies

All of the discussion in this section has been general, in the sense that any value
has been permissible for the number of levels for a factor. In particular, all of the
definitions of fitted effects in the section work as well for 3 × 5 × 7 studies as they
do for 2 × 2 × 2 studies. But from here on in the section, attention will be restricted
to 2p data structures.

Restricting attention to two-level factors affords several conveniences. One isSpecial
2p factorial

notation
notational. It is possible to reduce the clutter caused by the multiple subscript “i jk”
notation, as follows. One level of each factor is designated as a “high” (or “+”)
level and the other as a “low” (or “−”) level. Then the 2p factorial combinations are
labeled with letters corresponding to those factors appearing in the combination at
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Table 4.21
Shorthand Names for the 23 Factorial Treatment
Combinations

Level of Level of Level of Combination
Factor A Factor B Factor C Name

1 1 1 (1)
2 1 1 a
1 2 1 b
2 2 1 ab
1 1 2 c
2 1 2 ac
1 2 2 bc
2 2 2 abc

their high levels. For example, if level 2 of each of factors A, B, and C is designated
the high level, shorthand names for the 23 = 8 different ABC combinations are as
given in Table 4.21. Using these names, for example, ȳa can stand for a sample mean
where factor A is at its high (or second) level and all other factors are at their low
(or first) levels.

A second convenience special to two-level factorial data structures is the factSpecial relationship
between 2p effects

of a given type
that all effects of a given type have the same absolute value. This has already been
illustrated in Example 9. For example, looking back, for the data of Table 4.20,

a2 = 420 = −(−420) = −a1

and

bc22 = −2.5 = bc11 = −bc12 = −bc21

This is always the case for fitted effects in 2p factorials. In fact, if two fitted
effects of the same type are such that an even number of 1 → 2 or 2 → 1 subscript
changes are required to get the second from the first, the fitted effects are equal
(e.g., bc22 = bc11). If an odd number are required, then the second fitted effect is
−1 times the first (e.g., bc12 = −bc22). This fact is so useful because one needs only
to do the arithmetic necessary to find one fitted effect of each type and then choose
appropriate signs to get all others of that type.

A statistician named Frank Yates is credited with discovering an efficient,
mechanical way of generating one fitted effect of each type for a 2p study. His
method is easy to implement “by hand” and produces fitted effects with all “2”
subscripts (i.e., corresponding to the “all factors at their high level” combination).
The Yates algorithm consists of the following steps.The Yates algorithm

for computing fitted
2p factorial effects Step 1 Write down the 2p sample means in a column in what is called Yates

standard order. Standard order is easily remembered by beginning
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with (1) and a, then multiplying these two names (algebraically) by
b to get b and ab, then multiplying these four names by c to get c, ac,
bc, abc, etc.

Step 2 Make up another column of numbers by first adding and then sub-
tracting (first from second) the entries in the previous column in pairs.

Step 3 Follow step 2 a total of p times, and then make up a final column by
dividing the entries in the last column by the value 2p.

The last column (made via step 3) gives fitted effects (all factors at level 2), again
in standard order.

Example 9
(continued )

Table 4.22 shows the use of the Yates algorithm to calculate fitted effects for the
23 composite material study. The entries in the final column of this table are, of
course, exactly as listed earlier, and the rest of the fitted effects are easily obtained
via appropriate sign changes. This final column is an extremely concise summary
of the fitted effects, which quickly reveals which types of fitted effects are larger
than others.

Table 4.22
The Yates Algorithm Applied to the Means of Table 4.20

Combination ȳ Cycle 1 Cycle 2 Cycle 3 Cycle 3 ÷ 8

(1) 1520 3970 9210 18,880 2360 = ȳ
...

a 2450 5240 9670 3,360 420 = a2
b 2340 4210 1490 2,520 315 = b2
ab 2900 5460 1870 −240 −30 = ab22
c 1670 930 1270 460 57.5 = c2
ac 2540 560 1250 380 47.5 = ac22
bc 2230 870 −370 −20 −2.5 = bc22
abc 3230 1000 130 500 62.5 = abc222

The Yates algorithm is useful beyond finding fitted effects. For balanced data
sets, it is also possible to modify it slightly to find fitted responses, ŷ, correspond-
ing to a simplified version of a relation like display (4.32). First, the desired (all
factors at their high level) fitted effects (using 0’s for those types not considered)
are written down in reverse standard order. Then, by applying p cycles of theThe reverse Yates

algorithm and easy
computation of fitted

responses

Yates additions and subtractions, the fitted values, ŷ, are obtained, listed in re-
verse standard order. (Note that no final division is required in this reverse Yates
algorithm.)
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Example 9
(continued )

Consider fitting the relationship (4.33) to the balanced data set that led to the
means of Table 4.20 via the reverse Yates algorithm. Table 4.23 gives the details.
The fitted values in the final column are exactly as shown earlier in Figure 4.29.

Table 4.23
The Reverse Yates Algorithm Applied to Fitting the "A and B
Main Effects Only" Equation (4.33) to the Data of Table 4.20

Fitted Effect Value Cycle 1 Cycle 2 Cycle 3 (ŷ)

abc222 0 0 0 3095 = ŷabc
bc22 0 0 3095 2255 = ŷbc
ac22 0 315 0 2465 = ŷac
c2 0 2780 2255 1625 = ŷc
ab22 0 0 0 3095 = ŷab
b2 315 0 2465 2255 = ŷb
a2 420 315 0 2465 = ŷa
ȳ

...
2360 1940 1625 1625 = ŷ

(1)

The restriction to two-level factors that makes these notational and computa-
tional devices possible is not as specialized as it may at first seem. When an engineer
wishes to study the effects of a large number of factors, even 2p will be a large num-
ber of conditions to investigate. If more than two levels of factors are considered,The importance

of two-level
factorials

the sheer size of a complete factorial study quickly becomes unmanageable. Rec-
ognizing this, two-level studies are often used for screening to identify a few (from
many) process variables for subsequent study at more levels on the basis of their
large perceived effects in the screening study. So this 2p material is in fact quite
important to the practice of engineering statistics.

Section 3 Exercises ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1. Since the data of Exercise 2 of Section 4.2 have
complete factorial structure, it is possible (at least
temporarily) to ignore the fact that the two experi-
mental factors are basically quantitative and make
a factorial analysis of the data.
(a) Compute all fitted factorial main effects and in-

teractions for the data of Exercise 2 of Section
4.2. Interpret the relative sizes of these fitted ef-
fects, using a interaction plot like Figure 4.22
to facilitate your discussion.

(b) Compute nine fitted responses for the “main ef-
fects only” explanation of y, y ≈ µ + αi + βj .

Plot these versus level of the NaOH variable,
connecting fitted values having the same level
of the Time variable with line segments, as in
Figure 4.23. Discuss how this plot compares
to the two plots of fitted y versus x1 made in
Exercise 2 of Section 4.2.

(c) Use the fitted values computed in (b) and find
a value of R2 appropriate to the “main effects
only” representation of y. How does it com-
pare to the R2 values from multiple regres-
sions? Also use the fitted values to compute
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residuals for this “main effects only” represen-
tation. Plot these (versus level of NaOH, level
of Time, and ŷ, and in normal plot form). What
do they indicate about the present “no interac-
tion” explanation of specific area?

2. Bachman, Herzberg, and Rich conducted a 23 fac-
torial study of fluid flow through thin tubes. They
measured the time required for the liquid level in
a fluid holding tank to drop from 4 in. to 2 in. for
two drain tube diameters and two fluid types. Two
different technicians did the measuring. Their data
are as follows:

Diameter

Technician (in.) Fluid Time (sec)

1 .188 water 21.12, 21.11, 20.80

2 .188 water 21.82, 21.87, 21.78

1 .314 water 6.06, 6.04, 5.92

2 .314 water 6.09, 5.91, 6.01

1 .188 ethylene glycol 51.25, 46.03, 46.09

2 .188 ethylene glycol 45.61, 47.00, 50.71

1 .314 ethylene glycol 7.85, 7.91, 7.97

2 .314 ethylene glycol 7.73, 8.01, 8.32

(a) Compute (using the Yates algorithm or other-
wise) the values of all the fitted main effects,
two-way interactions, and three-way interac-
tions for these data. Do any simple interpreta-
tions of these suggest themselves?

(b) The students actually had some physical the-
ory suggesting that the log of the drain time
might be a more convenient response variable
than the raw time. Take the logs of the y’s and
recompute the factorial effects. Does an inter-
pretation of this system in terms of only main
effects seem more plausible on the log scale
than on the original scale?

(c) Considering the logged drain times as the re-
sponses, find fitted values and residuals for a
“Diameter and Fluid main effects only” expla-
nation of these data. Compute R2 appropriate
to such a view and compare it to R2 that re-
sults from using all factorial effects to describe
log drain time. Make and interpret appropriate
residual plots.

(d) Based on the analysis from (c), what change in
log drain time seems to accompany a change
from .188 in. diameter to .314 in. diameter?
What does this translate to in terms of raw drain
time? Physical theory suggests that raw time is
inversely proportional to the fourth power of
drain tube radius. Does your answer here seem
compatible with that theory? Why or why not?

3. When analyzing a full factorial data set where the
factors involved are quantitative, either the surface-
fitting technology of Section 4.2 or the factorial
analysis material of Section 4.3 can be applied.
What practical engineering advantage does the first
offer over the second in such cases?

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

4.4 Transformations and Choice of Measurement
Scale (Optional )

Sections 4.2 and 4.3 are an introduction to one of the main themes of engineer-
ing statistical analysis: the discovery and use of simple structure in complicated
situations. Sometimes this can be done by reexpressing variables on some other
(nonlinear) scales of measurement besides the ones that first come to mind. That is,
sometimes simple structure may not be obvious on initial scales of measurement, but
may emerge after some or all variables have been transformed. This section presents
several examples where transformations are helpful. In the process, some comments
about commonly used types of transformations, and more specific reasons for using
them, are offered.
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4.4.1 Transformations and Single Samples

In Chapter 5, there are a number of standard theoretical distributions. When one of
these standard models can be used to describe a response y, all that is known about
the model can be brought to bear in making predictions and inferences regarding y.
However, when no standard distributional shape can be found to describe y, it may
nevertheless be possible to so describe g(y) for some function g(·).

Example 11 Discovery Times at an Auto Shop

Elliot, Kibby, and Meyer studied operations at an auto repair shop. They collected
some data on what they called the “discovery time” associated with diagnosing
what repairs the mechanics were going to recommend to the car owners. Thirty
such discovery times (in minutes) are given in Figure 4.31, in the form of a
stem-and-leaf plot.

The stem-and-leaf plot shows these data to be somewhat skewed to the
right. Many of the most common methods of statistical inference are based on
an assumption that a data-generating mechanism will in the long run produce
not skewed, but rather symmetrical and bell-shaped data. Therefore, using these
methods to draw inferences and make predictions about discovery times at this
shop is highly questionable. However, suppose that some transformation could
be applied to produce a bell-shaped distribution of transformed discovery times.
The standard methods could be used to draw inferences about transformed dis-
covery times, which could then be translated (by undoing the transformation) to
inferences about raw discovery times.

One common transformation that has the effect of shortening the right tail
of a distribution is the logarithmic transformation, g(y) = ln(y). To illustrate its
use in the present context, normal plots of both discovery times and log discovery
times are given in Figure 4.32. These plots indicate that Elliot, Kibby, and Meyer
could not have reasonably applied standard methods of inference to the discovery
times, but they could have used the methods with log discovery times. The second
normal plot is far more linear than the first.
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The logarithmic transformation was useful in the preceding example in reducing
the skewness of a response distribution. Some other transformations commonly
employed to change the shape of a response distribution in statistical engineering
studies are the power transformations,

Power
transformations

g(y) = (y − γ )α (4.34)

In transformation (4.34), the number γ is often taken as a threshold value, corre-
sponding to a minimum possible response. The number α governs the basic shape
of a plot of g(y) versus y. For α > 1, transformation (4.34) tends to lengthen the
right tail of a distribution for y. For 0 < α < 1, the transformation tends to shorten
the right tail of a distribution for y, the shortening becoming more drastic as α ap-
proaches 0 but not as pronounced as that caused by the logarithmic transformation

Logarithmic
transformation

g(y) = ln(y − γ )

4.4.2 Transformations and Multiple Samples

Comparing several sets of process conditions is one of the fundamental problems of
statistical engineering analysis. It is advantageous to do the comparison on a scale
where the samples have comparable variabilities, for at least two reasons. The first
is the obvious fact that comparisons then reduce simply to comparisons between
response means. Second, standard methods of statistical inference often have well-
understood properties only when response variability is comparable for the different
sets of conditions.



194 Chapter 4 Describing Relationships Between Variables

When response variability is not comparable under different sets of conditions,
a transformation can sometimes be applied to all observations to remedy this. This
possibility of transforming to stabilize variance exists when response variance is
roughly a function of response mean. Some theoretical calculations suggest the fol-
lowing guidelines as a place to begin looking for an appropriate variance-stabilizing
transformation:Transformations

to stabilize
response variance 1. If response standard deviation is approximately proportional to response

mean, try a logarithmic transformation.

2. If response standard deviation is approximately proportional to the δ power
of the response mean, try transformation (4.34) with α = 1 − δ.

Where several samples (and corresponding ȳ and s values) are involved, an empirical
way of investigating whether (1) or (2) above might be useful is to plot ln(s) versus
ln(ȳ) and see if there is approximate linearity. If so, a slope of roughly 1 makes (1)
appropriate, while a slope of δ 6= 1 signals what version of (2) might be helpful.

In addition to this empirical way of identifying a potentially variance-stabilizing
transformation, theoretical considerations can sometimes provide guidance. Stan-
dard theoretical distributions (like those introduced in Chapter 5) have their own
relationships between their (theoretical) means and variances, which can help pick
out an appropriate version of (1) or (2) above.

4.4.3 Transformations and Simple Structure
in Multifactor Studies

In Section 4.2, Taylor’s equation for tool life y in terms of cutting speed x was
advantageously reexpressed as a linear equation for ln(y) in terms of ln(x). This is
just one manifestation of the general fact that many approximate laws of physical
science and engineering are power laws, expressing one quantity as a product of a
constant and powers (some possibly negative) of other quantities. That is, they are
of the form

A power law y ≈ αx
β1
1 x

β2
2 · · · x

βk
k (4.35)

Of course, upon taking logarithms in equation (4.35),

ln(y) ≈ ln(α) + β1 ln(x1) + β2 ln(x2) + · · · + βk ln(xk) (4.36)

which immediately suggests the wide usefulness of the logarithmic transformation
for both y and x variables in surface-fitting applications involving power laws.

But there is something else in display (4.36) that bears examination: The k func-
tions of the fundamental x variables enter the equation additively. In the language of
the previous section, there are no interactions between the factors whose levels are
specified by the variables x1, x2, . . . , xk . This suggests that even in studies involving
only seemingly qualitative factors, if a power law for y is at work and the factors
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act on different fundamental variables x , a logarithmic transformation will tend to
create a simple structure. It will do so by eliminating the need for interactions in
describing the response.

Example 12 Daniel’s Drill Advance Rate Study

In his book Applications of Statistics to Industrial Experimentation, Cuthbert
Daniel gives an extensive discussion of an unreplicated 24 factorial study of the
behavior of a new piece of drilling equipment. The response y is a rate of advance
of the drill (no units are given), and the experimental factors are Load on the small
stone drill (A), Flow Rate through the drill (B), Rotational Speed (C), and Type
of Mud used in drilling (D). Daniel’s data are given in Table 4.24.

Application of the Yates algorithm to the data in Table 4.24 (p = 4 cycles are
required, as is division of the results of the last cycle by 24) gives the fitted effects:

ȳ
....

= 6.1550
a2 = .4563 b2 = 1.6488 c2 = 3.2163 d2 = 1.1425

ab22 = .0750 ac22 = .2975 ad22 = .4213
bc22 = .7525 bd22 = .2213 cd22 = .7987

abc222 = .0838 abd222 = .2950 acd222 = .3775 bcd222 = .0900
abcd2222 = .2688

Looking at the magnitudes of these fitted effects, the candidate relationships

y ≈ µ + βj + γk + δl (4.37)

and

y ≈ µ + βj + γk + δl + βγjk + γ δkl (4.38)

Table 4.24
Daniel’s 24 Drill Advance Rate Data

Combination y Combination y

(1) 1.68 d 2.07
a 1.98 ad 2.44
b 3.28 bd 4.09
ab 3.44 abd 4.53
c 4.98 cd 7.77
ac 5.70 acd 9.43
bc 9.97 bcd 11.75
abc 9.07 abcd 16.30
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Example 12
(continued )

are suggested. (The five largest fitted effects are, in order of decreasing magnitude,
the main effects of C, B, and D, and then the two-factor interactions of C with D
and B with C.) Fitting equation (4.37) to the balanced data of Table 4.24 produces
R2 = .875, and fitting relationship (4.38) produces R2 = .948. But upon closer
examination, neither fitted equation turns out to be a very good description of
these data.

Figure 4.33 shows a normal plot and a plot against ŷ for residuals from
a fitted version of equation (4.37). It shows that the fitted version of equation
(4.37) produces several disturbingly large residuals and fitted values that are
systematically too small for responses that are small and large, but too large for
moderate responses. Such a curved plot of residuals versus ŷ in general suggests
that a nonlinear transformation of y may potentially be effective.

The reader is invited to verify that residual plots for equation (4.38) look even
worse than those in Figure 4.33. In particular, it is the bigger responses that are
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fitted relatively badly by relationship (4.38). This is an unfortunate circumstance,
since presumably one study goal is the optimization of response.

But using y′ = ln(y) as a response variable, the situation is much different.
The Yates algorithm produces the following fitted effects.

y′
....

= 1.5977
a2 = .0650 b2 = .2900 c2 = .5772 d2 = .1633

ab22 = −.0172 ac22 = .0052 ad22 = .0334
bc22 = −.0251 bd22 = −.0075 cd22 = .0491

abc222 = .0052 abd222 = .0261 acd222 = .0266 bcd222 = −.0173
abcd2222 = .0193
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Example 12
(continued )

For the logged drill advance rates, the simple relationship

ln(y) ≈ µ + βj + γk + δl (4.39)

yields R2 = .976 and absolutely unremarkable residuals. Figure 4.34 shows a
normal plot of these and a plot of them against ̂ln(y).

The point here is that the logarithmic scale appears to be the natural one on
which to study drill advance rate. The data can be better described on the log
scale without using interaction terms than is possible with interactions on the
original scale.

There are sometimes other reasons to consider a logarithmic transformation of
a response variable in a multifactor study, besides its potential to produce simple
structure. In cases where responses vary over several orders of magnitude, simple
curves and surfaces typically don’t fit raw y values very well, but they can do a much
better job of fitting ln(y) values (which will usually vary over less than a single order
of magnitude). Another potentially helpful property of a log-transformed analysis
is that it will never yield physically impossible negative fitted values for a positive
variable y. In contrast, an analysis on an original scale of measurement can, rather
embarrassingly, do so.

Example 13 A 32 Factorial Chemical Process Experiment

The data in Table 4.25 are from an article by Hill and Demler (“More on Plan-
ning Experiments to Increase Research Efficiency,” Industrial and Engineering
Chemistry, 1970). The data concern the running of a chemical process where
the objective is to achieve high yield y1 and low filtration time y2 by choosing
settings for Condensation Temperature, x1, and the Amount of B employed, x2.

For purposes of this example, consider the second response, filtration time.
Fitting the approximate (quadratic) relationship

y2 ≈ β0 + β1x1 + β2x2 + β3x2
1 + β4x2

2 + β5x1x2

to these data produces the equation

ŷ2 = 5179.8 − 56.90x1 − 146.0x2 + .1733x2
1 + 1.222x2

2 + .6837x1x2 (4.40)

and R2 = .866. Equation (4.40) defines a bowl-shaped surface in three dimen-
sions, which has a minimum at about the set of conditions x1 = 103.2◦C and
x2 = 30.88 cc. At first glance, it might seem that the development of equation
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Table 4.25
Yields and Filtration Times in a 32 Factorial Chemical
Process Study

x1, x2, y1, y2,
Condensation Amount Yield Filtration

Temperature (◦C) of B (cc) (g) Time (sec)

90 24.4 21.1 150
90 29.3 23.7 10
90 34.2 20.7 8

100 24.4 21.1 35
100 29.3 24.1 8
100 34.2 22.2 7
110 24.4 18.4 18
110 29.3 23.4 8
110 34.2 21.9 10

(4.40) rates as a statistical engineering success story. But there is the embarrass-
ing fact that upon substituting x1 = 103.2 and x2 = 30.88 into equation (4.40),
one gets ŷ2 = −11 sec, hardly a possible filtration time.

Looking again at the data, it is not hard to see what has gone wrong. The
largest response is more than 20 times the smallest. So in order to come close to
fitting both the extremely large and more moderate responses, the fitted quadratic
surface needs to be very steep—so steep that it is forced to dip below the (x1, x2)-
plane and produce negative ŷ2 values before it can “get turned around” and start
to climb again as it moves away from the point of minimum ŷ2 toward larger x1
and x2.

One cure for the problem of negative predicted filtration times is to use ln(y2)

as a response variable. Values of ln(y2) are given in Table 4.26 to illustrate the
moderating effect the logarithm has on the factor of 20 disparity between the
largest and smallest filtration times.

Fitting the approximate quadratic relationship

ln(y2) ≈ β0 + β1x1 + β2x2 + β3x2
1 + β4x2

2 + β5x1x2

to the ln(y2) values produces the equation

̂ln(y2) = 99.69 − .8869x1 − 3.348x2 + .002506x2
1 + .03375x2

2 + .01196x1x2
(4.41)

and R2 = .975. Equation (4.41) also represents a bowl-shaped surface in three
dimensions and has a minimum approximately at the set of conditions x1 =
101.5◦C and x2 = 31.6 cc. The minimum fitted log filtration time is ̂ln(y2) =
1.7582 ln (sec), which translates to a filtration time of 5.8 sec, a far more sensible
value than the negative one given earlier.
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Example 13
(continued )

Table 4.26
Raw Filtration Times and Corresponding Logged Filtration
Times

y2, ln(y2),
Filtration Time (sec) Log Filtration Time (ln(sec))

150 5.0106
10 2.3026
8 2.0794

35 3.5553
8 2.0794
7 1.9459

18 2.8904
8 2.0794

10 2.3026

The taking of logs in this example had two beneficial effects. The first was to
cut the ratio of largest response to smallest down to about 2.5 (from over 20), al-
lowing a good fit (as measured by R2) for a fitted quadratic in two variables, x1 and
x2. The second was to ensure that minimum predicted filtration time was positive.

Of course, other transformations besides the logarithmic one are also useful in
describing the structure of multifactor data sets. Sometimes they are applied to the
responses and sometimes to other system variables. As an example of a situation
where a power transformation like that specified by equation (4.34) is useful in
understanding the structure of a sample of bivariate data, consider the following.

Example 14 Yield Strengths of Copper Deposits and Hall-Petch Theory

In their article “Mechanical Property Testing of Copper Deposits for Printed Cir-
cuit Boards” (Plating and Surface Finishing, 1988), Lin, Kim, and Weil present
some data relating the yield strength of electroless copper deposits to the aver-
age grain diameters measured for these deposits. The values in Table 4.27 were
deduced from a scatterplot in their paper. These values are plotted in Figure
4.35. They don’t seem to promise a simple relationship between grain diameter
and yield strength. But in fact, the so called Hall-Petch relationship says that
yield strengths of most crystalline materials are proportional to the reciprocal
square root of grain diameter. That is, Hall-Petch theory predicts a linear rela-
tionship between y and x−.5 or between x and y−2. Thus, before trying to further
detail the relationship between the two variables, application of transformation
(4.34) with α = −.5 to x or transformation (4.34) with α = −2 to y seems in
order. Figure 4.36 shows the partial effectiveness of the reciprocal square root
transformation (applied to x) in producing a linear relationship in this context.
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Table 4.27
Average Grain Diameters and Yield Strengths for Copper Deposits

x , Average Grain y, x , Average Grain y,
Diameter (µm) Yield Strength (MPa) Diameter (µm) Yield Strength (MPa)

.22 330 .48 236

.27 370 .49 224

.33 266 .51 236

.41 270 .90 210
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Figure 4.35 Scatterplot of yield strength versus
average grain diameter

Y
ie

ld
 s

tr
en

gt
h 

(M
Pa

)

250

300

1.4 1.8
Reciprocal square root grain diameter

350

1.2 1.6
200

2.0 2.21

Figure 4.36 Scatterplot of yield strength versus the
reciprocal square root average grain diameter



202 Chapter 4 Describing Relationships Between Variables

In the preceding example, a directly applicable and well-known physical theory
suggests a natural transformation. Sometimes physical or mathematical consider-
ations that are related to a problem, but do not directly address it, may also suggest
some things to try in looking for transformations to produce simple structure. For
example, suppose some other property besides yield strength were of interest and
thought to be related to grain size. If a relationship with diameter is not obvious,
quantifying grain size in terms of cross-sectional area or volume might be considered,
and this might lead to squaring or cubing a measured diameter. To take a different
example, if some handling characteristic of a car is thought to be related to its speed
and a relationship with velocity is not obvious, you might remember that kinetic
energy is related to velocity squared, thus being led to square the velocity.

To repeat the main point of this section, the search for appropriate transforma-The goal of data
transformation tions is a quest for measurement scales on which structure is transparent and simple.

If the original/untransformed scales are the most natural ones on which to report the
findings of a study, the data analysis should be done on the transformed scales but
then “untransformed” to state the final results.

Section 4 Exercises ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1. What are benefits that can sometimes be derived
from transforming data before applying standard
statistical techniques?

2. Suppose that a response variable, y, obeys an ap-
proximate power law in at least two quantitative
variables (say, x1 and x2). Will there be important
interactions? If the log of y is analyzed instead,

will there be important interactions? (In order to
make this concrete, you may if you wish consider
the relationship y ≈ kx2

1 x−3
2 . Plot, for at least two

different values of x2, y as a function of x1. Then
plot, for at least two different values of x2, ln(y) as
a function of x1. What do these plots show in the
way of parallelism?)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

4.5 Beyond Descriptive Statistics

We hope that these first four chapters have made you genuinely ready to accept
the need for methods of formal statistical inference. Many real data sets have been
examined, and many instances of useful structure have been discovered—this in spite
of the fact that the structure is often obscured by what might be termed background
noise. Recognizing the existence of such variation, one realizes that the data in hand
are probably not a perfect representation of the population or process from which
they were taken. Thus, generalizing from the sample to a broader sphere will have
to be somehow hedged. To this point, the hedging has been largely verbal, specific
to the case, and qualitative. There is a need for ways to quantitatively express the
precision and reliability of any generalizations about a population or process that
are made from data in hand. For example, the chemical filtration time problem of
Example 13 produced the conclusion that with the temperature set at 101.5◦C and
using 31.6 cc of B, a predicted filtration time is 5.8 sec. But will the next time be
5.8 sec ± 3 sec or ± .05 sec? If you decide on ± somevalue, how sure can you be
of those tolerances?
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In order to quantify precision and reliability for inferences based on samples,
the mathematics of probability must be employed. Mathematical descriptions of
data generation that are applicable to the original data collection (and any future
collection) are necessary. Those mathematical models must explicitly allow for the
kind of variation that has been faced in the last two chapters.

The models that are most familiar to engineers do not explicitly account for
variation. Rather, they are deterministic. For example, Newtonian physics predicts
that the displacement of a body in free fall in a time t is exactly 1

2 gt2. In this
statement, there is no explicit allowance for variability. Any observed deviation
from the Newtonian predictions is completely unaccounted for. Thus, there is really
no logical framework in which to extrapolate from data that don’t fit Newtonian
predictions exactly.

Stochastic (or probabilistic) models do explicitly incorporate the feature that
even measurements generated under the same set of conditions will exhibit variation.
Therefore, they can function as descriptions of real-world data collection processes,
where many small, unidentifiable causes act to produce the background noise seen
in real data sets. Variation is predicted by stochastic or probabilistic models. So they
provide a logical framework in which to quantify precision and reliability and to
extrapolate from noisy data to contexts larger than the data set in hand.

In the next chapter, some fundamental concepts of probability will be introduced.
Then Chapter 6 begins to use probability as a tool in statistical inference.
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1. Read again Section 1.4 and the present one. Then
describe in your own words the difference between
deterministic and stochastic/probabilistic models.

Give an example of a deterministic model that is
useful in your field.
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1. Nicholson and Bartle studied the effect of the wa-
ter/cement ratio on 14-day compressive strength
for Portland cement concrete. The water/cement
ratios (by volume) and compressive strengths of
nine concrete specimens are given next.

Water/Cement 14-Day Compressive

Ratio, x Strength, y (psi)

.45 2954, 2913, 2923

.50 2743, 2779, 2739

.55 2652, 2607, 2583

(a) Fit a line to the data here via least squares,
showing the hand calculations.

(b) Compute the sample correlation between x and
y by hand. Interpret this value.

(c) What fraction of the raw variability in y is
accounted for in the fitting of a line to the data?

(d) Compute the residuals from your fitted line and
make a normal plot of them. Interpret this plot.

(e) What compressive strength would you predict,
based on your calculations from (a), for speci-
mens made using a .48 water/cement ratio?

(f) Use a statistical package to find the least
squares line, the sample correlation, R2, and
the residuals for this data set.

2. Griffith and Tesdall studied the elapsed time in 1
4

mile runs of a Camaro Z-28 fitted with different
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sizes of carburetor jetting. Their data from six runs
of the car follow:

Jetting Size, x Elapsed Time, y (sec)

66 14.90

68 14.67

70 14.50

72 14.53

74 14.79

76 15.02

(a) What is an obvious weakness in the students’
data collection plan?

(b) Fit both a line and a quadratic equation (y ≈
β0 + β1x + β2x2) to these data via least
squares. Plot both of these equations on a scat-
terplot of the data.

(c) What fractions of the raw variation in elapsed
time are accounted for by the two different
fitted equations?

(d) Use your fitted quadratic equation to predict an
optimal jetting size (allowing fractional sizes).

3. The following are some data taken from “Kinet-
ics of Grain Growth in Powder-formed IN-792: A
Nickel-Base Super-alloy” by Huda and Ralph (Ma-
terials Characterization, September 1990). Three
different Temperatures, x1 (◦K), and three different
Times, x2 (min), were used in the heat treating of
specimens of a material, and the response

y = mean grain diameter (µm)

was measured.

Temperature, x1 Time, x2 Grain Size, y

1443 20 5

1443 120 6

1443 1320 9

1493 20 14

1493 120 17

1493 1320 25

1543 20 29

1543 120 38

1543 1320 60

(a) What type of data structure did the researchers
employ? (Use the terminology of Section 1.2.)
What was an obvious weakness in their data
collection plan?

(b) Use a regression program to fit the following
equations to these data:

y ≈ β0 + β1x1 + β2x2

y ≈ β0 + β1x1 + β2 ln(x2)

y ≈ β0 + β1x1 + β2 ln(x2) + β3x1 ln(x2)

What are the R2 values for the three differ-
ent fitted equations? Compare the three fitted
equations in terms of complexity and apparent
ability to predict y.

(c) Compute the residuals for the third fitted equa-
tion in (b). Plot them against x1, x2, and ŷ.
Also normal-plot them. Do any of these plots
suggest that the third fitted equation is inade-
quate as summary of these data? What, if any,
possible improvement over the third equation
is suggested by these plots?

(d) As a means of understanding the nature of the
third fitted equation in (b), make a scatterplot
of y vs. x2 using a logarithmic scale for x2. On
this plot, plot three lines representing ŷ as a
function of x2 for the three different values of
x1. Qualitatively, how would a similar plot for
the second equation differ from this one?

(e) Using the third equation in (b), what mean
grain diameter would you predict for x1 =
1500 and x2 = 500?

(f) It is possible to ignore the fact that the Tem-
perature and Time factors are quantitative and
make a factorial analysis of these data. Do so.
Begin by making an interaction plot similar
to Figure 4.22 for these data. Based on that
plot, discuss the apparent relative sizes of the
Time and Temperature main effects and the
Time × Temperature interactions. Then com-
pute the fitted factorial effects (the fitted main
effects and interactions).

4. The article “Cyanoacetamide Accelerators for the
Epoxide/Isocyanate Reaction” by Eldin and Ren-
ner (Journal of Applied Polymer Science, 1990)
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reports the results of a 23 factorial experiment. Us-
ing cyanoacetamides as catalysts for an epoxy/iso-
cyanate reaction, various mechanical properties of
a resulting polymer were studied. One of these was

y = impact strength (kJ/mm2)

The three experimental factors employed and their
corresponding experimental levels were as follows:

Factor A Initial Epoxy/Isocyanate Ratio
0.4 (−) vs. 1.2 (+)

Factor B Flexibilizer Concentration
10 mol % (−) vs. 40 mol % (+)

Factor C Accelerator Concentration
1/240 mol % (−) vs. 1/30 mol% (+)

(The flexibilizer and accelerator concentrations are
relative to the amount of epoxy present initially.)
The impact strength data obtained (one observation
per combination of levels of the three factors) were
as follows:

Combination y Combination y

(1) 6.7 c 6.3

a 11.9 ac 15.1

b 8.5 bc 6.7

ab 16.5 abc 16.4

(a) What is an obvious weakness in the researchers’
data collection plan?

(b) Use the Yates algorithm and compute fitted fac-
torial effects corresponding to the “all high”
treatment combination (i.e., compute ȳ

...
, a2,

b2, etc.). Interpret these in the context of the
original study. (Describe in words which fac-
tors and/or combinations of factors appear to
have the largest effect(s) on impact strength
and interpret the sign or signs.)

(c) Suppose only factor A is judged to be of im-
portance in determining impact strength. What
predicted/fitted impact strengths correspond to
this judgment? (Find ŷ values using the reverse
Yates algorithm or otherwise.) Use these eight

values of ŷ and compute R2 for the “A main ef-
fects only” description of impact strength. (The
formula in Definition 3 works in this context
as well as in regression.)

(d) Now recognize that the experimental factors
here are quantitative, so methods of curve and
surface fitting may be applicable. Fit the equa-
tion y ≈ β0 + β1(epoxy/isocyanate ratio) to
the data. What eight values of ŷ and value
of R2 accompany this fit?

5. Timp and M-Sidek studied the strength of mechan-
ical pencil lead. They taped pieces of lead to a desk,
with various lengths protruding over the edge of the
desk. After fitting a small piece of tape on the free
end of a lead piece to act as a stop, they loaded it
with paper clips until failure. In one part of their
study, they tested leads of two different Diame-
ters, used two different Lengths protruding over
the edge of the desk, and tested two different lead
Hardnesses. That is, they ran a 23 factorial study.
Their factors and levels were as follows:

Factor A Diameter .3 mm (−) vs. .7 mm (+)

Factor B Length Protruding 3 cm (−) vs.
4.5 cm (+)

Factor C Hardness B (−) vs. 2H (+)

and m = 2 trials were made at each of the 23 = 8
different sets of conditions. The data the students
obtained are given here.

Combination Number of Clips

(1) 13, 13

a 74, 76

b 9, 10

ab 43, 42

c 16, 15

ac 89, 88

bc 10, 12

abc 54, 55

(a) It appears that analysis of these data in terms
of the natural logarithms of the numbers of
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clips first causing failure is more straightfor-
ward than the analysis of the raw numbers of
clips. So take natural logs and compute the fit-
ted 23 factorial effects. Interpret these. In par-
ticular, what (in quantitative terms) does the
size of the fitted A main effect say about lead
strength? Does lead hardness appear to play
a dominant role in determining this kind of
breaking strength?

(b) Suppose only the main effects of Diameter are
judged to be of importance in determining lead
strength. Find a predicted log breaking strength
for .7 mm, 2H lead when the length protruding
is 4.5 cm. Use this to predict the number of
clips required to break such a piece of lead.

(c) What, if any, engineering reasons do you have
for expecting the analysis of breaking strength
to be more straightforward on the log scale than
on the original scale?

6. Ceramic engineering researchers Leigh and Taylor,
in their paper “Computer Generated Experimen-
tal Designs” (Ceramic Bulletin, 1990), studied the
packing properties of crushed T-61 tabular alumina
powder. The densities of batches of the material
were measured under a total of eight different sets
of conditions having a 23 factorial structure. The
following factors and levels were employed in the
study:

Factor A Mesh Size of Powder Particles
6 mesh (−) vs. 60 mesh (+)

Factor B Volume of Graduated Cylinder
100 cc (−) vs. 500 cc (+)

Factor C Vibration of Cylinder
no (−) vs. yes (+)

The mean densities (in g/cc) obtained in m = 5
determinations for each set of conditions were as
follows:

ȳ
(1)

= 2.348 ȳa = 2.080

ȳb = 2.298 ȳab = 1.980

ȳc = 2.354 ȳac = 2.314

ȳbc = 2.404 ȳabc = 2.374

(a) Compute the fitted 23 factorial effects (main
effects, 2-factor interactions and 3-factor inter-
actions) corresponding to the following set of
conditions: 60 mesh, 500 cc, vibrated cylinder.

(b) If your arithmetic for part (a) is correct, you
should have found that the largest of the fitted
effects (in absolute value) are (respectively)
the C main effect, the A main effect, and then
the AC 2-factor interaction. (The next largest
fitted effect is only about half of the smallest
of these, the AC interaction.) Now, suppose
you judge these three fitted effects to summa-
rize the main features of the data set. Interpret
this data summary (A and C main effects and
AC interactions) in the context of this 3-factor
study.

(c) Using your fitted effects from (a) and the data
summary from (b) (A and C main effects and
AC interactions), what fitted response would
you have for these conditions: 60 mesh, 500
cc, vibrated cylinder?

(d) Using your fitted effects from (a), what average
change in density would you say accompanies
the vibration of the graduated cylinder before
density determination?

7. The article “An Analysis of Transformations” by
Box and Cox (Journal of the Royal Statistical So-
ciety, Series B, 1964) contains a classical unrepli-
cated 33 factorial data set originally taken from an
unpublished technical report of Barella and Sust.
These researchers studied the behavior of worsted
yarns under repeated loading. The response vari-
able was

y = the numbers of cycles till failure

for specimens tested with various values of

x1 = length (mm)

x2 = amplitude of the loading cycle (mm)

x3 = load (g)
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The researchers’ data are given in the accompany-
ing table.

x1 x2 x3 y x1 x2 x3 y

250 8 40 674 300 9 50 438

250 8 45 370 300 10 40 442

250 8 50 292 300 10 45 332

250 9 40 338 300 10 50 220

250 9 45 266 350 8 40 3,636

250 9 50 210 350 8 45 3,184

250 10 40 170 350 8 50 2,000

250 10 45 118 350 9 40 1,568

250 10 50 90 350 9 45 1,070

300 8 40 1,414 350 9 50 566

300 8 45 1,198 350 10 40 1,140

300 8 50 634 350 10 45 884

300 9 40 1,022 350 10 50 360

300 9 45 620

(a) To find an equation to represent these data,
you might first try to fit multivariable polyno-
mials. Use a regression program and fit a full
quadratic equation to these data. That is, fit

y ≈ β0 + β1x1 + β2x2 + β3x3 + β4x2
1 + β5x2

2

+β6x2
3 + β7x1x2 + β8x1x3 + β9x2x3

to the data. What fraction of the observed vari-
ation in y does it account for? In terms of par-
simony (or providing a simple data summary),
how does this quadratic equation do as a data
summary?

(b) Notice the huge range of values of the response
variable. In cases like this, where the response
varies over an order of magnitude, taking log-
arithms of the response often helps produce a
simple fitted equation. Here, take (natural) log-
arithms of all of x1, x2, x3, and y, producing
(say) x ′

1, x ′
2, x ′

3, and y′, and fit the equation

y′ ≈ β0 + β1x ′
1 + β2x ′

2 + β3x ′
3

to the data. What fraction of the observed vari-
ability in y = ln(y) does this equation account
for? What change in y′ seems to accompany a
unit (a 1 ln(g)) increase in x ′

3?
(c) To carry the analysis one step further, note that

your fitted coefficients for x ′
1 and x ′

2 are nearly
the negatives of each other. That suggests that
y′ depends only on the difference between x ′

1
and x ′

2. To see how this works, fit the equation

y′ ≈ β0 + β1(x ′
1 − x ′

2) + β2x ′
3

to the data. Compute and plot residuals from
this relationship (still on the log scale). How
does this relationship appear to do as a data
summary? What power law for y (on the orig-
inal scale) in terms of x1, x2, and x3 (on their
original scales) is implied by this last fitted
equation? How does this equation compare to
the one from (a) in terms of parsimony?

(d) Use your equation from (c) to predict the life
of an additional specimen of length 300 mm, at
an amplitude of 9 mm, under a load of 45 g. Do
the same for an additional specimen of length
325 mm, at an amplitude of 9.5 mm, under
a load of 47 g. Why would or wouldn’t you
be willing to make a similar projection for an
additional specimen of length 375 mm, at an
amplitude of 10.5 mm, under a load of 51 g?

8. Bauer, Dirks, Palkovic, and Wittmer fired tennis
balls out of a “Polish cannon” inclined at an angle
of 45◦, using three different Propellants and two
different Charge Sizes of propellant. They observed
the distances traveled in the air by the tennis balls.
Their data are given in the accompanying table.
(Five trials were made for each Propellant/Charge
Size combination and the values given are in feet.)
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Propellant

Lighter Carburetor

Fluid Gasoline Fluid

58 76 90

50 79 86

2.5 ml 53 84 79

49 73 82

59 71 86

Charge Size

65 96 107

59 101 102

5.0 ml 61 94 91

68 91 95

67 87 97

Complete a factorial analysis of these data, includ-
ing a plot of sample means useful for judging the
size of Charge Size × Propellant interactions and
the computing of fitted main effects and interac-
tions. Write a paragraph summarizing what these
data seem to say about how these two variables
affect flight distance.

9. The following data are taken from the article “An
Analysis of Means for Attribute Data Applied to
a 24 Factorial Design” by R. Zwickl (ASQC Elec-
tronics Division Technical Supplement, Fall 1985).
They represent numbers of bonds (out of 96) show-
ing evidence of ceramic pull-out on an electronic
device called a dual in-line package. (Low num-
bers are good.) Experimental factors and their lev-
els were:

Factor A Ceramic Surface
unglazed (−) vs. glazed (+)

Factor B Metal Film Thickness
normal (−) vs. 1.5 times normal (+)

Factor C Annealing Time
normal (−) vs. 4 times normal (+)

Factor D Prebond Clean
normal clean (−) vs. no clean (+)

The resultant numbers of pull-outs for the 24 treat-
ment combinations are given next.

Combination Pull-Outs Combination Pull-Outs

(1) 9 c 13

a 70 ac 55

b 8 bc 7

ab 42 abc 19

d 3 cd 5

ad 6 acd 28

bd 1 bcd 3

abd 7 abcd 6

(a) Use the Yates algorithm and identify dominant
effects here.

(b) Based on your analysis from (a), postulate a
possible “few effects” explanation for these
data. Use the reverse Yates algorithm to find
fitted responses for such a simplified descrip-
tion of the system. Use the fitted values to com-
pute residuals. Normal-plot these and plot them
against levels of each of the four factors, look-
ing for obvious problems with your represen-
tation of system behavior.

(c) Based on your “few effects” description of
bond strength, make a recommendation for the
future making of these devices. (All else being
equal, you should choose what appear to be the
least expensive levels of factors.)

10. Exercise 5 of Chapter 3 concerns a replicated 33

factorial data set (weighings of three different
masses on three different scales by three differ-
ent students). Use a full-featured statistical pack-
age that will compute fitted effects for such data
and write a short summary report stating what
those fitted effects reveal about the structure of
the weighings data.

11. When it is an appropriate description of a two-
way factorial data set, what practical engineering
advantages does a “main effects only” descrip-
tion offer over a “main effects plus interactions”
description?

12. The article referred to in Exercise 4 of Section
4.1 actually considers the effects of both cutting
speed and feed rate on tool life. The whole data
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set from the article follows. (The data in Section
4.1 are the x2 = .01725 data only.)

Cutting Speed, Feed,

x1 (sfpm) x2 (ipr) Tool Life, y (min)

800 .01725 1.00, 0.90, 0.74, 0.66

700 .01725 1.00, 1.20, 1.50, 1.60

700 .01570 1.75, 1.85, 2.00, 2.20

600 .02200 1.20, 1.50, 1.60, 1.60

600 .01725 2.35, 2.65, 3.00, 3.60

500 .01725 6.40, 7.80, 9.80, 16.50

500 .01570 8.80, 11.00, 11.75, 19.00

450 .02200 4.00, 4.70, 5.30, 6.00

400 .01725 21.50, 24.50, 26.00, 33.00

(a) Taylor’s expanded tool life equation is
yx

α1
1 x

α2
2 = C . This relationship suggests that

ln(y) may well be approximately linear in
both ln(x1) and ln(x2). Use a multiple linear
regression program to fit the relationship

ln(y) ≈ β0 + β1 ln(x1) + β2 ln(x2)

to these data. What fraction of the raw vari-
ability in ln(y) is accounted for in the fitting
process? What estimates of the parameters α1,
α2, and C follow from your fitted equation?

(b) Compute and plot residuals (continuing to
work on log scales) for the equation you fit
in part (a). Make at least plots of residuals
versus fitted ln(y) and both ln(x1) and ln(x2),

and make a normal plot of these residuals.
Do these plots reveal any particular problems
with the fitted equation?

(c) Use your fitted equation to predict first a log
tool life and then a tool life, if in this machin-
ing application a cutting speed of 550 and a
feed of .01650 is used.

(d) Plot the ordered pairs appearing in the data
set in the (x1, x2)-plane. Outline a region in
the plane where you would feel reasonably
safe using the equation you fit in part (a) to
predict tool life.

13. K. Casali conducted a gas mileage study on his
well-used four-year-old economy car. He drove
a 107-mile course a total of eight different times
(in comparable weather conditions) at four differ-
ent speeds, using two different types of gasoline,
and ended up with an unreplicated 4 × 2 factorial
study. His data are given in the table below.

Speed Gasoline Gallons Mileage

Test (mph) Octane Used (mpg)

1 65 87 3.2 33.4

2 60 87 3.1 34.5

3 70 87 3.4 31.5

4 55 87 3.0 35.7

5 65 90 3.2 33.4

6 55 90 2.9 36.9

7 70 90 3.3 32.4

8 60 90 3.0 35.7

(a) Make a plot of the mileages that is useful for
judging the size of Speed × Octane interac-
tions. Does it look as if the interactions are
large in comparison to the main effects?

(b) Compute the fitted main effects and interac-
tions for the mileages, using the formulas of
Section 4.3. Make a plot like Figure 4.23
for comparing the observed mileages to fit-
ted mileages computed supposing that there
are no Speed × Octane interactions.

(c) Now fit the equation

Mileage ≈ β0 + β1(Speed) + β2(Octane)

to the data and plot lines representing the pre-
dicted mileages versus Speed for both the 87
octane and the 90 octane gasolines on the
same set of axes.

(d) Now fit the equation Mileage ≈ β0 + β1
(Speed) separately, first to the 87 octane data
and then to the 90 octane data. Plot the two
different lines on the same set of axes.

(e) Discuss the different appearances of the plots
you made in parts (a) through (d) of this exer-
cise in terms of how well they fit the original



210 Chapter 4 Describing Relationships Between Variables

data and the different natures of the assump-
tions involved in producing them.

(f) What was the fundamental weakness in
Casali’s data collection scheme? A weakness
of secondary importance has to do with the
fact that tests 1–4 were made ten days ear-
lier than tests 5–8. Why is this a potential
problem?

14. The article “Accelerated Testing of Solid Film
Lubricants” by Hopkins and Lavik (Lubrication
Engineering, 1972) contains a nice example of
the engineering use of multiple regression. In the
study, m = 3 sets of journal bearing tests were
made on a Mil-L-8937 type film at each combi-
nation of three different Loads and three different
Speeds. The wear lives of journal bearings, y,
in hours, are given next for the tests run by the
authors.

Speed, Load,

x1 (rpm) x2 (psi) Wear Life, y (hs)

20 3,000 300.2, 310.8, 333.0

20 6,000 99.6, 136.2, 142.4

20 10,000 20.2, 28.2, 102.7

60 3,000 67.3, 77.9, 93.9

60 6,000 43.0, 44.5, 65.9

60 10,000 10.7, 34.1, 39.1

100 3,000 26.5, 22.3, 34.8

100 6,000 32.8, 25.6, 32.7

100 10,000 2.3, 4.4, 5.8

(a) The authors expected to be able to describe
wear life as roughly following the relationship
yx1x2 = C , but they did not find this relation-
ship to be a completely satisfactory model. So
instead, they tried using the more general rela-
tionship yx

α1
1 x

α2
2 = C . Use a multiple linear

regression program to fit the relationship

ln(y) ≈ β0 + β1 ln(x1) + β2 ln(x2)

to these data. What fraction of the raw vari-
ability in ln(y) is accounted for in the fitting
process? What estimates of the parameters α1,

α2, and C follow from your fitted equation?
Using your estimates of α1, α2, and C , plot on
the same set of (x1, y) axes the functional re-
lationships between x1 and y implied by your
fitted equation for x2 equal to 3,000, 6,000,
and then 10,000 psi, respectively.

(b) Compute and plot residuals (continuing to
work on log scales) for the equation you fit
in part (a). Make at least plots of residuals
versus fitted ln(y) and both ln(x1) and ln(x2),
and make a normal plot of these residuals.
Do these plots reveal any particular problems
with the fitted equation?

(c) Use your fitted equation to predict first a log
wear life and then a wear life, if in this appli-
cation a speed of 20 rpm and a load of 10,000
psi are used.

(d) (Accelerated life testing) As a means of
trying to make intelligent data-based predic-
tions of wear life at low stress levels (and
correspondingly large lifetimes that would be
impractical to observe directly), you might
(fully recognizing the inherent dangers of the
practice) try to extrapolate using the fitted
equation. Use your fitted equation to predict
first a log wear life and then a wear life if
a speed of 15 rpm and load of 1,500 psi are
used in this application.

15. The article “Statistical Methods for Controlling
the Brown Oxide Process in Multilayer Board
Processing” by S. Imadi (Plating and Surface
Finishing, 1988) discusses an experiment con-
ducted to help a circuit board manufacturer mea-
sure the concentration of important components
in a chemical bath. Various combinations of lev-
els of

x1 = % by volume of component A (a proprietary
formulation, the major component of which
is sodium chlorite)

and

x2 = % by volume of component B (a proprietary
formulation, the major component of which
is sodium hydroxide)
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were set in the chemical bath, and the variables

y1 = ml of 1N H2SO4 used in the first phase
of a titration

and

y2 = ml of 1N H2SO4 used in the second phase
of a titration

were measured. Part of the original data col-
lected (corresponding to bath conditions free of
Na2CO3) follow:

x1 x2 y1 y2

15 25 3.3 .4

20 25 3.4 .4

20 30 4.1 .4

25 30 4.3 .3

25 35 5.0 .5

30 35 5.0 .3

30 40 5.7 .5

35 40 5.8 .4

(a) Fit equations for both y1 and y2 linear in both
of the variables x1 and x2. Does it appear
that the variables y1 and y2 are adequately
described as linear functions of x1 and x2?

(b) Solve your two fitted equations from (a) for x2
(the concentration of primary interest here) in
terms of y1 and y2. (Eliminate x1 by solving
the first for x1 in terms of the other three vari-
ables and plugging that expression for x1 into
the second equation.) How does this equa-
tion seem to do in terms of, so to speak, pre-
dicting x2 from y1 and y2 for the original
data? Chemical theory in this situation indi-
cated that x2 ≈ 8(y1 − y2). Does your equa-
tion seem to do better than the one from chem-
ical theory?

(c) A possible alternative to the calculations in
(b) is to simply fit an equation for x2 in terms
of y1 and y2 directly via least squares. Fit
x2 ≈ β0 + β1 y1 + β2 y2 to the data, using a

regression program. Is this equation the same
one you found in part (b)?

(d) If you were to compare the equations for x2
derived in (b) and (c) in terms of the sum
of squared differences between the predicted
and observed values of x2, which is guaran-
teed to be the winner? Why?

16. The article “Nonbloated Burned Clay Aggregate
Concrete” by Martin, Ledbetter, Ahmad, and Brit-
ton (Journal of Materials, 1972) contains data
on both composition and resulting physical prop-
erty test results for a number of different batches
of concrete made using burned clay aggregates.
The accompanying data are compressive strength
measurements, y (made according to ASTM C 39
and recorded in psi), and splitting tensile strength
measurements, x (made according to ASTM C
496 and recorded in psi), for ten of the batches
used in the study.

Batch 1 2 3 4 5

y 1420 1950 2230 3070 3060

x 207 233 254 328 325

Batch 6 7 8 9 10

y 3110 2650 3130 2960 2760

x 302 258 335 315 302

(a) Make a scatterplot of these data and comment
on how linear the relation between x and y
appears to be for concretes of this type.

(b) Compute the sample correlation between x
and y by hand. Interpret this value.

(c) Fit a line to these data using the least squares
principle. Show the necessary hand calcula-
tions. Sketch this fitted line on your scatter-
plot from (a).

(d) About what increase in compressive strength
appears to accompany an increase of 1 psi in
splitting tensile strength?

(e) What fraction of the raw variability in com-
pressive strength is accounted for in the fitting
of a line to the data?

(f) Based on your answer to (c), what measured
compressive strength would you predict for a
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batch of concrete of this type if you were to
measure a splitting tensile strength of 245 psi?

(g) Compute the residuals from your fitted line.
Plot the residuals against x and against ŷ.
Then make a normal plot of the residuals.
What do these plots indicate about the linear-
ity of the relationship between splitting ten-
sile strength and compressive strength?

(h) Use a statistical package to find the least
squares line, the sample correlation, R2, and
the residuals for these data.

(i) Fit the quadratic relationship y ≈ β0 + β1x +
β2x2 to the data, using a statistical package.
Sketch this fitted parabola on your scatterplot
from part (a). Does this fitted quadratic ap-
pear to be an important improvement over the
line you fit in (c) in terms of describing the
relationship of y to x?

(j) How do the R2 values from parts (h) and (i)
compare? Does the increase in R2 in part (i)
speak strongly for the use of the quadratic (as
opposed to linear) description of the relation-
ship of y to x for concretes of this type?

(k) If you use the fitted relationship from part
(i) to predict y for x = 245, how does the
prediction compare to your answer for part
(f)?

(l) What do the fitted relationships from parts
(c) and (i) give for predicted compressive
strengths when x = 400 psi? Do these com-
pare to each other as well as your answers to
parts (f) and (k)? Why would it be unwise to
use either of these predictions without further
data collection and analysis?

17. In the previous exercise, both x and y were really
response variables. As such, they were not subject
to direct manipulation by the experimenters. That
made it difficult to get several (x, y) pairs with
a single x value into the data set. In experimen-
tal situations where an engineer gets to choose
values of an experimental variable x, why is it
useful/important to get several y observations for
at least some x’s?

18. Chemical engineering graduate student S. Osoka
studied the effects of an agitator speed, x1, and a

polymer concentration, x2, on percent recoveries
of pyrite, y1, and kaolin, y2, from a step of an ore
refining process. (High pyrite recovery and low
kaolin recovery rates were desirable.) Data from
one set of n = 9 experimental runs are given here.

x1 (rpm) x2 (ppm) y1 (%) y2 (%)

1350 80 77 67

950 80 83 54

600 80 91 70

1350 100 80 52

950 100 87 57

600 100 87 66

1350 120 67 54

950 120 80 52

600 120 81 44

(a) What type of data structure did the researcher
use? (Use the terminology of Section 1.2.)
What was an obvious weakness in his data
collection plan?

(b) Use a regression program to fit the following
equations to these data:

y1 ≈ β0 + β1x1

y1 ≈ β0 + β2x2

y1 ≈ β0 + β1x1 + β2x2

What are the R2 values for the three differ-
ent fitted equations? Compare the three fitted
equations in terms of complexity and appar-
ent ability to predict y1.

(c) Compute the residuals for the third fitted
equation in part (b). Plot them against x1,
x2, and ŷ1. Also normal-plot them. Do any of
these plots suggest that the third fitted equa-
tion is inadequate as a summary of these data?

(d) As a means of understanding the nature of
the third fitted equation from part (b), make a
scatterplot of y1 vs. x2. On this plot, plot three
lines representing ŷ1 as a function of x2 for
the three different values of x1 represented in
the data set.
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(e) Using the third equation from part (b), what
pyrite recovery rate would you predict for
x1 = 1000 rpm and x2 = 110 ppm?

(f) Consider also a multivariable quadratic de-
scription of the dependence of y1 on x1 and
x2. That is, fit the equation

y1 ≈ β0 + β1x1 + β2x2 + β3x2
1

+β4x2
2 + β5x1x2

to the data. How does the R2 value here com-
pare with the ones in part (b)? As a means of
understanding this fitted equation, plot on a
single set of axes the three different quadratic
functions of x2 obtained by holding x1 at one
of the values in the data set.

(g) It is possible to ignore the fact that the speed
and concentration factors are quantitative and
to make a factorial analysis of these y1 data.
Do so. Begin by making an interaction plot
similar to Figure 4.22 for these data. Based
on that plot, discuss the apparent relative sizes
of the Speed and Concentration main effects
and the Speed × Concentration interactions.
Then compute the fitted factorial effects (the
fitted main effects and interactions).

(h) If the third equation in part (b) governed y1,
would it lead to Speed × Concentration inter-
actions? What about the equation in part (f)?
Explain.

19. The data given in the previous exercise concern
both responses y1 and y2. The previous analysis
dealt with only y1. Redo all parts of the problem,
replacing the response y1 with y2 throughout.

20. K. Fellows conducted a 4-factor experiment, with
the response variable the flight distance of a pa-
per airplane when propelled from a launcher fab-
ricated specially for the study. This exercise con-
cerns part of the data he collected, constituting
a complete 24 factorial. The experimental factors
involved and levels used were as given here.

Factor A Plane Design
straight wing (−) vs. t wing (+)

Factor B Nose Weight
none (−) vs. paper clip (+)

Factor C Paper Type
notebook (−) vs. construction (+)

Factor D Wing Tips
straight (−) vs. bent up (+)

The mean flight distances, y (ft), recorded by Fel-
lows for two launches of each plane were as shown
in the accompanying table.
(a) Use the Yates algorithm and compute the fit-

ted factorial effects corresponding to the “all
high” treatment combination.

(b) Interpret the results of your calculations from
(a) in the context of the study. (Describe in
words which factors and/or combinations of
factors appear to have the largest effect(s) on
flight distance. What are the practical impli-
cations of these effects?)

Combination y Combination y

(1) 6.25 d 7.00

a 15.50 ad 10.00

b 7.00 bd 10.00

ab 16.50 abd 16.00

c 4.75 cd 4.50

ac 5.50 acd 6.00

bc 4.50 bcd 4.50

abc 6.00 abcd 5.75

(c) Suppose factors B and D are judged to be
inert as far as determining flight distance is
concerned. (The main effects of B and D and
all interactions involving them are negligi-
ble.) What fitted/predicted values correspond
to this description of flight distance (A and
C main effects and AC interactions only)?
Use these 16 values of ŷ to compute residu-
als, y − ŷ. Plot these against ŷ, levels of A,
levels of B, levels of C, and levels of D. Also
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normal-plot these residuals. Comment on any
interpretable patterns in your plots.

(d) Compute R2 corresponding to the descrip-
tion of flight distance used in part (c). (The
formula in Definition 3 works in this context
as well as in regression. So does the represen-
tation of R2 as the squared sample correlation
between y and ŷ.) Does it seem that the grand
mean, A and C main effects, and AC 2-factor
interactions provide an effective summary of
flight distance?

21. The data in the accompanying table appear in the
text Quality Control and Industrial Statistics by
Duncan (and were from a paper of L. E. Simon).
The data were collected in a study of the effec-
tiveness of armor plate. Armor-piercing bullets
were fired at an angle of 40◦ against armor plate
of thickness x1 (in .001 in.) and Brinell hardness
number x2, and the resulting so-called ballistic
limit, y (in ft/sec), was measured.

x1 x2 y x1 x2 y

253 317 927 253 407 1393

258 321 978 252 426 1401

259 341 1028 246 432 1436

247 350 906 250 469 1327

256 352 1159 242 257 950

246 363 1055 243 302 998

257 365 1335 239 331 1144

262 375 1392 242 355 1080

255 373 1362 244 385 1276

258 391 1374 234 426 1062

(a) Use a regression program to fit the following
equations to these data:

y ≈ β0 + β1x1

y ≈ β0 + β2x2

y ≈ β0 + β1x1 + β2x2

What are the R2 values for the three differ-
ent fitted equations? Compare the three fitted
equations in terms of complexity and appar-
ent ability to predict y.

(b) What is the correlation between x1 and y?
The correlation between x2 and y?

(c) Based on (a) and (b), describe how strongly
Thickness and Hardness appear to affect bal-
listic limit. Review the raw data and specu-
late as to why the variable with the smaller
influence on y seems to be of only minor im-
portance in this data set (although logic says
that it must in general have a sizable influence
on y).

(d) Compute the residuals for the third fitted
equation from (a). Plot them against x1, x2,
and ŷ. Also normal-plot them. Do any of
these plots suggest that the third fitted equa-
tion is seriously deficient as a summary of
these data?

(e) Plot the (x1, x2) pairs represented in the data
set. Why would it be unwise to use any of the
fitted equations to predict y for x1 = 265 and
x2 = 440?

22. Basgall, Dahl, and Warren experimented with
smooth and treaded bicycle tires of different
widths. Tires were mounted on the same wheel,
placed on a bicycle wind trainer, and accelerated
to a velocity of 25 miles per hour. Then pedaling
was stopped, and the time required for the wheel
to stop rolling was recorded. The sample means,
y, of five trials for each of six different tires were
as follows:

Tire Width Tread Time to Stop, y (sec)

700/19c smooth 7.30

700/25c smooth 8.44

700/32c smooth 9.27

700/19c treaded 6.63

700/25c treaded 6.87

700/32c treaded 7.07

(a) Carefully make an interaction plot of times
required to stop, useful for investigating the
sizes of Width and Tread main effects and
Width × Tread interactions here. Comment
briefly on what the plot shows about these
effects. Be sure to label the plot very clearly.
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(b) Compute the fitted main effects of Width,
the fitted main effects of Tread, and the fit-
ted Width × Tread interactions from the y’s.
Discuss how they quantify features that are
evident in your plot from (a).

23. Below are some data read from a graph in the ar-
ticle “Chemical Explosives” by W. B. Sudweeks
that appears as Chapter 30 in Riegel’s Handbook
of Industrial Chemistry. The x values are densities
(in g/cc) of pentaerythritol tetranitrate (PETN)
samples and the y values are corresponding deto-
nation velocities (in km/sec).

x y x y x y

.19 2.65 .50 3.95 .91 5.29

.20 2.71 .50 3.87 .91 5.11

.24 2.79 .50 3.57 .95 5.33

.24 3.19 .55 3.84 .95 5.27

.25 2.83 .75 4.70 .97 5.30

.30 3.52 .77 4.19 1.00 5.52

.30 3.41 .80 4.75 1.00 5.46

.32 3.51 .80 4.38 1.00 5.30

.43 3.38 .85 4.83 1.03 5.59

.45 3.13 .85 5.32 1.04 5.71

(a) Make a scatterplot of these data and comment
on the apparent linearity (or the lack thereof)
of the relationship between y and x .

(b) Compute the sample correlation between y
and x . Interpret this value.

(c) Show the “hand” calculations necessary to fit
a line to these data by least squares. Then plot
your line on the graph from (a).

(d) About what increase in detonation velocity
appears to accompany a unit (1 g/cc) increase
in PETN density? What increase in detona-
tion velocity would then accompany a .1 g/cc
increase in PETN density?

(e) What fraction of the raw variability in detona-
tion velocity is “accounted for” by the fitted
line from part (c)?

(f) Based on your analysis, about what detona-
tion velocity would you predict for a PETN
density of 0.65 g/cc? If it was your job to
produce a PETN explosive charge with a

5.00 km/sec detonation velocity, what PETN
density would you employ?

(g) Compute the residuals from your fitted line.
Plot them against x and against ŷ. Then make
a normal plot of the residuals. What do these
indicate about the linearity of the relationship
between y and x?

(h) Use a statistical package and compute the
least squares line, the sample correlation, R2,
and the residuals from the least squares line
for these data.

24. Some data collected in a study intended to reduce
a thread stripping problem in an assembly process
follow. Studs screwed into a metal block were
stripping out of the block when a nut holding
another part on the block was tightened. It was
thought that the depth the stud was screwed into
the block (the thread engagement) might affect
the torque at which the stud stripped out. In the
table below, x is the depth (in 10−3 inches above
.400) and y is the torque at failure (in lbs/in.).

x y x y x y x y

80 15 40 70 75 70 20 70

76 15 36 65 25 70 40 65

88 25 30 65 30 60 30 75

35 60 0 45 78 25 74 25

75 35 44 50 60 45

(a) Use a regression program and fit both a linear
equation and a quadratic equation to these
data. Plot them on a scatterplot of the data.
What are the fractions of raw variability in y
accounted for by these two equations?

(b) Redo part (a) after dropping the x = 0 and
y = 45 data point from consideration. Do
your conclusions about how best to describe
the relationship between x and y change ap-
preciably? What does this say about the ex-
tent to which a single data point can affect a
curve-fitting analysis?

(c) Use your quadratic equation from part (a) and
find a thread engagement that provides an op-
timal predicted failure torque. What would
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you probably want to do before recommend-
ing this depth for use in this assembly pro-
cess?

25. The textbook Introduction to Contemporary Sta-
tistical Methods by L. H. Koopmans contains a
data set from the testing of automobile tires. A tire
under study is mounted on a test trailer and pulled
at a standard velocity. Using a braking mecha-
nism, a standard amount of drag (measured in %)
is applied to the tire and the force (in pounds)
with which it grips the road is measured. The fol-
lowing data are from tests on 19 different tires
of the same design made under the same set of
road conditions. x = 0% indicates no braking and
x = 100% indicates the brake is locked.

Drag, x (%) Grip Force, y (lb)

10 550, 460, 610

20 510, 410, 580

30 470, 360, 480

50 390, 310, 400

70 300, 280, 340

100 250, 200, 200, 200

(a) Make a scatterplot of these data and comment
on “how linear” the relation between y and x
appears to be.

In fact, physical theory can be called upon to pre-
dict that instead of being linear, the relationship
between y and x is of the form y ≈ α exp(βx)

for suitable α and β. Note that if natural loga-
rithms are taken of both sides of this expression,
ln(y) ≈ ln(α) + βx . Calling ln(α) by the name
β0 and β by the name β1, one then has a linear
relationship of the form used in Section 4.1.
(b) Make a scatterplot of y′ = ln(y) versus x .

Does this plot look more linear than the one
in (a)?

(c) Compute the sample correlation between y′

and x “by hand.” Interpret this value.
(d) Fit a line to the drags and logged grip forces

using the least squares principle. Show the
necessary hand calculations. Sketch this line
on your scatterplot from (b).

(e) About what increase in log grip force appears
to accompany an increase in drag of 10% of
the total possible? This corresponds to what
kind of change in raw grip force?

(f) What fraction of the raw variability in log grip
force is accounted for in the fitting of a line
to the data in part (d)?

(g) Based on your answer to (d), what log grip
force would you predict for a tire of this type
under these conditions using 40% of the pos-
sible drag? What raw grip force?

(h) Compute the residuals from your fitted line.
Plot the residuals against x and against ŷ.
Then make a normal plot of the residuals.
What do these plots indicate about the linear-
ity of the relationship between drag and log
grip force?

(i) Use a statistical package to find the least
squares line, the sample correlation, R2, and
the residuals for these (x, y′) data.

26. The article “Laboratory Testing of Asphalt Con-
crete for Porous Pavements” by Woelfl, Wei, Faul-
stich, and Litwack (Journal of Testing and Evalu-
ation, 1981) studied the effect of asphalt content
on the permeability of open-graded asphalt con-
crete. Four specimens were tested for each of
six different asphalt contents, with the following
results:

Asphalt Content, Permeability,

x (% by weight) y (in./hr water loss)

3 1189, 840, 1020, 980

4 1440, 1227, 1022, 1293

5 1227, 1180, 980, 1210

6 707, 927, 1067, 822

7 835, 900, 733, 585

8 395, 270, 310, 208

(a) Make a scatterplot of these data and comment
on how linear the relation between y and x
appears to be. If you focus on asphalt con-
tents between, say, 5% and 7%, does linearity
seem to be an adequate description of the re-
lationship between y and x?
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Temporarily restrict your attention to the x = 5, 6,
and 7 data.
(b) Compute the sample correlation between y

and x “by hand.” Interpret this value.
(c) Fit a line to the asphalt contents and per-

meabilities using the least squares principle.
Show the necessary hand calculations. Sketch
this fitted line on your scatterplot from (a).

(d) About what increase in permeability appears
to accompany a 1% (by weight) increase in
asphalt content?

(e) What fraction of the raw variability in perme-
ability is “accounted for” in the fitting of a
line to the x = 5, 6, and 7 data in part (c)?

(f) Based on your answer to (c), what measured
permeability would you predict for a speci-
men of this material with an asphalt content
of 5.5%?

(g) Compute the residuals from your fitted line.
Plot the residuals against x and against ŷ.
Then make a normal plot of the residuals.
What do these plots indicate about the linear-
ity of the relationship between asphalt content
and permeability?

(h) Use a statistical package and values for x =
5, 6, and 7 to find the least squares line, the
sample correlation, R2, and the residuals for
these data.

Now consider again the entire data set.
(i) Fit the quadratic relationship y ≈ β0 + β1x +

β2x2 to the data using a statistical pack-
age. Sketch this fitted parabola on your sec-
ond scatterplot from part (a). Does this fit-
ted quadratic appear to be an important im-
provement over the line you fit in (c) in terms
of describing the relationship over the range
3 ≤ x ≤ 8 ?

(j) Fit the linear relation y ≈ β0 + β1x to the en-
tire data set. How do the R2 values for this fit
and the one in (i) compare? Does the larger R2

in (i) speak strongly for the use of a quadratic
(as opposed to a linear) description of the re-
lationship of y to x in this situation?

(k) If one uses the fitted relationship from (i) to
predict y for x = 5.5, how does the prediction
compare to your answer for (f)?

(l) What do the fitted relationships from (c), (i)
and (j) give for predicted permeabilities when
x = 2%? Compare these to each other as well
as your answers to (f) and (k). Why would
it be unwise to use any of these predictions
without further data collection?

27. Some data collected by Koh, Morden, and Og-
bourne in a study of axial breaking strengths (y)
for wooden dowel rods follow. The students tested
m = 4 different dowels for each of nine combi-
nations of three different diameters (x1) and three
different lengths (x2).

x1 (in.) x2 (in.) y (lb)

.125 4 51.5, 37.4, 59.3, 58.5

.125 8 5.2, 6.4, 9.0, 6.3

.125 12 2.5, 3.3, 2.6, 1.9

.1875 4 225.3, 233.9, 211.2, 212.8

.1875 8 47.0, 79.2, 88.7, 70.2

.1875 12 18.4, 22.4, 18.9, 16.6

.250 4 358.8, 309.6, 343.5, 357.8

.250 8 127.1, 158.0, 194.0, 133.0

.250 12 68.9, 40.5, 50.3, 65.6

(a) Make a plot of the 3 × 3 means, ȳ, corre-
sponding to the different combinations of di-
ameter and length used in the study, plotting
ȳ vs. x2 and connecting the three means for
a given diameter with line segments. What
does this plot suggest about how successful
an equation for y that is linear in x2 for each
fixed x1 might be in explaining these data?

(b) Replace the strength values with their natural
logarithms, y′ = ln(y), and redo the plotting
of part (a). Does this second plot suggest that
the logarithm of strength might be a linear
function of length for fixed diameter?

(c) Fit the following three equations to the data
via least squares:

y′ ≈ β0 + β1x1,

y′ ≈ β0 + β2x2,

y′ ≈ β0 + β1x1 + β2x2
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What are the coefficients of determination for
the three fitted equations? Compare the equa-
tions in terms of their complexity and their
apparent ability to predict y′.

(d) Add three lines to your plot from part (b),
showing predicted log strength (from your
third fitted equation) as a function of x2 for
the three different values of x1 included in
the study. Use your third fitted equation to
predict first a log strength and then a strength
for a dowel of diameter .20 in. and length 10
in. Why shouldn’t you be willing to use your
equation to predict the strength of a rod with
diameter .50 in. and length 24 in.?

(e) Compute and plot residuals for the third equa-
tion you fit in part (c). Make plots of residuals
vs. fitted response and both x1 and x2, and
normal-plot the residuals. Do these plots sug-
gest any potential inadequacies of the third
fitted equation? How might these be reme-
died?

(f) The students who did this study were strongly
suspicious that the ratio x3 = x2

1/x2 is the
principal determiner of dowel strength. In
fact, it is possible to empirically discover the
importance of this quantity as follows. Try
fitting the equation

y′ ≈ β0 + β1 ln x1 + β2 ln x2

to these data and notice that the fitted coef-
ficients of ln x1 and ln x2 are roughly in the
ratio of 4 to −2, i.e., 2 to −1. (What does this
fitted equation for ln(y) say about y?) Then
plot y vs. x3 and fit the linear equation

y ≈ β0 + β3x3

to these data. Finally, add three curves to your
plot from part (a) based on this fitted equation
linear in x3, showing predicted strength as a
function of x2. Make one for each of the three
different values of x1 included in the study.

(g) Since the students’ data have a (replicated)
3 × 3 factorial structure, you can do a facto-
rial analysis as an alternative to the preceding

analysis. Looking again at your plot from (a),
does it seem that the interactions of Diameter
and Length will be important in describing the
raw strengths, y? Compute the fitted factorial
effects and comment on the relative sizes of
the main effects and interactions.

(h) Redo part (g), referring to the graph from part
(b) and working with the logarithms of dowel
strength.

28. The paper “Design of a Metal-Cutting Drilling
Experiment—A Discrete Two-Variable Problem”
by E. Mielnik (Quality Engineering, 1993–1994)
reports a drilling study run on an aluminum al-
loy (7075-T6). The thrust (or axial force), y1, and
torque, y2, required to rotate drills of various di-
ameters x1 at various feeds (rates of drill penetra-
tion into the workpiece) x2, were measured with
the following results:

Diameter, Feed Rate, Thrust, Torque,

x1 (in.) x2 (in. rev) y1 (lb) y2 (ft-lb)

.250 .006 230 1.0

.406 .006 375 2.1

.406 .013 570 3.8

.250 .013 375 2.1

.225 .009 280 1.0

.318 .005 225 1.1

.450 .009 580 3.8

.318 .017 565 3.4

.318 .009 400 2.2

.318 .009 400 2.1

.318 .009 380 2.1

.318 .009 380 1.9

Drilling theory suggests that y1 ≈ κ1xa
1 xb

2 and
y2 ≈ κ2xc

1 xd
2 for appropriate constants κ1, κ2, a,

b, c, and d. (Note that upon taking natural log-
arithms, there are linear relationships between
y′

1 = ln(y1) or y′
2 = ln(y2) and x ′

1 = ln(x1) and
x ′

2 = ln(x2).)
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(a) Use a regression program to fit the following
equations to these data:

y′
1 ≈ β0 + β1x ′

1,

y′
1 ≈ β0 + β2x ′

2,

y′
1 ≈ β0 + β1x ′

1 + β2x ′
2

What are the R2 values for the three differ-
ent fitted equations? Compare the three fitted
equations in terms of complexity and appar-
ent ability to predict y′

1.
(b) Compute and plot residuals (continuing to

work on log scales) for the third equation you
fit in part (a). Make plots of residuals vs. fitted
y′

1 and both x ′
1 and x ′

2, and normal-plot these
residuals. Do these plots reveal any particular
problems with the fitted equation?

(c) Use your third equation from (a) to predict
first a log thrust and then a thrust if a drill of
diameter .360 in. and a feed of .011 in./rev
are used. Why would it be unwise to make
a similar prediction for x1 = .450 and x2 =
.017? (Hint: Make a plot of the (x1, x2) pairs
in the data set and locate this second set of
conditions on that plot.)

(d) If the third equation fit in part (a) governed y1,
would it lead to Diameter × Feed interactions
for y1 measured on the log scale? To help you
answer this question, plot ŷ′

1 vs. x2 (or x ′
2) for

each of x1 = .250, .318, and .406. Does this
equation lead to Diameter × Feed interactions
for raw y1?

(e) The first four data points listed in the ta-
ble constitute a very small complete factorial
study (an unreplicated 2 × 2 factorial in the
factors Diameter and Feed). Considering only
these data points, do a “factorial” analysis of
this part of the y1 data. Begin by making an in-
teraction plot similar to Figure 4.22 for these
data. Based on that plot, discuss the apparent
relative sizes of the Diameter and Feed main
effects on thrust. Then carry out the arith-
metic necessary to compute the fitted factorial
effects (the main effects and interactions).

(f) Redo part (e), using y′
1 as the response vari-

able.
(g) Do your answers to parts (e) and (f) comple-

ment those of part (d)? Explain.

29. The article “A Simple Method to Study Dispersion
Effects From Non-Necessarily Replicated Data in
Industrial Contexts” by Ferrer and Romero (Qual-
ity Engineering, 1995) describes an unreplicated
24 experiment done to improve the adhesive force
obtained when gluing on polyurethane sheets as
the inner lining of some hollow metal parts. The
factors studied were the amount of glue used (A),
the predrying temperature (B), the tunnel temper-
ature (C), and the pressure applied (D). The exact
levels of the variables employed were not given
in the article (presumably for reasons of corporate
security). The response variable was the adhesive
force, y, in Newtons, and the data reported in the
article follow:

Combination y Combination y

(1) 3.80 d 3.29

a 4.34 ad 2.82

b 3.54 bd 4.59

ab 4.59 abd 4.68

c 3.95 cd 2.73

ac 4.83 acd 4.31

bc 4.86 bcd 5.16

abc 5.28 abcd 6.06

(a) Compute the fitted factorial effects corre-
sponding to the “all high” treatment com-
bination.

(b) Interpret the results of your calculations in
the context of the study. Which factors and/or
combinations of factors appear to have the
largest effects on the adhesive force? Suppose
that only the A, B, and C main effects and
the B × D interactions were judged to be
of importance here. Make a corresponding
statement to your engineering manager about
how the factors impact adhesive force.
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(c) Using the reverse Yates algorithm or other-
wise, compute fitted/predicted values corre-
sponding to an “A, B, and C main effects
and BD interactions” description of adhesive
force. Then use these 16 values to compute
residuals, e = y − ŷ. Plot these against ŷ, and
against levels of A, B, C, and D. Also normal-
plot them. Comment on any interpretable pat-
terns you see. Particularly in reference to the
plot of residuals vs. level of D, what does this
graph suggest if one is interested not only in
high mean adhesive force but in consistent
adhesive force as well?

(d) Find and interpret a value of R2 correspond-
ing to the description of y used in part (c).

30. The article “Chemical Vapor Deposition of Tung-
sten Step Coverage and Thickness Uniformity Ex-
periments” by J. Chang (Thin Solid Films, 1992)
describes an unreplicated 24 factorial experiment
aimed at understanding the effects of the factors

Factor A Chamber Pressure (Torr)
8 (−) vs. 9 (+)

Factor B H2 Flow (standard cm3/min)
500 (−) vs. 1000 (+)

Factor C SiH4 Flow (standard cm3/min)
15 (−) vs. 25 (+)

Factor D WF6 Flow (standard cm3/min)
50 (−) vs. 60 (+)

on a number of response variables in the chemi-
cal vapor deposition tungsten films. One response
variable reported was the average sheet resistivity,
y (m�/cm) of the resultant film, and the values
reported in the paper follow.

Combination y Combination y

(1) 646 d 666

a 623 ad 597

b 714 bd 718

ab 643 abd 661

c 360 cd 304

ac 359 acd 309

bc 325 bcd 360

abc 318 abcd 318

(a) Use the Yates algorithm and compute the fit-
ted factorial effects corresponding to the “all
high” treatment combination. (You will need
to employ four cycles in the calculations.)

(b) Interpret the results of your calculations from
(a) in the context of the study. (Describe in
words which factors and/or combinations of
factors appear to have the largest effect(s) on
average sheet resistivity. What are the practi-
cal implications of these effects?)

(c) Suppose that you judge all factors except C
to be “inert” as far as determining sheet resis-
tivity is concerned (the main effects of A, B,
and D and all interactions involving them are
negligible). What fitted/predicted values cor-
respond to this “C main effects only” descrip-
tion of average sheet resistivity? Use these 16
values to compute residuals, e = y − ŷ. Plot
these against ŷ, level of A, level of B, level
of C, and level of D. Also normal-plot these
residuals. Comment on any interpretable pat-
terns in your plots.

(d) Compute an R2 value corresponding to the
description of average sheet resistivity used in
part (c). Does it seem that the grand mean and
C main effects provide an effective summary
of average sheet resistivity? Why?




