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Elementary
Descriptive Statistics

Engineering data are always variable. Given precise enough measurement, even
supposedly constant process conditions produce differing responses. Therefore, it is
not individual data values that demand an engineer’s attention as much as the pattern
or distribution of those responses. The task of summarizing data is to describe their
important distributional characteristics. This chapter discusses simple methods that
are helpful in this task.

The chapter begins with some elementary graphical and tabular methods of
data summarization. The notion of quantiles of a distribution is then introduced and
used to make other useful graphical displays. Next, standard numerical summary
measures of location and spread for quantitative data are discussed. Finally comes a
brief look at some elementary methods for summarizing qualitative and count data.
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3.1 Elementary Graphical and Tabular
Treatment of Quantitative Data

Almost always, the place to begin in data analysis is to make appropriate graphical
and/or tabular displays. Indeed, where only a few samples are involved, a good
picture or table can often tell most of the story about the data. This section discusses
the usefulness of dot diagrams, stem-and-leaf plots, frequency tables, histograms,
scatterplots, and run charts.

3.1.1 Dot Diagrams and Stem-and-Leaf Plots

When an engineering study produces a small or moderate amount of univariate
quantitative data, a dot diagram, easily made with pencil and paper, is often quite
revealing. A dot diagram shows each observation as a dot placed at a position
corresponding to its numerical value along a number line.

66
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Example 1
(Example 1, Chapter 1,

revisited—p. 2 )

Portraying Thrust Face Runouts

Section 1.1 considered a heat treating problem where distortion for gears laid
and gears hung was studied. Figure 1.1 has been reproduced here as Figure 3.1.
It consists of two dot diagrams, one showing thrust face runout values for gears
laid and the other the corresponding values for gears hung, and shows clearly
that the laid values are both generally smaller and more consistent than the hung
values.

Gears laid

Gears hung

10 20 30

10 20 30

Runout (.0001 in.)
40

40

0

0

Figure 3.1 Dot diagrams of runouts

Example 2 Portraying Bullet Penetration Depths

Sale and Thom compared penetration depths for several types of .45 caliber bullets
fired into oak wood from a distance of 15 feet. Table 3.1 gives the penetration
depths (in mm from the target surface to the back of the bullets) for two bullet
types. Figure 3.2 presents a corresponding pair of dot diagrams.

Table 3.1
Bullet Penetration Depths (mm)

230 Grain Jacketed Bullets 200 Grain Jacketed Bullets

40.50, 38.35, 56.00, 42.55, 63.80, 64.65, 59.50, 60.70,
38.35, 27.75, 49.85, 43.60, 61.30, 61.50, 59.80, 59.10,
38.75, 51.25, 47.90, 48.15, 62.95, 63.55, 58.65, 71.70,
42.90, 43.85, 37.35, 47.30, 63.30, 62.65, 67.75, 62.30,
41.15, 51.60, 39.75, 41.00 70.40, 64.05, 65.00, 58.00
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Example 2
(continued )

230 Grain jacketed bullets

20 30 40 50
Penetration (mm)

60 70

200 Grain jacketed bullets

20 30 40 50
Penetration (mm)

60 70

Figure 3.2 Dot diagrams of penetration depths

The dot diagrams show the penetrations of the 200 grain bullets to be both
larger and more consistent than those of the 230 grain bullets. (The students
had predicted larger penetrations for the lighter bullets on the basis of greater
muzzle velocity and smaller surface area on which friction can act. The different
consistencies of penetration were neither expected nor explained.)

Dot diagrams give the general feel of a data set but do not always allow the
recovery of exactly the values used to make them. A stem-and-leaf plot carries
much the same visual information as a dot diagram while preserving the original
values exactly. A stem-and-leaf plot is made by using the last few digits of each data
point to indicate where it falls.
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Figure 3.3 Stem-and-leaf plots of laid gear runouts (Example 1)



3.1 Elementary Graphical and Tabular Treatment of Quantitative Data 69

Example 1
(continued )

Figure 3.3 gives two possible stem-and-leaf plots for the thrust face runouts
of laid gears. In both, the first digit of each observation is represented by
the number to the left of the vertical line or “stem” of the diagram. The
numbers to the right of the vertical line make up the “leaves” and give the
second digits of the observed runouts. The second display shows somewhat
more detail than the first by providing “0–4” and “5–9” leaf positions for each
possible leading digit, instead of only a single “0–9” leaf for each leading
digit.

Example 2
(continued )

Figure 3.4 gives two possible stem-and-leaf plots for the penetrations of 200 grain
bullets in Table 3.1. On these, it was convenient to use two digits to the left of
the decimal point to make the stem and the two following the decimal point to
create the leaves. The first display was made by recording the leaf values directly
from the table (from left to right and top to bottom). The second display is a
better one, obtained by ordering the values that make up each leaf. Notice that
both plots give essentially the same visual impression as the second dot diagram
in Figure 3.2.
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Figure 3.4 Stem-and-leaf plots of
the 200 grain penetration depths

When comparing two data sets, a useful way to use the stem-and-leaf idea is to
make two plots back-to-back.
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Figure 3.5 Back-to-back stem-and-leaf plots of runouts (Example 1)

Example 1
(continued )

Figure 3.5 gives back-to-back stem-and-leaf plots for the data of Table 1.1 (pg. 3).
It shows clearly the differences in location and spread of the two data sets.

3.1.2 Frequency Tables and Histograms

Dot diagrams and stem-and-leaf plots are useful devices when mulling over a data
set. But they are not commonly used in presentations and reports. In these more
formal contexts, frequency tables and histograms are more often used.

A frequency table is made by first breaking an interval containing all the data
into an appropriate number of smaller intervals of equal length. Then tally marks can
be recorded to indicate the number of data points falling into each interval. Finally,
frequencies, relative frequencies, and cumulative relative frequencies can be added.

Example 1
(continued )

Table 3.2 gives one possible frequency table for the laid gear runouts. The relative
frequency values are obtained by dividing the entries in the frequency column

Table 3.2
Frequency Table for Laid Gear Thrust Face Runouts

Cumulative
Runout Relative Relative

(.0001 in.) Tally Frequency Frequency Frequency

5–8 3 .079 .079
9 –12 18 .474 .553

13–16 12 .316 .868
17–20 4 .105 .974
21–24 0 0 .974
25–28 1 .026 1.000

38 1.000



3.1 Elementary Graphical and Tabular Treatment of Quantitative Data 71

by 38, the number of data points. The entries in the cumulative relative frequency
column are the ratios of the totals in a given class and all preceding classes to the
total number of data points. (Except for round-off, this is the sum of the relative
frequencies on the same row and above a given cumulative relative frequency.)
The tally column gives the same kind of information about distributional shape
that is provided by a dot diagram or a stem-and-leaf plot.

The choice of intervals to use in making a frequency table is a matter ofChoosing intervals
for a frequency

table
judgment. Two people will not necessarily choose the same set of intervals. However,
there are a number of simple points to keep in mind when choosing them. First, in
order to avoid visual distortion when using the tally column of the table to gain an
impression of distributional shape, intervals of equal length should be employed.
Also, for aesthetic reasons, round numbers are preferable as interval endpoints. Since
there is usually aggregation (and therefore some loss of information) involved in the
reduction of raw data to tallies, the larger the number of intervals used, the more
detailed the information portrayed by the table. On the other hand, if a frequency
table is to have value as a summarization of data, it can’t be cluttered with too many
intervals.

After making a frequency table, it is common to use the organization provided
by the table to create a histogram. A (frequency or relative frequency) histogram is
a kind of bar chart used to portray the shape of a distribution of data points.

Example 2
(continued )

Table 3.3 is a frequency table for the 200 grain bullet penetration depths, and
Figure 3.6 is a translation of that table into the form of a histogram.

Table 3.3
Frequency Table for 200 Grain Penetration Depths

Cumulative
Penetration Relative Relative
Depth (mm) Tally Frequency Frequency Frequency

58.00–59.99 5 .25 .25
60.00–61.99 3 .15 .40
62.00–63.99 6 .30 .70
64.00–65.99 3 .15 .85
66.00–67.99 1 .05 .90
68.00–69.99 0 0 .90
70.00–71.99 2 .10 1.00

20 1.00
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Example 2
(continued )
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Figure 3.6 Histogram of the 200 grain
penetration depths

The vertical scale in Figure 3.6 is a frequency scale, and the histogram is a frequency
histogram. By changing to relative frequency on the vertical scale, one can produce
a relative frequency histogram. In making Figure 3.6, care was taken to

1. (continue to) use intervals of equal length,Guidelines for
making

histograms
2. show the entire vertical axis beginning at zero,

3. avoid breaking either axis,

4. keep a uniform scale across a given axis, and

5. center bars of appropriate heights at the midpoints of the (penetration depth)
intervals.

Following these guidelines results in a display in which equal enclosed areas cor-
respond to equal numbers of data points. Further, data point positioning is clearly
indicated by bar positioning on the horizontal axis. If these guidelines are not fol-
lowed, the resulting bar chart will in one way or another fail to faithfully represent
its data set.

Figure 3.7 shows terminology for common distributional shapes encountered
when making and using dot diagrams, stem-and-leaf plots, and histograms.

The graphical and tabular devices discussed to this point are deceptively simple
methods. When routinely and intelligently used, they are powerful engineering
tools. The information on location, spread, and shape that is portrayed so clearly on
a histogram can give strong hints as to the functioning of the physical process that
is generating the data. It can also help suggest physical mechanisms at work in the
process.Examples of

engineering
interpretations of
distribution shape

For example, if data on the diameters of machined metal cylinders purchased
from a vendor produce a histogram that is decidedly bimodal (or multimodal,
having several clear humps), this suggests that the machining of the parts was done
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Bell-shaped Right-skewed Left-skewed

Uniform Bimodal Truncated

Figure 3.7 Distributional shapes

on more than one machine, or by more than one operator, or at more than one
time. The practical consequence of such multichannel machining is a distribution
of diameters that has more variation than is typical of a production run of cylinders
from a single machine, operator, and setup. As another possibility, if the histogram
is truncated, this might suggest that the lot of cylinders has been 100% inspected
and sorted, removing all cylinders with excessive diameters. Or, upon marking
engineering specifications (requirements) for cylinder diameter on the histogram,
one may get a picture like that in Figure 3.8. It then becomes obvious that the lathe
turning the cylinders needs adjustment in order to increase the typical diameter.
But it also becomes clear that the basic process variation is so large that this
adjustment will fail to bring essentially all diameters into specifications. Armed
with this realization and a knowledge of the economic consequences of parts failing
to meet specifications, an engineer can intelligently weigh alternative courses of
action: sorting of all incoming parts, demanding that the vendor use more precise
equipment, seeking a new vendor, etc.

Investigating the shape of a data set is useful not only because it can lend insight
into physical mechanisms but also because shape can be important when determining
the appropriateness of methods of formal statistical inference like those discussed
later in this book. A methodology appropriate for one distributional shape may not
be appropriate for another.

Lower
specification

Upper
specification

Cylinder diameter

Figure 3.8 Histogram marked with
engineering specifications
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3.1.3 Scatterplots and Run Charts

Dot diagrams, stem-and-leaf plots, frequency tables, and histograms are univari-
ate tools. But engineering data are often multivariate and relationships between
the variables are then usually of interest. The familiar device of making a two-
dimensional scatterplot of data pairs is a simple and effective way of displaying
potential relationships between two variables.

Example 3 Bolt Torques on a Face Plate

Brenny, Christensen, and Schneider measured the torques required to loosen
six distinguishable bolts holding the front plate on a type of heavy equipment
component. Table 3.4 contains the torques (in ft lb) required for bolts number 3
and 4, respectively, on 34 different components. Figure 3.9 is a scatterplot of the
bivariate data from Table 3.4. In this figure, where several points must be plotted
at a single location, the number of points occupying the location has been plotted
instead of a single dot.

The plot gives at least a weak indication that large torques at position 3 are
accompanied by large torques at position 4. In practical terms, this is comforting;

Table 3.4
Torques Required to Loosen Two Bolts on Face Plates (ft lb)

Bolt 3 Bolt 4 Bolt 3 Bolt 4
Component Torque Torque Component Torque Torque

1 16 16 18 15 14
2 15 16 19 17 17
3 15 17 20 14 16
4 15 16 21 17 18
5 20 20 22 19 16
6 19 16 23 19 18
7 19 20 24 19 20
8 17 19 25 15 15
9 15 15 26 12 15

10 11 15 27 18 20
11 17 19 28 13 18
12 18 17 29 14 18
13 18 14 30 18 18
14 15 15 31 18 14
15 18 17 32 15 13
16 15 17 33 16 17
17 18 20 34 16 16
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Figure 3.9 Scatterplot of bolt 3 and bolt 4
torques

otherwise, unwanted differential forces might act on the face plate. It is also quite
reasonable that bolt 3 and bolt 4 torques be related, since the bolts were tightened
by different heads of a single pneumatic wrench operating off a single source of
compressed air. It stands to reason that variations in air pressure might affect the
tightening of the bolts at the two positions similarly, producing the big-together,
small-together pattern seen in Figure 3.9.

The previous example illustrates the point that relationships seen on scatterplots
suggest a common physical cause for the behavior of variables and can help reveal
that cause.

In the most common version of the scatterplot, the variable on the horizontal
axis is a time variable. A scatterplot in which univariate data are plotted against time
order of observation is called a run chart or trend chart. Making run charts is one
of the most helpful statistical habits an engineer can develop. Seeing patterns on a
run chart leads to thinking about what process variables were changing in concert
with the pattern. This can help develop a keener understanding of how process
behavior is affected by those variables that change over time.

Example 4 Diameters of Consecutive Parts Turned on a Lathe

Williams and Markowski studied a process for rough turning of the outer diameter
on the outer race of a constant velocity joint. Table 3.5 gives the diameters (in
inches above nominal) for 30 consecutive joints turned on a particular automatic
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Example 4
(continued )

Table 3.5
30 Consecutive Outer Diameters Turned on a Lathe

Diameter Diameter
Joint (inches above nominal) Joint (inches above nominal)

1 −.005 16 .015
2 .000 17 .000
3 −.010 18 .000
4 −.030 19 −.015
5 −.010 20 −.015
6 −.025 21 −.005
7 −.030 22 −.015
8 −.035 23 −.015
9 −.025 24 −.010

10 −.025 25 −.015
11 −.025 26 −.035
12 −.035 27 −.025
13 −.040 28 −.020
14 −.035 29 −.025
15 −.035 30 −.015
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5
Time of manufacture
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+.020
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Figure 3.10 Dot diagram and run chart of consecutive outer diameters

lathe. Figure 3.10 gives both a dot diagram and a run chart for the data in the
table. In keeping with standard practice, consecutive points on the run chart have
been connected with line segments.

Here the dot diagram is not particularly suggestive of the physical mecha-
nisms that generated the data. But the time information added in the run chart
is revealing. Moving along in time, the outer diameters tend to get smaller until
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part 16, where there is a large jump, followed again by a pattern of diameter gen-
erally decreasing in time. In fact, upon checking production records, Williams
and Markowski found that the lathe had been turned off and allowed to cool down
between parts 15 and 16. The pattern seen on the run chart is likely related to the
behavior of the lathe’s hydraulics. When cold, the hydraulics probably don’t do
as good a job pushing the cutting tool into the part being turned as when they are
warm. Hence, the turned parts become smaller as the lathe warms up. In order
to get parts closer to nominal, the aimed-for diameter might be adjusted up by
about .020 in. and parts run only after warming up the lathe.
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1. The following are percent yields from 40 runs of
a chemical process, taken from J. S. Hunter’s arti-
cle “The Technology of Quality” (RCA Engineer,
May/June 1985):

65.6, 65.6, 66.2, 66.8, 67.2, 67.5, 67.8, 67.8, 68.0,
68.0, 68.2, 68.3, 68.3, 68.4, 68.9, 69.0, 69.1, 69.2,
69.3, 69.5, 69.5, 69.5, 69.8, 69.9, 70.0, 70.2, 70.4,
70.6, 70.6, 70.7, 70.8, 70.9, 71.3, 71.7, 72.0, 72.6,
72.7, 72.8, 73.5, 74.2

Make a dot diagram, a stem-and-leaf plot, a fre-
quency table, and a histogram of these data.

2. Make back-to-back stem-and-leaf plots for the two
samples in Table 3.1.

3. Osborne, Bishop, and Klein collected manufactur-
ing data on the torques required to loosen bolts
holding an assembly on a piece of heavy machin-
ery. The accompanying table shows part of their
data concerning two particular bolts. The torques
recorded (in ft lb) were taken from 15 different
pieces of equipment as they were assembled.
(a) Make a scatterplot of these paired data. Are

there any obvious patterns in the plot?

(b) A trick often employed in the analysis of paired
data such as these is to reduce the pairs to dif-
ferences by subtracting the values of one of the
variables from the other. Compute differences
(top bolt–bottom bolt) here. Then make and
interpret a dot diagram for these values.

Piece Top Bolt Bottom Bolt

1 110 125

2 115 115

3 105 125

4 115 115

5 115 120

6 120 120

7 110 115

8 125 125

9 105 110

10 130 110

11 95 120

12 110 115

13 110 120

14 95 115

15 105 105
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3.2 Quantiles and Related Graphical Tools

Most readers will be familiar with the concept of a percentile. The notion is most
famous in the context of reporting scores on educational achievement tests. For
example, if a person has scored at the 80th percentile, roughly 80% of those taking
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the test had worse scores, and roughly 20% had better scores. This concept is also
useful in the description of engineering data. However, because it is often more
convenient to work in terms of fractions between 0 and 1 rather than in percentages
between 0 and 100, slightly different terminology will be used here: “Quantiles,”
rather than percentiles, will be discussed. After the quantiles of a data set are carefully
defined, they are used to create a number of useful tools of descriptive statistics:
quantile plots, boxplots, Q-Q plots, and normal plots (a type of theoretical Q-Q
plot).

3.2.1 Quantiles and Quantile Plots

Roughly speaking, for a number p between 0 and 1, the p quantile of a distribution
is a number such that a fraction p of the distribution lies to the left and a fraction
1− p of the distribution lies to the right. However, because of the discreteness of
finite data sets, it is necessary to state exactly what will be meant by the terminology.
Definition 1 gives the precise convention that will be used in this text.

Definition 1 For a data set consisting of n values that when ordered are x1 ≤ x2 ≤ · · · ≤ xn ,

1. if p = i−.5
n for a positive integer i ≤ n, the p quantile of the data

set is

Q(p) = Q

(
i − .5

n

)
= xi

(The ith smallest data point will be called the i−.5
n quantile.)

2. for any number p between .5
n and n−.5

n that is not of the form i−.5
n for

an integer i , the p quantile of the data set will be obtained by linear
interpolation between the two values of Q( i−.5

n ) with corresponding
i−.5

n that bracket p.

In both cases, the notation Q(p) will be used to denote the p quantile.

Definition 1 identifies Q(p) for all p between .5/n and (n − .5)/n. To find
Q(p) for such a value of p, one may solve the equation p = (i − .5)/n for i ,
yielding

Index (i ) of the
ordered data
point that is

Q(p)

i = np + .5

and locate the “(np + .5)th ordered data point.”
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Example 5 Quantiles for Dry Breaking Strengths of Paper Towel

Lee, Sebghati, and Straub did a study of the dry breaking strength of several brands
of paper towel. Table 3.6 shows ten breaking strengths (in grams) reported by the
students for a generic towel. By ordering the strength data and computing values
of i−.5

10 , one can easily find the .05, .15, .25, . . . , .85, and .95 quantiles of the
breaking strength distribution, as shown in Table 3.7.

Since there are n = 10 data points, each one accounts for 10% of the data set.
Applying convention (1) in Definition 1 to find (for example) the .35 quantile,

Table 3.6
Ten Paper Towel Breaking
Strengths

Test Breaking Strength (g)

1 8,577
2 9,471
3 9,011
4 7,583
5 8,572
6 10,688
7 9,614
8 9,614
9 8,527

10 9,165

Table 3.7
Quantiles of the Paper Towel Breaking Strength
Distribution

i i−.5
10 ith Smallest Data Point, xi = Q

(
i−.5
10

)
1 .05 7,583 = Q(.05)
2 .15 8,527 = Q(.15)
3 .25 8,572 = Q(.25)
4 .35 8,577 = Q(.35)
5 .45 9,011 = Q(.45)
6 .55 9,165 = Q(.55)
7 .65 9,471 = Q(.65)
8 .75 9,614 = Q(.75)
9 .85 9,614 = Q(.85)

10 .95 10,688 = Q(.95)
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Example 5
(continued )

the smallest 3 data points and half of the fourth smallest are counted as lying to
the left of the desired number, and the largest 6 data points and half of the seventh
largest are counted as lying to the right. Thus, the fourth smallest data point must
be the .35 quantile, as is shown in Table 3.7.

To illustrate convention (2) of Definition 1, consider finding the .5 and .93
quantiles of the strength distribution. Since .5 is .5−.45

.55−.45 = .5 of the way from .45
to .55, linear interpolation gives

Q(.5) = (1− .5) Q(.45)+ .5 Q(.55) = .5(9,011)+ .5(9,165) = 9,088 gI
Then, observing that .93 is .93−.85

.95−.85 = .8 of the way from .85 to .95, linear inter-
polation gives

Q(.93) = (1− .8) Q(.85)+ .8Q(.95) = .2(9,614)+ .8(10,688) = 10,473.2 g

Particular round values of p give quantiles Q(p) that are known by special
names.

Definition 2 Q(.5) is called the median of a distribution.

Definition 3 Q(.25) and Q(.75) are called the first (or lower) quartile and third (or
upper) quartile of a distribution, respectively.

Example 5
(continued )

Referring again to Table 3.7 and the value of Q(.5) previously computed, for the
breaking strength distribution

Median = Q(.5) = 9,088 g

1st quartile = Q(.25) = 8,572 gI
3rd quartile = Q(.75) = 9,614 gI

A way of representing the quantile idea graphically is to make a quantile plot.

Definition 4 A quantile plot is a plot of Q(p) versus p. For an ordered data set of size
n containing values x1 ≤ x2 ≤ · · · ≤ xn , such a display is made by first plot-
ting the points ( i−.5

n , xi ) and then connecting consecutive plotted points with
straight-line segments.

It is because convention (2) in Definition 1 calls for linear interpolation that straight-
line segments enter the picture in making a quantile plot.
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Example 5
(continued )

Referring again to Table 3.7 for the i−.5
10 quantiles of the breaking strength distri-

bution, it is clear that a quantile plot for these data will involve plotting and then
connecting consecutive ones of the following ordered pairs.

(.05, 7,583) (.15, 8,527) (.25, 8,572)
(.35, 8,577) (.45, 9,011) (.55, 9,165)
(.65, 9,471) (.75, 9,614) (.85, 9,614)
(.95, 10,688)

Figure 3.11 gives such a plot.

.1 .2 .3 .4 .5 .6 .7 .8 .9 p
7,000

8,000

9,000

10,000

Q( p)

Figure 3.11 Quantile plot of paper towel
strengths

A quantile plot allows the user to do some informal visual smoothing of the plot to
compensate for any jaggedness. (The tacit assumption is that the underlying data-
generating mechanism would itself produce smoother and smoother quantile plots
for larger and larger samples.)

3.2.2 Boxplots

Familiarity with the quantile idea is the principal prerequisite for making boxplots,
an alternative to dot diagrams or histograms. The boxplot carries somewhat less
information, but it has the advantage that many can be placed side-by-side on a
single page for comparison purposes.

There are several common conventions for making boxplots. The one that will
be used here is illustrated in generic fashion in Figure 3.12. A box is made to extend
from the first to the third quartiles and is divided by a line at the median. Then the
interquartile range

Interquartile
range IQR= Q(.75)− Q(.25)
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1.5 IQR

Largest data
point less than
or equal to 
Q(.75) + 1.5IQR

Q(.5)Q(.25) Q(.75)

IQR 1.5 IQR

Smallest data
point bigger than
or equal to 
Q(.25) – 1.5IQR

Any points not in the interval [Q(.25) – 1.5IQR, Q(.75) + 1.5IQR]
are plotted separately

Figure 3.12 Generic boxplot

is calculated and the smallest data point within 1.5IQR of Q(.25) and the largest
data point within 1.5IQR of Q(.75) are determined. Lines called whiskers are made
to extend out from the box to these values. Typically, most data points will be within
the interval [Q(.25)− 1.5IQR, Q(.75)+ 1.5IQR]. Any that are not then get plotted
individually and are thereby identified as outlying or unusual.

Example 5
(continued )

Consider making a boxplot for the paper towel breaking strength data. To begin,

Q(.25) = 8,572 g

Q(.5) = 9,088 g

Q(.75) = 9,614 g

So

IQR = Q(.75)− Q(.25) = 9,614− 8,572 = 1,042 gI
and

1.5IQR = 1,563 g

Then

Q(.75)+ 1.5IQR = 9,614+ 1,563 = 11,177 g

and

Q(.25)− 1.5IQR = 8,572− 1,563 = 7,009 g
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Since all the data points lie in the range 7,009 g to 11,177 g, the boxplot is as
shown in Figure 3.13.

7,583
8,572 9,614

9,088

10,688

10,0009,0008,0007,000

Breaking strength (g)

11,000

Figure 3.13 Boxplot of the paper towel
strengths

A boxplot shows distributional location through the placement of the box and
whiskers along a number line. It shows distributional spread through the extent of
the box and the whiskers, with the box enclosing the middle 50% of the distribution.
Some elements of distributional shape are indicated by the symmetry (or lack
thereof) of the box and of the whiskers. And a gap between the end of a whisker
and a separately plotted point serves as a reminder that no data values fall in that
interval.

Two or more boxplots drawn to the same scale and side by side provide an
effective way of comparing samples.

Example 6
(Example 2, page 67,

revisited )

More on Bullet Penetration Depths

Table 3.8 contains the raw information needed to find the i−.5
20 quantiles for the

two distributions of bullet penetration depth introduced in the previous section.
For the 230 grain bullet penetration depths, interpolation yields

Q(.25) = .5Q(.225)+ .5Q(.275) = .5(38.75)+ .5(39.75) = 39.25 mm

Q(.5) = .5Q(.475)+ .5Q(.525) = .5(42.55)+ .5(42.90) = 42.725 mm

Q(.75) = .5Q(.725)+ .5Q(.775) = .5(47.90)+ .5(48.15) = 48.025 mm

So

IQR = 48.025− 39.25 = 8.775 mm

1.5IQR = 13.163 mm

Q(.75)+ 1.5IQR = 61.188 mm

Q(.25)− 1.5IQR = 26.087 mm
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Example 6
(continued )

Similar calculations for the 200 grain bullet penetration depths yield

Q(.25) = 60.25 mm

Q(.5) = 62.80 mm

Q(.75) = 64.35 mm

Q(.75)+ 1.5IQR = 70.50 mm

Q(.25)− 1.5IQR = 54.10 mm

Table 3.8
Quantiles of the Bullet Penetration Depth Distributions

ith Smallest 230 Grain ith Smallest 200 Grain
i i−.5

20 Data Point = Q( i−.5
20 ) Data Point = Q( i−.5

20 )

1 .025 27.75 58.00
2 .075 37.35 58.65
3 .125 38.35 59.10
4 .175 38.35 59.50
5 .225 38.75 59.80
6 .275 39.75 60.70
7 .325 40.50 61.30
8 .375 41.00 61.50
9 .425 41.15 62.30

10 .475 42.55 62.65
11 .525 42.90 62.95
12 .575 43.60 63.30
13 .625 43.85 63.55
14 .675 47.30 63.80
15 .725 47.90 64.05
16 .775 48.15 64.65
17 .825 49.85 65.00
18 .875 51.25 67.75
19 .925 51.60 70.40
20 .975 56.00 71.70

Figure 3.14 then shows boxplots placed side by side on the same scale. The
plots show the larger and more consistent penetration depths of the 200 grain
bullets. They also show the existence of one particularly extreme data point in
the 200 grain data set. Further, the relative lengths of the whiskers hint at some
skewness (recall the terminology introduced with Figure 3.7) in the data. And
all of this is done in a way that is quite uncluttered and compact. Many more of
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Figure 3.14 Side-by-side boxplots for
the bullet penetration depths

these boxes could be added to Figure 3.14 (to compare other bullet types) without
visual overload.

3.2.3 Q-Q Plots and Comparing Distributional Shapes

It is often important to compare the shapes of two distributions. Comparing his-
tograms is one rough way of doing this. A more sensitive way is to make a single
plot based on the quantile functions for the two distributions and exploit the fact
that “equal shape” is equivalent to “linearly related quantile functions.” Such a plot
is called a quantile-quantile plot or, more briefly, a Q-Q plot.

Consider the two small artificial data sets given in Table 3.9. Dot diagrams of
these two data sets are given in Figure 3.15. The two data sets have the same shape.
But why is this so? One way to look at the equality of the shapes is to note that

ith smallest value in data set 2 = 2
(
ith smallest value in data set 1

)+ 1 (3.1)

Then, recognizing ordered data values as quantiles and letting Q1 and Q2 stand for
the quantile functions of the two respective data sets, it is clear from display (3.1)
that

Q2(p) = 2Q1(p)+ 1 (3.2)

Table 3.9
Two Small Artificial Data Sets

Data Set 1 Data Set 2

3, 5, 4, 7, 3 15, 7, 9, 7, 11
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Data set 2

7 9 11 13 15 17

Data set 1

3 4 5 6 7 8

Figure 3.15 Dot diagrams for two
small data sets

7

Q2(p)

8

9
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11

12

13

14

15

3

2

4 5 6 7 Q1(p)

Figure 3.16 Q-Q plot for the data
of Table 3.9

That is, the two data sets have quantile functions that are linearly related. Looking
at either display (3.1) or (3.2), it is obvious that a plot of the points(

Q1

(
i − .5

5

)
, Q2

(
i − .5

5

))
(for i = 1, 2, 3, 4, 5) should be exactly linear. Figure 3.16 illustrates this—in fact
Figure 3.16 is a Q-Q plot for the data sets of Table 3.9.

Definition 5 A Q-Q plot for two data sets with respective quantile functions Q1 and Q2 is
a plot of ordered pairs (Q1(p), Q2(p)) for appropriate values of p. When two
data sets of size n are involved, the values of p used to make the plot will be
i−.5

n for i = 1, 2, . . . , n. When two data sets of unequal sizes are involved, the
values of p used to make the plot will be i−.5

n for i = 1, 2, . . . , n, where n is
the size of the smaller set.

To make a Q-Q plot for two data sets of the same size,

1. order each from the smallest observation to the largest,Steps in making
a Q-Q plot

2. pair off corresponding values in the two data sets, and

3. plot ordered pairs, with the horizontal coordinates coming from the first data
set and the vertical ones from the second.

When data sets of unequal size are involved, the ordered values from the smaller
data set must be paired with quantiles of the larger data set obtained by interpolation.
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A Q-Q plot that is reasonably linear indicates the two distributions involved have
similar shapes. When there are significant departures from linearity, the character
of those departures reveals the ways in which the shapes differ.

Example 6
(continued )

Returning again to the bullet penetration depths, Table 3.8 (page 84) gives the
raw material for making a Q-Q plot. The depths on each row of that table need
only be paired and plotted in order to make the plot given in Figure 3.17.

The scatterplot in Figure 3.17 is not terribly linear when looked at as a whole.
However, the points corresponding to the 2nd through 13th smallest values in
each data set do look fairly linear, indicating that (except for the extreme lower
ends) the lower ends of the two distributions have similar shapes.

The horizontal jog the plot takes between the 13th and 14th plotted points
indicates that the gap between 43.85 mm and 47.30 mm (for the 230 grain data)
is out of proportion to the gap between 63.55 and 63.80 mm (for the 200 grain
data). This hints that there was some kind of basic physical difference in the
mechanisms that produced the smaller and larger 230 grain penetration depths.
Once this kind of indication is discovered, it is a task for ballistics experts or
materials people to explain the phenomenon.

Because of the marked departure from linearity produced by the 1st plotted
point (27.75, 58.00), there is also a drastic difference in the shapes of the extreme
lower ends of the two distributions. In order to move that point back on line with
the rest of the plotted points, it would need to be moved to the right or down
(i.e., increase the smallest 230 grain observation or decrease the smallest 200
grain observation). That is, relative to the 200 grain distribution, the 230 grain
distribution is long-tailed to the low side. (Or to put it differently, relative to
the 230 grain distribution, the 200 grain distribution is short-tailed to the low
side.) Note that the difference in shapes was already evident in the boxplot in
Figure 3.14. Again, it would remain for a specialist to explain this difference in
distributional shapes.
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Figure 3.17 Q-Q plot for the bullet penetration depths
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The Q-Q plotting idea is useful when applied to two data sets, and it is easiest to
explain the notion in such an “empirical versus empirical” context. But its greatest
usefulness is really when it is applied to one quantile function that represents a data
set and a second that represents a theoretical distribution.

Definition 6 A theoretical Q-Q plot or probability plot for a data set of size n and a
theoretical distribution, with respective quantile functions Q1 and Q2, is a plot
of ordered pairs (Q1(p), Q2(p)) for appropriate values of p. In this text, the
values of p of the form i−.5

n for i = 1, 2, . . . , n will be used.

Recognizing Q1(
i−.5

n ) as the i th smallest data point, one sees that a theoretical
Q-Q plot is a plot of points with horizontal plotting positions equal to observed data
and vertical plotting positions equal to quantiles of the theoretical distribution. That
is, with ordered data x1 ≤ x2 ≤ · · · ≤ xn , the points

Ordered pairs
making a

probability plot

(
xi , Q2

(
i − .5

n

))

are plotted. Such a plot allows one to ask, “Does the data set have a shape similar to
the theoretical distribution?”

The most famous version of the theoretical Q-Q plot occurs when quantiles forNormal
plotting the standard normal or Gaussian distribution are employed. This is the familiar

bell-shaped distribution. Table 3.10 gives some quantiles of this distribution. In
order to find Q(p) for p equal to one of the values .01, .02, . . . , .98, .99, locate the
entry in the row labeled by the first digit after the decimal place and in the column
labeled by the second digit after the decimal place. (For example, Q(.37) = −.33.)
A simple numerical approximation to the values given in Table 3.10 adequate for
most plotting purposes is

Approximate standard
normal quantiles

Q(p) ≈ 4.9(p.14 − (1− p).14) (3.3)

The origin of Table 3.10 is not obvious at this point. It will be explained in
Section 5.2, but for the time being consider the following crude argument to the
effect that the quantiles in the table correspond to a bell-shaped distribution. Imagine
that each entry in Table 3.10 corresponds to a data point in a set of size n = 99. A
possible frequency table for those 99 data points is given as Table 3.11. The tally
column in Table 3.11 shows clearly the bell shape.

The standard normal quantiles can be used to make a theoretical Q-Q plot as
a way of assessing how bell-shaped a data set looks. The resulting plot is called a
normal (probability) plot.
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Table 3.10
Standard Normal Quantiles

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 −2.33 −2.05 −1.88 −1.75 −1.65 −1.55 −1.48 −1.41 −1.34

.1 −1.28 −1.23 −1.18 −1.13 −1.08 −1.04 −.99 −.95 −.92 −.88

.2 −.84 −.81 −.77 −.74 −.71 −.67 −.64 −.61 −.58 −.55

.3 −.52 −.50 −.47 −.44 −.41 −.39 −.36 −.33 −.31 −.28

.4 −.25 −.23 −.20 −.18 −.15 −.13 −.10 −.08 −.05 −.03

.5 0.00 .03 .05 .08 .10 .13 .15 .18 .20 .23

.6 .25 .28 .31 .33 .36 .39 .41 .44 .47 .50

.7 .52 .55 .58 .61 .64 .67 .71 .74 .77 .81

.8 .84 .88 .92 .95 .99 1.04 1.08 1.13 1.18 1.23

.9 1.28 1.34 1.41 1.48 1.55 1.65 1.75 1.88 2.05 2.33

Table 3.11
A Frequency Table for the Standard Normal Quantiles

Value Tally Frequency

−2.80 to−2.30 1
−2.29 to−1.79 2
−1.78 to−1.28 7
−1.27 to−.77 12
−.76 to−.26 17
−.25 to .25 21

.26 to .76 17

.77 to 1.27 12
1.28 to 1.78 7
1.79 to 2.29 2
2.30 to 2.80 1

Example 5
(continued )

Consider again the paper towel strength testing scenario and now the issue of
how bell-shaped the data set in Table 3.6 (page 79) is. Table 3.12 was made using
Tables 3.7 (page 79) and 3.10; it gives the information needed to produce the
theoretical Q-Q plot in Figure 3.18.

Considering the small size of the data set involved, the plot in Figure 3.18
is fairly linear, and so the data set is reasonably bell-shaped. As a practical
consequence of this judgment, it is then possible to use the normal probability
models discussed in Section 5.2 to describe breaking strength. These could be
employed to make breaking strength predictions, and methods of formal statistical
inference based on them could be used in the analysis of breaking strength data.
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Example 5
(continued )

Table 3.12
Breaking Strength and Standard Normal Quantiles

i−.5
10 Breaking i−.5

10 Standard
i i−.5

10 Strength Quantile Normal Quantile

1 .05 7,583 −1.65
2 .15 8,527 −1.04
3 .25 8,572 −.67
4 .35 8,577 −.39
5 .45 9,011 −.13
6 .55 9,165 .13
7 .65 9,471 .39
8 .75 9,614 .67
9 .85 9,614 1.04

10 .95 10,688 1.65
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Figure 3.18 Theoretical Q-Q plot for the
paper towel strengths

Special graph paper, called normal probability paper (or just probability
paper), is available as an alternative way of making normal plots. Instead of plotting
points on regular graph paper using vertical plotting positions taken from Table 3.10,
points are plotted on probability paper using vertical plotting positions of the form
i−.5

n . Figure 3.19 is a normal plot of the breaking strength data from Example 5 made
on probability paper. Observe that this is virtually identical to the plot in Figure 3.18.

Normal plots are not the only kind of theoretical Q-Q plots useful to engineers.
Many other types of theoretical distributions are of engineering importance, and
each can be used to make theoretical Q-Q plots. This point is discussed in more
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Figure 3.19 Normal plot for the paper towel strengths (made on probability paper,
used with permission of the Keuffel and Esser Company)

detail in Section 5.3, but the introduction of theoretical Q-Q plotting here makes it
possible to emphasize the relationship between probability plotting and (empirical)
Q-Q plotting.
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1. The following are data (from Introduction to Con-
temporary Statistical Methods by L. H. Koopmans)
on the impact strength of sheets of insulating ma-
terial cut in two different ways. (The values are in
ft lb.)

Lengthwise Cuts Crosswise Cuts

1.15 .89

.84 .69

.88 .46

.91 .85

.86 .73

.88 .67

.92 .78

.87 .77

.93 .80

.95 .79

(a) Make quantile plots for these two samples.
Find the medians, the quartiles, and the .37
quantiles for the two data sets.

(b) Draw (to scale) carefully labeled side-by-side
boxplots for comparing the two cutting meth-
ods. Discuss what these show about the two
methods.

(c) Make and discuss the appearance of a Q-Q plot
for comparing the shapes of these two data sets.

2. Make a Q-Q plot for the two small samples in
Table 3.13 in Section 3.3.

3. Make and interpret a normal plot for the yield data
of Exercise 1 of Section 3.1.

4. Explain the usefulness of theoretical Q-Q plotting.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

3.3 Standard Numerical Summary Measures

The smooth functioning of most modern technology depends on the reduction
of large amounts of data to a few informative numerical summary values. For
example, over the period of a month, a lab doing compressive strength testing for
a manufacturer’s concrete blocks may make hundreds or even thousands of such
measurements. But for some purposes, it may be adequate to know that those
strengths average 4,618 psi with a range of 2,521 psi (from smallest to largest).

In this section, several standard summary measures for quantitative data are
discussed, including the mean, median, range, and standard deviation. Measures of
location are considered first, then measures of spread. There follows a discussion
of the difference between sample statistics and population parameters and then
illustrations of how numerical summaries can be effectively used in simple plots to
clarify the results of statistical engineering studies. Finally, there is a brief discussion
of the use of personal computer software in elementary data summarization.

3.3.1 Measures of Location

Most people are familiar with the concept of an “average” as being representative
of, or in the center of, a data set. Temperatures may vary between different locations
in a blast furnace, but an average temperature tells something about a middle or
representative temperature. Scores on an exam may vary, but one is relieved to score
at least above average.
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The word average, as used in colloquial speech, has several potential technical
meanings. One is the median, Q(.5), which was introduced in the last section. The
median divides a data set in half. Roughly half of the area enclosed by the bars of a
well-made histogram will lie to either side of the median. As a measure of center,
it is completely insensitive to the effects of a few extreme or outlying observations.
For example, the small set of data

2, 3, 6, 9, 10

has median 6, and this remains true even if the value 10 is replaced by 10,000,000
and/or the value 2 is replaced by −200,000.

The previous section used the median as a center value in the making of boxplots.
But the median is not the technical meaning most often attached to the notion of
average in statistical analyses. Instead, it is more common to employ the (arithmetic)
mean.

Definition 7 The (arithmetic) mean of a sample of quantitative data (say, x1, x2, . . . , xn) is

x̄ = 1

n

n∑
i=1

xi

The mean is sometimes called the first moment or center of mass of a distribution,
drawing on an analogy to mechanics. Think of placing a unit mass along the number
line at the location of each value in a data set—the balance point of the mass
distribution is at x̄ .

Example 7 Waste on Bulk Paper Rolls

Hall, Luethe, Pelszynski, and Ringhofer worked with a company that cuts paper
from large rolls purchased in bulk from several suppliers. The company was
interested in determining the amount of waste (by weight) on rolls obtained
from the various sources. Table 3.13 gives percent waste data, which the students
obtained for six and eight rolls, respectively, of paper purchased from two different
sources.

The medians and means for the two data sets are easily obtained. For the
supplier 1 data,

Q(.5) = .5(.65)+ .5(.92) = .785% wasteI
and

x̄ = 1

6
(.37+ .52+ .65+ .92+ 2.89+ 3.62) = 1.495% wasteI
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Example 7
(continued )

Table 3.13
Percent Waste by Weight on Bulk Paper Rolls

Supplier 1 Supplier 2

.37, .52, .65, .89, .99, 1.45, 1.47,

.92, 2.89, 3.62 1.58, 2.27, 2.63, 6.54

For the supplier 2 data,

Q(.5) = .5(1.47)+ .5(1.58) = 1.525% wasteI
and

x̄ = 1

8
(.89+ .99+ 1.45+ 1.47+ 1.58+ 2.27+ 2.63+ 6.54)

= 2.228% wasteI
Figure 3.20 shows dot diagrams with the medians and means marked. Notice
that a comparison of either medians or means for the two suppliers shows the
supplier 2 waste to be larger than the supplier 1 waste. But there is a substan-
tial difference between the median and mean values for a given supplier. In
both cases, the mean is quite a bit larger than the corresponding median. This
reflects the right-skewed nature of both data sets. In both cases, the center of
mass of the distribution is pulled strongly to the right by a few extremely large
values.

Supplier 1

0 1 2 3 4 5 6

Q(.5) = .785

x = 1.495

Waste (percent)

Waste (percent)

Supplier 2

0 1 2 3 4 5 6

Q(.5) = 1.525

x = 2.228

Figure 3.20 Dot diagrams for the waste percentages
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Example 7 shows clearly that, in contrast to the median, the mean is a mea-
sure of center that can be strongly affected by a few extreme data values. People
sometimes say that because of this, one or the other of the two measures is “better.”
Such statements lack sense. Neither is better; they are simply measures with dif-
ferent properties. And the difference is one that intelligent consumers of statistical
information do well to keep in mind. The “average” income of employees at a com-
pany paying nine workers each $10,000/year and a president $110,000/year can be
described as $10,000/year or $20,000/year, depending upon whether the median or
mean is being used.

3.3.2 Measures of Spread

Quantifying the variation in a data set can be as important as measuring its location.
In manufacturing, for example, if a characteristic of parts coming off a particular
machine is being measured and recorded, the spread of the resulting data gives
information about the intrinsic precision or capability of the machine. The location
of the resulting data is often a function of machine setup or settings of adjustment
knobs. Setups can fairly easily be changed, but improvement of intrinsic machine
precision usually requires a capital expenditure for a new piece of equipment or
overhaul of an existing one.

Although the point wasn’t stressed in Section 3.2, the interquartile range,
IQR = Q(.75)− Q(.25), is one possible measure of spread for a distribution. It
measures the spread of the middle half of a distribution. Therefore, it is insensitive
to the possibility of a few extreme values occurring in a data set. A related measure
is the range, which indicates the spread of the entire distribution.

Definition 8 The range of a data set consisting of ordered values x1 ≤ x2 ≤ · · · ≤ xn is

R = xn − x1

Notice the word usage here. The word range could be used as a verb to say, “The
data range from 3 to 21.” But to use the word as a noun, one says, “The range is
(21− 3) = 18.” Since the range depends only on the values of the smallest and
largest points in a data set, it is necessarily highly sensitive to extreme (or outlying)
values. Because it is easily calculated, it has enjoyed long-standing popularity in
industrial settings, particularly as a tool in statistical quality control.

However, most methods of formal statistical inference are based on another mea-
sure of distributional spread. A notion of “mean squared deviation” or “root mean
squared deviation” is employed to produce measures that are called the variance
and the standard deviation, respectively.
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Definition 9 The sample variance of a data set consisting of values x1, x2, . . . , xn is

s2 = 1

n − 1

n∑
i=1

(xi − x̄)2

The sample standard deviation, s, is the nonnegative square root of the
sample variance.

Apart from an exchange of n − 1 for n in the divisor, s2 is an average squared
distance of the data points from the central value x̄ . Thus, s2 is nonnegative and
is 0 only when all data points are exactly alike. The units of s2 are the squares of
the units in which the original data are expressed. Taking the square root of s2 to
obtain s then produces a measure of spread expressed in the original units.

Example 7
(continued )

The spreads in the two sets of percentage wastes recorded in Table 3.13 can be
expressed in any of the preceding terms. For the supplier 1 data,

Q(.25) = .52

Q(.75) = 2.89

and so

IQR = 2.89− .52 = 2.37% waste

Also,

R = 3.62− .37 = 3.25% waste

Further,

s2 = 1

6− 1
((.37− 1.495)2 + (.52− 1.495)2 + (.65− 1.495)2 + (.92− 1.495)2

+ (2.89− 1.495)2 + (3.62− 1.495)2)

= 1.945(% waste)2

so that

s =
√

1.945 = 1.394% wasteI
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Similar calculations for the supplier 2 data yield the values

IQR = 1.23% waste

and

R = 6.54− .89 = 5.65% waste

Further,

s2 = 1

8− 1
((.89− 2.228)2 + (.99− 2.228)2 + (1.45− 2.228)2 + (1.47− 2.228)2

+ (1.58− 2.228)2 + (2.27− 2.228)2 + (2.63− 2.228)2 + (6.54− 2.228)2)

= 3.383(% waste)2

so

s = 1.839% wasteI
Supplier 2 has the smaller IQR but the larger R and s. This is consistent with
Figure 3.20. The central portion of the supplier 2 distribution is tightly packed.
But the single extreme data point makes the overall variability larger for the
second supplier than for the first.

The calculation of sample variances just illustrated is meant simply to reinforce
the fact that s2 is a kind of mean squared deviation. Of course, the most sensible
way to find sample variances in practice is by using either a handheld electronic
calculator with a preprogrammed variance function or a statistical package on a
personal computer.

The measures of variation, IQR, R, and s, are not directly comparable. Although
it is somewhat out of the main flow of this discussion, it is worth interjecting at this
point that it is possible to “put R and s on the same scale.” This is done by dividing
R by an appropriate conversion factor, known to quality control engineers as d2.
Table B.2 contains control chart constants and gives values of d2 for various sample
sizes n. For example, to get R and s on the same scale for the supplier 1 data,
division of R by 2.534 is in order, since n = 6.

Students often have some initial difficulty developing a feel for the meaning
of the standard deviation. One possible help in this effort is a famous theorem of a
Russian mathematician.

Proposition 1
(Chebyschev’s Theorem )

For any data set and any number k larger than 1, a fraction of at least 1− (1/k2)

of the data are within ks of x̄ .
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This little theorem says, for example, that at least 3
4 of a data set is within 2 standard

deviations of its mean. And at least 8
9 of a data set is within 3 standard deviations of

its mean. So the theorem promises that if a data set has a small standard deviation,
it will be tightly packed about its mean.

Example 7
(continued )

Returning to the waste data, consider illustrating the meaning of Chebyschev’s
theorem with the supplier 1 values. For example, taking k = 2, at least 3

4 =
1− ( 1

2 )
2 of the 6 data points (i.e., at least 4.5 of them) must be within 2 standard

deviations of x̄ . In fact

x̄ − 2s = 1.495− 2(1.394) = −1.294% waste

and

x̄ + 2s = 1.495+ 2(1.394) = 4.284% waste

so simple counting shows that all (a fraction of 1.0) of the data are between these
two values.

3.3.3 Statistics and Parameters

At this point, it is important to introduce some more basic terminology. Jargon and
notation for distributions of samples are somewhat different than for population
distributions (and theoretical distributions).

Definition 10 Numerical summarizations of sample data are called (sample) statistics. Nu-
merical summarizations of population and theoretical distributions are called
(population or model) parameters. Typically, Roman letters are used as sym-
bols for statistics, and Greek letters are used to stand for parameters.

As an example, consider the mean. Definition 7 refers specifically to a calculation
for a sample. If a data set represents an entire population, then it is common to use
the lowercase Greek letter mu (µ) to stand for the population mean and to write

Population
mean

µ = 1

N

N∑
i=1

xi (3.4)

Comparing this expression to the one in Definition 7, not only is a different symbol
used for the mean but also N is used in place of n. It is standard to denote a
population size as N and a sample size as n. Chapter 5 gives a definition for the
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mean of a theoretical distribution. But it is worth saying now that the symbol µ will
be used in that context as well as in the context of equation (3.4).

As another example of the usage suggested by Definition 10, consider the vari-
ance and standard deviation. Definition 9 refers specifically to the sample variance
and standard deviation. If a data set represents an entire population, then it is com-
mon to use the lowercase Greek sigma squared (σ 2) to stand for the population
variance and to define

Population
variance σ 2 = 1

N

N∑
i=1

(xi − µ)2 (3.5)

The nonnegative square root of σ 2 is then called the population standard devia-
tion, σ . (The division in equation (3.5) is by N , and not the N − 1 that might be
expected on the basis of Definition 9. There are reasons for this change, but they are
not accessible at this point.) Chapter 5 defines a variance and standard deviation for
theoretical distributions, and the symbols σ 2 and σ will be used there as well as in
the context of equation (3.5).

On one point, this text will deviate from the Roman/Greek symbolism conven-
tion laid out in Definition 10: the notation for quantiles. Q(p) will stand for the pth
quantile of a distribution, whether it is from a sample, a population, or a theoretical
model.

3.3.4 Plots of Summary Statistics

Plotting numerical summary measures in various ways is often helpful in the early
analysis of engineering data. For example, plots of summary statistics against timePlots against

time are frequently revealing.

Example 8
(Example 8, Chapter 1,

revisited—p. 18 )

Monitoring a Critical Dimension of Machined Parts

Cowan, Renk, Vander Leest, and Yakes worked with a company that makes
precision metal parts. A critical dimension of one such part was monitored by
occasionally selecting and measuring five consecutive pieces and then plotting the
sample mean and range. Table 3.14 gives the x̄ and R values for 25 consecutive
samples of five parts. The values reported are in .0001 in.

Figure 3.21 is a plot of both the means and ranges against order of observation.
Looking first at the plot of ranges, no strong trends are obvious, which suggests
that the basic short-term variation measured in this critical dimension is stable.
The combination of process and measurement precision is neither improving nor
degrading with time. The plot of means, however, suggests some kind of physical
change. The average dimensions from the second shift on October 27 (samples 9
through 15) are noticeably smaller than the rest of the means. As discussed in
Example 8, Chapter 1, it turned out to be the case that the parts produced on that
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Table 3.14
Means and Ranges for a Critical Dimension on Samples of n = 5 Parts

Sample Date Time x̄ R Sample Date Time x̄ R

1 10/27 7:30 AM 3509.4 5 14 10:15 3504.4 4
2 8:30 3509.2 2 15 11:15 3504.6 3
3 9:30 3512.6 3 16 10/28 7:30 AM 3513.0 2
4 10:30 3511.6 4 17 8:30 3512.4 1
5 11:30 3512.0 4 18 9:30 3510.8 5
6 12:30 PM 3513.6 6 19 10:30 3511.8 4
7 1:30 3511.8 3 20 6:15 PM 3512.4 3
8 2:30 3512.2 2 21 7:15 3511.0 4
9 4:15 3500.0 3 22 8:45 3510.6 1

10 5:45 3502.0 2 23 9:45 3510.2 5
11 6:45 3501.4 2 24 10:45 3510.4 2
12 8:15 3504.0 2 25 11:45 3510.8 3
13 9:15 3503.6 3

Example 8
(continued )
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Figure 3.21 Plots of x̄ and R over time
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shift were not really systematically any different from the others. Instead, the
person making the measurements for samples 9 through 15 used the gauge in a
fundamentally different way than other employees. The pattern in the x̄ values
was caused by this change in measurement technique.

Patterns revealed in the plotting of sample statistics against time ought to alertTerminology and
causes for patterns

on plots against
Time

an engineer to look for a physical cause and (typically) a cure. Systematic vari-
ations or cycles in a plot of means can often be related to process variables that
come and go on a more or less regular basis. Examples include seasonal or daily
variables like ambient temperature or those caused by rotation of gauges or fixtures.
Instability or variation in excess of that related to basic equipment precision can
sometimes be traced to mixed lots of raw material or overadjustment of equipment
by operators. Changes in level of a process mean can originate in the introduction
of new machinery, raw materials, or employee training and (for example) tool wear.
Mixtures of several patterns of variation on a single plot of some summary statistic
against time can sometimes (as in Example 8) be traced to changes in measurement
calibration. They are also sometimes produced by consistent differences in machines
or streams of raw material.

Plots of summary statistics against time are not the only useful ones. PlotsPlots against
process variables against process variables can also be quite informative.

Example 9
(Example 6, Chapter 1,

revisited—p. 15 )

Plotting the Mean Shear Strength of Wood Joints

In their study of glued wood joint strength, Dimond and Dix obtained the values
given in Table 3.15 as mean strengths (over three shear tests) for each combination
of three woods and three glues. Figure 3.22 gives a revealing plot of these
3× 3 = 9 different x̄’s.

Table 3.15
Mean Joint Strengths for Nine Wood/Glue Combinations

x̄
Wood Glue Mean Joint Shear Strength (lb)

pine white 131.7
pine carpenter’s 192.7
pine cascamite 201.3
fir white 92.0
fir carpenter’s 146.3
fir cascamite 156.7
oak white 257.7
oak carpenter’s 234.3
oak cascamite 177.7
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Example 9
(continued )
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Figure 3.22 Plot of mean joint strength vs.
glue type for three woods

From the plot, it is obvious that the gluing properties of pine and fir are
quite similar, with pine joints averaging around 40–45 lb stronger. For these
two soft woods, cascamite appears slightly better than carpenter’s glue, both of
which make much better joints than white glue. The gluing properties of oak
(a hardwood) are quite different from those of pine and fir. In fact, the glues
perform in exactly the opposite ordering for the strength of oak joints. All of this
is displayed quite clearly by the simple plot in Figure 3.22.

The two previous examples have illustrated the usefulness of plotting sample
statistics against time and against levels of an experimental variable. Other possi-
bilities in specific engineering situations can potentially help the working engineer
understand and manipulate the systems on which he or she works.

3.3.5 Summary Statistics and Personal Computer Software

The numerical data summaries introduced in this chapter are relatively simple. For
small data sets they can be computed quite easily using only a pocket calculator.
However, for large data sets and in cases where subsequent additional calculations
or plotting may occur, statistical or spreadsheet software can be convenient.

Printout 1 illustrates the use of the MINITAB statistical package to produce
summary statistics for the percent waste data sets in Table 3.13. (The appropriate
MINITAB routine is found under the “Stat/Basic Statistics/Display Descriptive
Statistics” menu.) The mean, median, and standard deviation values on the printout
agree with those produced in Example 7. However, the first and third quartile
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WWW
Printout 1 Descriptive Statistics for the Percent Waste Data of Table

Descriptive Statistics

Variable N Mean Median TrMean StDev SE Mean
Supply 1 6 1.495 0.785 1.495 1.394 0.569
Supply 2 8 2.228 1.525 2.228 1.839 0.650

Variable Minimum Maximum Q1 Q3
Supply 1 0.370 3.620 0.483 3.073
Supply 2 0.890 6.540 1.105 2.540

figures on the printout do not match exactly those found earlier. MINITAB simply
uses slightly different conventions for those quantities than the ones introduced in
Section 3.2.

High-quality statistical packages like MINITAB (and JMP, SAS, SPSS, SYS-
TAT, SPLUS, etc.) are widely available. One of them should be on the electronic
desktop of every working engineer. Unfortunately, this is not always the case, and
engineers often assume that standard spreadsheet software (perhaps augmented with
third party plug-ins) provides a workable substitute. Often this is true, but sometimes
it is not.

The primary potential problem with using a spreadsheet as a substitute for sta-
tistical software concerns numerical accuracy. Spreadsheets can and do on occasion
return catastrophically wrong values for even simple statistics. Established vendors
of statistical software have many years of experience dealing with subtle numerical
issues that arise in the computation of even simple summaries of even small data
sets. Most vendors of spreadsheet software seem unaware of or indifferent to these
matters. For example, consider the very small data set

0, 1, 2

The sample variance of these data is easily seen to be 1.0, and essentially any
statistical package or spreadsheet will reliably return this value. However, suppose
100,000,000 is added to each of these n = 3 values, producing the data set

100000000, 100000001, 100000002

The actual sample variance is unchanged, and high-quality statistical software will
reliably return the value 1.0. However, as of late 1999, the current version of the
leading spreadsheet program returned the value 0 for this second sample variance.
This is a badly wrong answer to an apparently very simple problem.

So at least until vendors of spreadsheet software choose to integrate an es-
tablished statistical package into their products, we advise extreme caution in the
use of spreadsheets to do statistical computations. A good source of up-to-date
information on this issue is the AP Statistics electronic bulletin board found at
http://forum.swarthmore.edu/epigone/apstat-l.
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Section 3 Exercises ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1. Calculate and compare the means, medians, ranges,
interquartile ranges, and standard deviations of the
two data sets introduced in Exercise 1 of Section
3.2. Discuss the interpretation of these values in the
context of comparing the two cutting methods.

2. Are the numerical values you produced in Exercise
1 above most naturally thought of as statistics or as
parameters? Explain.

3. Use a statistical package to compute basic sum-
mary statistics for the two data sets introduced in

Exercise 1 of Section 3.2 and thereby check your
answers to Exercise 1 here.

4. Add 1.3 to each of the lengthwise cut impact
strengths referred to in Exercise 1 and then re-
compute the values of the mean, median, range,
interquartile range, and standard deviation. How
do these compare with the values obtained earlier?
Repeat this exercise after multiplying each length-
wise cut impact strength by 2 (instead of adding
1.3).

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

3.4 Descriptive Statistics for Qualitative
and Count Data (Optional )

The techniques presented thus far in this chapter are primarily relevant to the analysis
of measurement data. As noted in Section 1.2, conventional wisdom is that where
they can be obtained, measurement data (or variables data) are generally preferable
to count and qualitative data (or attributes data). Nevertheless, qualitative or count
data will sometimes be the primary information available. It is therefore worthwhile
to consider their summarization.

This section will cover the reduction of qualitative and count data to per-item or
per-inspection-unit figures and the display of those ratios in simple bar charts and
plots.

3.4.1 Numerical Summarization of Qualitative and Count Data

Recall from Definitions 8 and 9 in Chapter 1 that aggregation and counting are
typically used to produce numerical values from qualitative data. Then, beginning
with counts, it is often helpful to calculate rates on a per-item or per-inspection-unit
basis.

When each item in a sample of n either does or does not have a characteristic
of interest, the notation

Sample fraction
of items with a

characteristic
p̂ = The number of items in the sample with the characteristic

n
(3.6)

will be used. A given sample can produce many such values of “p hat” if either a
single characteristic has many possible categories or many different characteristics
are being monitored simultaneously.



3.4 Descriptive Statistics for Qualitative and Count Data 105

Example 10 Defect Classifications of Cable Connectors

Delva, Lynch, and Stephany worked with a manufacturer of cable connectors.
Daily samples of 100 connectors of a certain design were taken over 30 produc-
tion days, and each sampled connector was inspected according to a well-defined
(operational) set of rules. Using the information from the inspections, each in-
spected connector could be classified as belonging to one of the following five
mutually exclusive categories:

Category A: having “very serious” defects

Category B: having “serious” defects but no “very serious” defects

Category C: having “moderately serious” defects but no “serious” or “very
serious” defects

Category D: having only “minor” defects

Category E: having no defects

Table 3.16 gives counts of sampled connectors falling into the first four
categories (the four defect categories) over the 30-day period. Then, using the
fact that 30× 100 = 3,000 connectors were inspected over this period,

p̂A = 3/3000 = .0010

p̂B = 0/3000 = .0000

p̂C = 11/3000 = .0037

p̂D = 1/3000 = .0003

Notice that here p̂E = 1− ( p̂A + p̂B + p̂C + p̂D), because categories A through
E represent a set of nonoverlapping and exhaustive classifications into which an
individual connector must fall, so that the p̂’s must total to 1.

Table 3.16
Counts of Connectors Classified into Four Defect
Categories

Category Number of Sampled Connectors

A 3
B 0
C 11
D 1
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Example 11 Pneumatic Tool Manufacture

Kraber, Rucker, and Williams worked with a manufacturer of pneumatic tools.
Each tool produced is thoroughly inspected before shipping. The students col-
lected some data on several kinds of problems uncovered at final inspection.
Table 3.17 gives counts of tools having these problems in a particular production
run of 100 tools.

Table 3.17
Counts and Fractions of Tools with Various
Problems

Problem Number of Tools p̂

Type 1 leak 8 .08
Type 2 leak 4 .04
Type 3 leak 3 .03
Missing part 1 2 .02
Missing part 2 1 .01
Missing part 3 2 .02
Bad part 4 1 .01
Bad part 5 2 .02
Bad part 6 1 .01
Wrong part 7 2 .02
Wrong part 8 2 .02

Table 3.17 is a summarization of highly multivariate qualitative data. The
categories listed in Table 3.17 are not mutually exclusive; a given tool can fall
into more than one of them. Instead of representing different possible values of
a single categorical variable (as was the case with the connector categories in
Example 10), the categories listed above each amount to 1 (present) of 2 (present
and not present) possible values for a different categorical variable. For example,
for type 1 leaks, p̂ = .08, so 1− p̂ = .92 for the fraction of tools without type 1
leaks. The p̂ values do not necessarily total to the fraction of tools requiring rework
at final inspection. A given faulty tool could be counted in several p̂ values.

Another kind of per-item ratio, also based on counts, is sometimes confused
with p̂. Such a ratio arises when every item in a sample provides an opportunity for
a phenomenon of interest to occur, but multiple occurrences are possible and counts
are kept of the total number of occurrences. In such cases, the notation

Sample mean
occurences per

unit or item
û = The total number of occurrences

The total number of inspection units or sampled items
(3.7)
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is used. û is really closer in meaning to x̄ than to p̂, even though it can turn out to be
a number between 0 and 1 and is sometimes expressed as a percentage and called a
rate.

Although the counts totaled in the numerator of expression (3.7) must all be
integers, the values totaled to create the denominator need not be. For instance,
suppose vinyl floor tiles are being inspected for serious blemishes. If on one occasion
inspection of 1 box yields a total of 2 blemishes, on another occasion .5 box yields
0 blemishes, and on still another occasion 2.5 boxes yield a total of 1 blemish, then

û = 2+ 0+ 1

1+ .5+ 2.5
= .75 blemishes/box

Depending on exactly how terms are defined, it may be appropriate to calculate
either p̂ values or û values or both in a single situation.

Example 10
(continued )

It was possible for a single cable connector to have more than one defect of a
given severity and, in fact, defects of different severities. For example, Delva,
Lynch, and Stephany’s records indicate that in the 3,000 connectors inspected,
1 connector had exactly 2 moderately serious defects (along with a single very
serious defect), 11 connectors had exactly 1 moderately serious defect (and no
others), and 2,988 had no moderately serious defects. So the observed rate of
moderately serious defects could be reported as

û = 2+ 11

1+ 11+ 2988
= .0043 moderately serious defects/connector

This is an occurrence rate for moderately serious defects( û), but not a fraction
of connectors having moderately serious defects ( p̂).

The difference between the statistics p̂ and û may seem trivial. But it is a point
that constantly causes students confusion. Methods of formal statistical inference
based on p̂ are not the same as those based on û. The distinction between the two
kinds of rates must be kept in mind if those methods are to be applied appropriately.

To carry this warning a step further, note that not every quantity called a
percentage is even of the form p̂ or û. In a laboratory analysis, a specimen may be
declared to be “30% carbon.” The 30% cannot be thought of as having the form of p̂
in equation (3.6) or û in equation (3.7). It is really a single continuous measurement,
not a summary statistic. Statistical methods for p̂ or û have nothing to say about
such rates.

3.4.2 Bar Charts and Plots for Qualitative and Count Data

Often, a study will produce several values of p̂ or û that need to be compared. Bar
charts and simple bivariate plots can be a great aid in summarizing these results.
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Example 10
(continued )

Figure 3.23 is a bar chart of the fractions of connectors in the categories A through
D. It shows clearly that most connectors with defects fall into category C, having
moderately serious defects but no serious or very serious defects. This bar chart
is a presentation of the behavior of a single categorical variable.
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Figure 3.23 Bar chart of connector defects

Example 11
(continued )

Figure 3.24 is a bar chart of the information on tool problems in Table 3.17. It
shows leaks to be the most frequently occurring problems on this production run.

0

Pr
ob

le
m

 r
at

e

T
yp

e 
1 

le
ak

.01

.02

.03

.04

.05

.06

.07

.08

T
yp

e 
2 

le
ak

T
yp

e 
3 

le
ak

M
is

si
ng

 p
ar

t 1

M
is

si
ng

 p
ar

t 2

M
is

si
ng

 p
ar

t 3

B
ad

 p
ar

t 4

B
ad

 p
ar

t 5

B
ad

 p
ar

t 6

W
ro

ng
 p

ar
t 7

W
ro

ng
 p

ar
t 8

Figure 3.24 Bar chart for assembly problems



3.4 Descriptive Statistics for Qualitative and Count Data 109

Figures 3.23 and 3.24 are both bar charts, but they differ considerably. The
first concerns the behavior of a single (ordered) categorical variable—namely, Con-
nector Class. The second concerns the behavior of 11 different present–not present
categorical variables, like Type 1 Leak, Missing Part 3, etc. There may be some
significance to the shape of Figure 3.23, since categories A through D are arranged
in decreasing order of defect severity, and this order was used in the making of
the figure. But the shape of Figure 3.24 is essentially arbitrary, since the particular
ordering of the tool problem categories used to make the figure is arbitrary. Other
equally sensible orderings would give quite different shapes.

The device of segmenting bars on a bar chart and letting the segments stand
for different categories of a single qualitative variable can be helpful, particularly
where several different samples are to be compared.

Example 12 Scrap and Rework in a Turning Operation

The article “Statistical Analysis: Roadmap for Management Action” by H.
Rowe (Quality Progress, February 1985) describes a statistically based quality-
improvement project in the turning of steel shafts. Table 3.18 gives the percentages
of reworkable and scrap shafts produced in 18 production runs made during the
study.

Figure 3.25 is a corresponding segmented bar graph, with the jobs ordered
in time, showing the behavior of both the scrap and rework rates over time. (The
total height of any bar represents the sum of the two rates.) The sharp reduction in
both scrap and rework between jobs 10 and 11 was produced by overhauling one
of the company’s lathes. That lathe was identified as needing attention through
engineering data analysis early in the plant project.

Table 3.18
Percents Scrap and Rework in a Turning Operation

Job Number Percent Scrap Percent Rework Job Number Percent Scrap Percent Rework

1 2 25 10 3 18
2 3 11 11 0 3
3 0 5 12 1 5
4 0 0 13 0 0
5 0 20 14 0 0
6 2 23 15 0 3
7 0 6 16 0 2
8 0 5 17 0 2
9 2 8 18 1 5
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Example 12
(continued )
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Figure 3.25 Segmented bar chart of scrap and rework rates

In many cases, the simple plotting of p̂ or û values against time or process
variables can make clear the essential message in a set of qualitative or count data.

Example 13 Defects per Truck Found at Final Inspection

In his text Engineering Statistics and Quality Control, I. W. Burr illustrates
the usefulness of plotting û versus time with a set of data on defects found at
final inspection at a truck assembly plant. From 95 to 130 trucks were produced
daily at the plant; Table 3.19 gives part of Burr’s daily defects/truck values. These
statistics are plotted in Figure 3.26. The graph shows a marked decrease in quality
(increase in û) over the third and fourth weeks of December, ending with a rate

Table 3.19
Defects Per Truck on 26 Production Days

Date û = Defects/Truck Date û = Defects/Truck Date û = Defects/Truck Date û = Defects/Truck

12/2 1.54 12/11 1.18 12/20 2.32 1/3 1.15
12/3 1.42 12/12 1.39 12/23 1.23 1/6 1.37
12/4 1.57 12/13 1.42 12/24 2.91 1/7 1.79
12/5 1.40 12/16 2.08 12/26 1.77 1/8 1.68
12/6 1.51 12/17 1.85 12/27 1.61 1/9 1.78
12/9 1.08 12/18 1.82 12/30 1.25 1/10 1.84
12/10 1.27 12/19 2.07
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Figure 3.26 Plot of daily defects per truck

of 2.91 defects/truck on Christmas Eve. Apparently, this situation was largely
corrected with the passing of the holiday season.

Plots of p̂ or û against levels of manipulated variables from an experiment are
often helpful in understanding the results of that experiment.

Example 14 Plotting Fractions of Conforming Pellets

Greiner, Grim, Larson, and Lukomski experimented with the same pelletizing
machine studied by Cyr, Ellson, and Rickard (see Example 2 in Chapter 1). In
one part of their study, they ran the machine at an elevated speed and varied the
shot size (amount of powder injected into the dies) and the composition of that
powder (in terms of the relative amounts of new and reground material). Table
3.20 lists the numbers of conforming pellets produced in a sample of 100 at each
of 2× 2 = 4 sets of process conditions. A simple plot of p̂ values versus shot
size is given in Figure 3.27.

The figure indicates that increasing the shot size is somewhat harmful, but
that a substantial improvement in process performance happens when the amount
of reground material used in the pellet-making mixture is increased. This makes
sense. Reground material had been previously compressed into (nonconforming)
pellets. In the process, it had been allowed to absorb some ambient humidity.
Both the prior compression and the increased moisture content were potential
reasons why this material improved the ability of the process to produce solid,
properly shaped pellets.
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Example 14
(continued )

Table 3.20
Numbers of Conforming Pellets for Four Shot Size/Mixture
Combinations

Sample Shot Size Mixture Number Conforming

1 small 20% reground 38
2 small 50% reground 66
3 large 20% reground 29
4 large 50% reground 53
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Figure 3.27 Plot of fraction conforming vs.
shot size
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1. From your field, give an example of a variable that
is a rate (a) of the form p̂, (b) of the form û, and
(c) of neither form.

2. Because gauging is easier, it is sometimes tempting
to collect qualitative data related to measurements
rather than the measurements themselves. For ex-
ample, in the context of Example 1 in Chapter 1, if
gears with runouts exceeding 15 were considered
to be nonconforming, it would be possible to derive
fractions nonconforming, p̂, from simple “go–no
go” checking of gears. For the two sets of gears

represented in Table 1.1, what would have been the
sample fractions nonconforming p̂? Give a practi-
cal reason why having the values in Table 1.1 might
be preferable to knowing only the corresponding p̂
values.

3. Consider the measurement of the percentage cop-
per in brass specimens. The resulting data will be a
kind of rate data. Are the rates that will be obtained
of the type p̂, of the type û, or of neither type?
Explain.
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1. The accompanying values are gains measured on
120 amplifiers designed to produce a 10 dB gain.
These data were originally from the Quality Im-
provement Tools workbook set (published by the
Juran Institute). They were then used as an exam-
ple in the article “The Tools of Quality” (Quality
Progress, September 1990).

8.1, 10.4, 8.8, 9.7, 7.8, 9.9, 11.7, 8.0, 9.3, 9.0, 8.2,
8.9, 10.1, 9.4, 9.2, 7.9, 9.5, 10.9, 7.8, 8.3, 9.1, 8.4,
9.6, 11.1, 7.9, 8.5, 8.7, 7.8, 10.5, 8.5, 11.5, 8.0, 7.9,
8.3, 8.7, 10.0, 9.4, 9.0, 9.2, 10.7, 9.3, 9.7, 8.7, 8.2,
8.9, 8.6, 9.5, 9.4, 8.8, 8.3, 8.4, 9.1, 10.1, 7.8, 8.1,
8.8, 8.0, 9.2, 8.4, 7.8, 7.9, 8.5, 9.2, 8.7, 10.2, 7.9,
9.8, 8.3, 9.0, 9.6, 9.9, 10.6, 8.6, 9.4, 8.8, 8.2, 10.5,
9.7, 9.1, 8.0, 8.7, 9.8, 8.5, 8.9, 9.1, 8.4, 8.1, 9.5,
8.7, 9.3, 8.1, 10.1, 9.6, 8.3, 8.0, 9.8, 9.0, 8.9, 8.1,
9.7, 8.5, 8.2, 9.0, 10.2, 9.5, 8.3, 8.9, 9.1, 10.3, 8.4,
8.6, 9.2, 8.5, 9.6, 9.0, 10.7, 8.6, 10.0, 8.8, 8.6

(a) Make a stem-and-leaf plot and a boxplot for
these data. How would you describe the shape
of this data set? Does the shape of your stem-
and-leaf plot (or a corresponding histogram)
give you any clue how a high fraction within
specifications was achieved?

(b) Make a normal plot for these data and interpret
its shape. (Standard normal quantiles for p =
.0042 and p = .9958 are approximately−2.64
and 2.64, respectively.)

(c) Although the nominal gain for these amplifiers
was to be 10 dB, the design allowed gains from
7.75 dB to 12.2 dB to be considered acceptable.
About what fraction, p, of such amplifiers do
you expect to meet these engineering specifi-
cations?

2. The article “The Lognormal Distribution for Mod-
eling Quality Data When the Mean is Near Zero”
by S. Albin (Journal of Quality Technology, April
1990) described the operation of a Rutgers Uni-
versity plastics recycling pilot plant. The most im-
portant material reclaimed from beverage bottles
is PET plastic. A serious impurity is aluminum,

which later can clog the filters in extruders when
the recycled material is used. The following are the
amounts (in ppm by weight of aluminum) found
in bihourly samples of PET recovered at the plant
over roughly a two-day period.

291, 222, 125, 79, 145, 119, 244, 118, 182, 63,
30, 140, 101, 102, 87, 183, 60, 191, 119, 511,
120, 172, 70, 30, 90, 115

(Apparently, the data are recorded in the order in
which they were collected, reading left to right, top
to bottom.)
(a) Make a run chart for these data. Are there any

obvious time trends? What practical engineer-
ing reason is there for looking for such trends?

(b) Ignoring the time order information, make a
stem-and-leaf diagram. Use the hundreds digit
to make the stem and the other two digits (sep-
arated by commas to indicate the different data
points) to make the leaves. After making an
initial stem-and-leaf diagram by recording the
data in the (time) order given above, make a
second one in which the values have been or-
dered.

(c) How would you describe the shape of the stem-
and-leaf diagram? Is the data set bell-shaped?

(d) Find the median and the first and third quartiles
for the aluminum contents and then find the .58
quantile of the data set.

(e) Make a boxplot.
(f) Make a normal plot, using regular graph paper.

List the coordinates of the 26 plotted points.
Interpret the shape of the plot.

(g) Try transforming the data by taking natural log-
arithms and again assess the shape. Is the trans-
formed data set more bell-shaped than the raw
data set?

(h) Find the sample mean, the sample range, and
the sample standard deviation for both the
original data and the log-transformed values
from (g). Is the mean of the transformed val-
ues equal to the natural logarithm of the mean
of the original data?
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3. The accompanying data are three hypothetical sam-
ples of size 10 that are supposed to represent mea-
sured manganese contents in specimens of 1045
steel (the units are points, or .01%). Suppose that
these measurements were made on standard speci-
mens having “true” manganese contents of 80, us-
ing three different analytical methods. (Thirty dif-
ferent specimens were involved.)

Method 1

87, 74, 78, 81, 78,

77, 84, 80, 85, 78

Method 2

86, 85, 82, 87, 85,

84, 84, 82, 82, 85

Method 3

84, 83, 78, 79, 85,

82, 82, 81, 82, 79

(a) Make (on the same coordinate system) side-
by-side boxplots that you can use to compare
the three analytical methods.

(b) Discuss the apparent effectiveness of the three
methods in terms of the appearance of your di-
agram from (a) and in terms of the concepts
of accuracy and precision discussed in Sec-
tion 1.3.

(c) An alternative method of comparing two such
analytical methods is to use both methods of
analysis once on each of (say) 10 different
specimens (10 specimens and 20 measure-
ments). In the terminology of Section 1.2, what
kind of data would be generated by such a
plan? If one simply wishes to compare the
average measurements produced by two ana-
lytical methods, which data collection plan (20
specimens and 20 measurements, or 10 spec-
imens and 20 measurements) seems to you
most likely to provide the better comparison?
Explain.

4. Gaul, Phan, and Shimonek measured the resis-
tances of 15 resistors of 2× 5 = 10 different types.
Two different wattage ratings were involved, and
five different nominal resistances were used. All
measurements were reported to three significant
digits. Their data follow.
(a) Make back-to-back stem-and-leaf plots for

comparing the 1
4 watt and 1

2 watt resistance
distributions for each nominal resistance. In a
few sentences, summarize what these show.

(b) Make pairs of boxplots for comparing the 1
4

watt and 1
2 watt resistance distributions for each

nominal resistance.
(c) Make normal plots for the 1

2 watt nominal 20
ohm and nominal 200 ohm resistors. Interpret
these in a sentence or two. From the appear-
ance of the second plot, does it seem that if
the nominal 200 ohm resistances were treated
as if they had a bell-shaped distribution, the
tendency would be to overestimate or to un-
derestimate the fraction of resistances near the
nominal value?

1
4 Watt Resistors

20 ohm 75 ohm 100 ohm 150 ohm 200 ohm

19.2 72.9 97.4 148 198

19.2 72.4 95.8 148 196

19.3 72.0 97.7 148 199

19.3 72.5 94.1 148 196

19.1 72.7 95.1 148 196

19.0 72.3 95.4 147 195

19.6 72.9 94.9 148 193

19.2 73.2 98.5 148 196

19.3 71.8 94.8 148 196

19.4 73.4 94.6 147 199

19.4 70.9 98.3 147 194

19.3 72.3 96.0 149 195

19.5 72.5 97.3 148 196

19.2 72.1 96.0 148 195

19.1 72.6 94.8 148 199
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1
2 Watt Resistors

20 ohm 75 ohm 100 ohm 150 ohm 200 ohm

20.1 73.9 97.2 152 207

19.7 74.2 97.9 151 205

20.2 74.6 96.8 155 214

24.4 72.1 99.2 146 195

20.2 73.8 98.5 148 202

20.1 74.8 95.5 154 211

20.0 75.0 97.2 149 197

20.4 68.6 98.7 150 197

20.3 74.0 96.6 153 199

20.6 71.7 102 149 196

19.9 76.5 103 150 207

19.7 76.2 102 149 210

20.8 72.8 102 145 192

20.4 73.2 100 147 201

20.5 76.7 100 149 257

(d) Compute the sample means and sample stan-
dard deviations for all 10 samples. Do these
values agree with your qualitative statements
made in answer to part (a)?

(e) Make a plot of the 10 sample means computed
in part (d), similar to the plot in Figure 3.22.
Comment on the appearance of this plot.

5. Blomquist, Kennedy, and Reiter studied the prop-
erties of three scales by each weighing a standard
5 g weight, 20 g weight, and 100 g weight twice
on each scale. Their data are presented in the ac-
companying table. Using whatever graphical and
numerical data summary methods you find helpful,
make sense of these data. Write a several-page dis-
cussion of your findings. You will probably want
to consider both accuracy and precision and (to the
extent possible) make comparisons between scales
and between students. Part of your discussion might
deal with the concepts of repeatability and repro-
ducibility introduced in Section 2.1. Are the pic-
tures you get of the scale and student performances
consistent across the different weights?

5-Gram Weighings

Scale 1 Scale 2 Scale 3

Student 1 5.03, 5.02 5.07, 5.09 4.98, 4.98

Student 2 5.03, 5.01 5.02, 5.07 4.99, 4.98

Student 3 5.06, 5.00 5.10, 5.08 4.98, 4.98

20-Gram Weighings

Scale 1 Scale 2 Scale 3

Student 1 20.04, 20.06 20.04, 20.04 19.94, 19.93

Student 2 20.02, 19.99 20.03, 19.93 19.95, 19.95

Student 3 20.03, 20.02 20.06, 20.03 19.91, 19.96

100-Gram Weighings

Scale 1 Scale 2 Scale 3

Student 1 100.06, 100.35 100.25, 100.08 99.87, 99.88

Student 2 100.05, 100.01 100.10, 100.02 99.87, 99.88

Student 3 100.00, 100.00 100.01, 100.02 99.88, 99.88

6. The accompanying values are the lifetimes (in num-
bers of 24 mm deep holes drilled in 1045 steel
before tool failure) for n = 12 D952-II (8 mm)
drills. These were read from a graph in “Computer-
assisted Prediction of Drill-failure Using In-process
Measurements of Thrust Force” by A. Thangaraj
and P. K. Wright (Journal of Engineering for In-
dustry, May 1988).

47, 145, 172, 86, 122, 110, 172, 52, 194, 116,
149, 48

Write a short report to your engineering manager
summarizing what these data indicate about the
lifetimes of drills of this type in this kind of appli-
cation. Use whatever graphical and numerical data
summary tools make clear the main features of the
data set.

7. Losen, Cahoy, and Lewis purchased eight spanner
bushings of a particular type from a local machine
shop and measured a number of characteristics of
these bushings, including their outside diameters.
Each of the eight outside diameters was measured
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once by each of two student technicians, with the
following results (the units are inches):

Bushing 1 2 3 4

Student A .3690 .3690 .3690 .3700

Student B .3690 .3695 .3695 .3695

Bushing 5 6 7 8

Student A .3695 .3700 .3695 .3690

Student B .3695 .3700 .3700 .3690

A common device when dealing with paired data
like these is to analyze the differences. Subtracting
B measurements from A measurements gives the
following eight values:

.0000,−.0005,−.0005, .0005, .0000, .0000,
−.0005, .0000

(a) Find the first and third quartiles for these dif-
ferences, and their median.

(b) Find the sample mean and standard deviation
for the differences.

(c) Your mean in part (b) should be negative. Inter-
pret this in terms of the original measurement
problem.

(d) Suppose you want to make a normal plot of the
differences on regular graph paper. Give the co-
ordinates of the lower-left point on such a plot.

8. The accompanying data are the times to failure (in
millions of cycles) of high-speed turbine engine
bearings made out of two different compounds.
These were taken from “Analysis of Single Classi-
fication Experiments Based on Censored Samples
from the Two-parameter Weibull Distribution” by
J. I. McCool (The Journal of Statistical Planning
and Inference, 1979).

Compound 1

3.03, 5.53, 5.60, 9.30, 9.92,

12.51, 12.95, 15.21, 16.04, 16.84

Compound 2

3.19, 4.26, 4.47, 4.53, 4.67,

4.69, 5.78, 6.79, 9.37, 12.75

(a) Find the .84 quantile of the Compound 1 failure
times.

(b) Give the coordinates of the two lower-left
points that would appear on a normal plot of
the Compound 1 data.

(c) Make back-to-back stem-and-leaf plots for
comparing the life length properties of bear-
ings made from Compounds 1 and 2.

(d) Make (to scale) side-by-side boxplots for com-
paring the life lengths for the two compounds.
Mark numbers on the plots indicating the loca-
tions of their main features.

(e) Compute the sample means and standard devi-
ations of the two sets of lifetimes.

(f) Describe what your answers to parts (c), (d),
and (e) above indicate about the life lengths of
these turbine bearings.

9. Heyde, Kuebrick, and Swanson measured the
heights of 405 steel punches purchased by a com-
pany from a single supplier. The stamping machine
in which these are used is designed to use .500 in.
punches. Frequencies of the measurements they
obtained are shown in the accompanying table.

Punch Height Punch Height

(.001 in.) Frequency (.001 in.) Frequency

482 1 496 7

483 0 497 13

484 1 498 24

485 1 499 56

486 0 500 82

487 1 501 97

488 0 502 64

489 1 503 43

490 0 504 3

491 2 505 1

492 0 506 0

493 0 507 0

494 0 508 0

495 6 509 2



Chapter 3 Exercises 117

(a) Summarize these data, using appropriate
graphical and numerical tools. How would
you describe the shape of the distribution of
punch heights? The specifications for punch
heights were in fact .500 in. to .505 in. Does
this fact give you any insight as to the ori-
gin of the distributional shape observed in
the data? Does it appear that the supplier has
equipment capable of meeting the engineer-
ing specifications on punch height?

(b) In the manufacturing application of these
punches, several had to be placed side-by-side
on a drum to cut the same piece of material. In
this context, why is having small variability
in punch height perhaps even more important
than having the correct mean punch height?

10. The article “Watch Out for Nonnormal Distri-
butions” by D. C. Jacobs (Chemical Engineer-
ing Progress, November 1990) contains 100 mea-
sured daily purities of oxygen delivered by a sin-
gle supplier. These are as follows, listed in the time
order of their collection (read left to right, top to
bottom). The values given are in hundredths of
a percent purity above 99.00% (so 63 stands for
99.63%).

63, 61, 67, 58, 55, 50, 55, 56, 52, 64, 73, 57, 63,
81, 64, 54, 57, 59, 60, 68, 58, 57, 67, 56, 66, 60,
49, 79, 60, 62, 60, 49, 62, 56, 69, 75, 52, 56, 61,
58, 66, 67, 56, 55, 66, 55, 69, 60, 69, 70, 65, 56,
73, 65, 68, 59, 62, 58, 62, 66, 57, 60, 66, 54, 64,
62, 64, 64, 50, 50, 72, 85, 68, 58, 68, 80, 60, 60,
53, 49, 55, 80, 64, 59, 53, 73, 55, 54, 60, 60, 58,
50, 53, 48, 78, 72, 51, 60, 49, 67

You will probably want to use a statistical analysis
package to help you do the following:
(a) Make a run chart for these data. Are there any

obvious time trends? What would be the prac-
tical engineering usefulness of early detection
of any such time trend?

(b) Now ignore the time order of data collection
and represent these data with a stem-and-leaf
plot and a histogram. (Use .02% class widths
in making your histogram.) Mark on these the
supplier’s lower specification limit of 99.50%

purity. Describe the shape of the purity distri-
bution.

(c) The author of the article found it useful to
reexpress the purities by subtracting 99.30
(remember that the preceding values are in
units of .01% above 99.00%) and then tak-
ing natural logarithms. Do this with the raw
data and make a second stem-and-leaf dia-
gram and a second histogram to portray the
shape of the transformed data. Do these fig-
ures look more bell-shaped than the ones you
made in part (b)?

(d) Make a normal plot for the transformed values
from part (c). What does it indicate about the
shape of the distribution of the transformed
values? (Standard normal quantiles for p =
.005 and p = .995 are approximately −2.58
and 2.58, respectively.)

11. The following are some data taken from the article
“Confidence Limits for Weibull Regression with
Censored Data” by J. I. McCool (IEEE Transac-
tions on Reliability, 1980). They are the ordered
failure times (the time units are not given in the
paper) for hardened steel specimens subjected to
rolling contact fatigue tests at four different values
of contact stress.

.87× 106 .99× 106 1.09× 106 1.18× 106

psi psi psi psi

1.67 .80 .012 .073

2.20 1.00 .18 .098

2.51 1.37 .20 .117

3.00 2.25 .24 .135

3.90 2.95 .26 .175

4.70 3.70 .32 .262

7.53 6.07 .32 .270

14.7 6.65 .42 .350

27.8 7.05 .44 .386

37.4 7.37 .88 .456

(a) Make side-by-side boxplots for these data.
Does it look as if the different stress levels
produce life distributions of roughly the same
shape? (Engineering experience suggests that
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different stress levels often change the scale
but not the basic shape of life distributions.)

(b) Make Q-Q plots for comparing all six dif-
ferent possible pairs of distributional shapes.
Summarize in a few sentences what these in-
dicate about the shapes of the failure time
distributions under the different stress levels.

12. Riddle, Peterson, and Harper studied the perfor-
mance of a rapid-cut industrial shear in a continu-
ous cut mode. They cut nominally 2-in. and 1-in.
strips of 14 gauge and 16 gauge steel sheet metal
and measured the actual widths of the strips pro-
duced by the shear. Their data follow, in units of
10−3 in. above nominal.

Material Thickness

14 Gauge 16 Gauge

2, 1, 1, 1, −2, −6, −1, −2,

1 in. 0, 0, −2, −1, −2, −1,

−10, −5, 1 −1, −1, −5

Machine Setting

10, 10, 8, 8, −4, −3, −4, −2,

2 in. 8, 8, 7, −3, −3, −3,

7, 9, 11 −3, −4, −4

(a) Compute sample means and standard devia-
tions for the four samples. Plot the means in
a manner similar to the plot in Figure 3.22.
Make a separate plot of this kind for the stan-
dard deviations.

(b) Write a short report to an engineering man-
ager to summarize what these data and your
summary statistics and plots show about the
performance of the industrial shear. How do
you recommend that the shear be set up in
the future in order to get strips cut from these
materials with widths as close as possible to
specified dimensions?

13. The accompanying data are some measured resis-
tivity values from in situ doped polysilicon spec-
imens taken from the article “LPCVD Process
Equipment Evaluation Using Statistical Methods”

by R. Rossi (Solid State Technology, 1984). (The
units were not given in the article.)

5.55, 5.52, 5.45, 5.53, 5.37, 5.22, 5.62, 5.69,
5.60, 5.58, 5.51, 5.53

(a) Make a dot diagram and a boxplot for these
data and compute the statistics x̄ and s.

(b) Make a normal plot for these data. How bell-
shaped does this data set look? If you were to
say that the shape departs from a perfect bell
shape, in what specific way does it? (Refer to
characteristics of the normal plot to support
your answer.)

14. The article “Thermal Endurance of Polyester
Enameled Wires Using Twisted Wire Specimens”
by H. Goldenberg (IEEE Transactions on Electri-
cal Insulation, 1965) contains some data on the
lifetimes (in weeks) of wire specimens tested for
thermal endurance according to AIEE Standard
57. Several different laboratories were used to
make the tests, and the results from two of the
laboratories, using a test temperature of 200◦C,
follow:

Laboratory 1 Laboratory 2

14, 16, 17, 18, 20, 27, 28, 29, 29, 29,

22, 23, 25, 27, 28 30, 31, 31, 33, 34

Consider first only the Laboratory 1 data.
(a) Find the median and the first and third quar-

tiles for the lifetimes and then find the .64
quantile of the data set.

(b) Make and interpret a normal plot for these
data. Would you describe this distribution as
bell-shaped? If not, in what way(s) does it
depart from being bell-shaped? Give the co-
ordinates of the 10 points you plot on regular
graph paper.

(c) Find the sample mean, the sample range, and
the sample standard deviation for these data.

Now consider comparing the work of the two dif-
ferent laboratories (i.e., consider both data sets).
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(d) Make back-to-back stem-and-leaf plots for
these two data sets (use two leaves for obser-
vations 10–19, two for observations 20–29,
etc.)

(e) Make side-by-side boxplots for these two data
sets. (Draw these on the same scale.)

(f) Based on your work in parts (d) and (e), which
of the two labs would you say produced the
more precise results?

(g) Is it possible to tell from your plots in (d)
and (e) which lab produced the more accurate
results? Why or why not?

15. Agusalim, Ferry, and Hollowaty made some mea-
surements on the thickness of wallboard during
its manufacture. The accompanying table shows
thicknesses (in inches) of 12 different 4 ft× 8 ft
boards (at a single location on the boards) both
before and after drying in a kiln. (These boards
were nominally .500 in. thick.)

Board 1 2 3 4 5 6

Before Drying .514 .505 .500 .490 .503 .500

After Drying .510 .502 .493 .486 .497 .494

Board 7 8 9 10 11 12

Before Drying .510 .508 .500 .511 .505 .501

After Drying .502 .505 .488 .486 .491 .498

(a) Make a scatterplot of these data. Does there
appear to be a strong relationship between
after-drying thickness and before-drying
thickness? How might such a relationship
be of practical engineering importance in the
manufacture of wallboard?

(b) Calculate the 12 before minus after differ-
ences in thickness. Find the sample mean and
sample standard deviation of these values.
How might the mean value be used in running
the sheetrock manufacturing process? (Based
on the mean value, what is an ideal before-
drying thickness for the boards?) If some-
how all variability in before-drying thickness
could be eliminated, would substantial after-
drying variability in thickness remain? Ex-
plain in terms of your calculations.

16. The accompanying values are representative of
data summarized in a histogram appearing in
the article “Influence of Final Recrystallization
Heat Treatment on Zircaloy-4 Strip Corrosion”
by Foster, Dougherty, Burke, Bates, and Worces-
ter (Journal of Nuclear Materials, 1990). Given
are n = 20 particle diameters observed in a bright-
field TEM micrograph of a Zircaloy-4 specimen.
The units are 10−2µm.

1.73, 2.47, 2.83, 3.20, 3.20, 3.57, 3.93, 4.30,
4.67, 5.03, 5.03, 5.40, 5.77, 6.13, 6.50, 7.23,
7.60, 8.33, 9.43, 11.27

(a) Compute the mean and standard deviation of
these particle diameters.

(b) Make both a dot diagram and a boxplot for
these data. Sketch the dot diagram on a ruled
scale and make the boxplot below it.

(c) Based on your work in (b), how would you
describe the shape of this data set?

(d) Make a normal plot of these data. In what
specific way does the distribution depart from
being bell-shaped?

(e) It is sometimes useful to find a scale of mea-
surement on which a data set is reasonably
bell-shaped. To that end, take the natural loga-
rithms of the raw particle diameters. Normal-
plot the log diameters. Does this plot appear
to be more linear than your plot in (d)?

17. The data in the accompanying tables are measure-
ments of the latent heat of fusion of ice taken from
Experimental Statistics (NBS Handbook 91) by
M. G. Natrella. The measurements were made (on
specimens cooled to −.072◦C) using two differ-
ent methods. The first was an electrical method,
and the second was a method of mixtures. The
units are calories per gram of mass.
(a) Make side-by-side boxplots for comparing

the two measurement methods. Does there
appear to be any important difference in the
precision of the two methods? Is it fair to
say that at least one of the methods must be
somewhat inaccurate? Explain.
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Method A (Electrical)

79.98, 80.04, 80.02, 80.04, 80.03, 80.03, 80.04,

79.97, 80.05, 80.03, 80.02, 80.00, 80.02

Method B (Mixtures)

80.02, 79.94, 79.98, 79.97,

79.97, 80.03, 79.95, 79.97

(b) Compute and compare the sample means and
the sample standard deviations for the two
methods. How are the comparisons of these
numerical quantities already evident on your
plot in (a)?

18. T. Babcock did some fatigue life testing on spec-
imens of 1045 steel obtained from three different
heats produced by a single steel supplier. The lives
till failure of 30 specimens tested on a rotary fa-
tigue strength machine (units are 100 cycles) are

Heat 1

313, 100, 235, 250, 457,

11, 315, 584, 249, 204

Heat 2

349, 206, 163, 350, 189,

216, 170, 359, 267, 196

Heat 3

289, 279, 142, 334, 192,

339, 87, 185, 262, 194

(a) Find the median and first and third quartiles
for the Heat 1 data. Then find the .62 quantile
of the Heat 1 data set.

(b) Make and interpret a normal plot for the Heat
1 data. Would you describe this data set as
bell-shaped? If not, in what specific way does
the shape depart from the bell shape? (List the

coordinates of the points you plot on regular
graph paper.)

(c) Find the sample mean and sample standard
deviation of the Heat 1 data.

(d) Make a stem-and-leaf plot for the Heat 1 data
using only the leading digits 0, 1, 2, 3, 4 and 5
to the left of the stem (and pairs of final digits
to the right).

(e) Now make back-to-back stem-and-leaf plots
for the Heat 1 and Heat 2 data. How do the
two distributions of fatigue lives compare?

(f) Show the calculations necessary to make box-
plots for each of the three data sets above.
Then draw these side by side on the same
scale to compare the three heats. How would
you say that these three heats compare in
terms of uniformity of fatigue lives produced?
Do you see any clear differences between
heats in terms of the average fatigue life pro-
duced?

19. Loveland, Rahardja, and Rainey studied a metal
turning process used to make some (cylindrical)
servo sleeves. Outside diameter measurements
made on ten of these sleeves are given here. (Units
are 10−5 inch above nominal. The “notch” axis of
the sleeve was an identifiable axis and the non-
notch axis was perpendicular to the notch axis. A
dial bore gauge and an air spindler gauge were
used.)

Sleeve 1 2 3 4 5

Notch/Dial Bore 130 160 170 310 200

Non-Notch/Dial Bore 150 150 210 160 160

Notch/Air Spindler 40 60 45 0 30

Sleeve 6 7 8 9 10

Notch/Dial Bore 130 200 150 200 140

Non-Notch/Dial Bore 140 220 150 220 160

Notch/Air Spindler 0 25 25 −40 65

(a) What can be learned from the dial bore data
that could not be learned from data consisting
of the given notch measurements above and
ten non-notch measurements on a different
ten servo sleeves?
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(b) The dial bore data might well be termed
“paired” data. A common method of anal-
ysis for such data is to take differences and
study those. Compute the ten “notch minus
non-notch” differences for the dial bore val-
ues. Make a dot diagram for these and then
a boxplot. What physical interpretation does
a nonzero mean for such differences have?
What physical interpretation does a large vari-
ability in these differences have?

(c) Make a scatterplot of the air spindler notch
measurements versus the dial bore notch mea-
surements. Does it appear that the air spindler
and dial bore measurements are strongly re-
lated?

(d) How would you suggest trying to determine
which of the two gauges is most precise?

20. Duren, Leng and Patterson studied the drilling of
holes in a miniature metal part using two different
physical processes (laser drilling and electrical
discharge machining). Blueprint specifications on
these holes called for them to be drilled at an angle
of 45◦ to the top surface of the part in question.
The realized angles measured on 13 parts drilled
using each process (26 parts in all) are

Laser (Hole A)

42.8, 42.2, 42.7, 43.1, 40.0, 43.5,

42.3, 40.3, 41.3, 48.5, 39.5, 41.1, 42.1

EDM (Hole A)

46.1, 45.3, 45.3, 44.7, 44.2, 44.6,

43.4, 44.6, 44.6, 45.5, 44.4, 44.0, 43.2

(a) Find the median and the first and third quar-
tiles for the Laser data. Then find the .37 quan-
tile of the Laser data set.

(b) Make and interpret a normal plot for the Laser
data. Would you describe this distribution as
bell-shaped? If not, in what way(s) does it
depart from being bell-shaped?

(c) Find the sample mean, the sample range, and
the sample standard deviation for the Laser
data.

Now consider comparing the two different drilling
methods.
(d) Make back-to-back stem-and-leaf plots for

the two data sets.
(e) Make side-by-side boxplots for the two data

sets. (Draw these on the same scale.)
(f) Based on your work in parts (d) and (e), which

of the two processes would you say produced
the most consistent results? Which process
produced an “average” angle closest to the
nominal angle (45◦)?

As it turns out, each metal part actually had two
holes drilled in it and their angles measured. Be-
low are the measured angles of the second hole
drilled in each of the parts made using the Laser
process. (The data are listed in the same part order
as earlier.)

Laser (Hole B)

43.1, 44.3, 44.5, 46.3, 43.9, 41.9,

43.4, 49.0, 43.5, 47.2, 44.8 ,44.0, 43.9

(g) Taking together the two sets of Laser mea-
surements, how would you describe these val-
ues using the terminology of Section 1.2?

(h) Make a scatterplot of the Hole A and Hole B
laser data. Does there appear to be a strong
relationship between the angles produced in
a single part by this drilling method?

(i) Calculate the 13 Hole A minus Hole B differ-
ences in measured angles produced using the
Laser drilling process. Find the sample mean
and sample standard deviation of these val-
ues. What do these quantities measure here?

21. Blad, Sobotka, and Zaug did some hardness test-
ing of a metal specimen. They tested it on three
different machines, a dial Rockwell tester, a dig-
ital Rockwell tester, and a Brinell tester. They
made ten measurements with each machine and
the values they obtained for Brinell hardness (after
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conversion in the case of the Rockwell readings)
were

Dial Rockwell

536.6, 539.2, 524.4,

536.6, 526.8, 531.6,

540.5, 534.0, 526.8,

531.6

Digital Rockwell

501.2, 522.0, 531.6,

522.0, 519.4, 523.2,

522.0, 514.2, 506.4,

518.1

Brinell

542.6, 526.0, 520.5,

514.0, 546.6, 512.6,

516.0, 580.4, 600.0,

601.0

Consider first only the Dial Rockwell data.
(a) Find the median and the first and third quar-

tiles for the hardness measurements. Then
find the .27 quantile of the data set.

(b) Make and interpret a normal plot for these
data. Would you describe this distribution as
bell-shaped? If not, in what way(s) does it
depart from being bell-shaped?

(c) Find the sample mean, the sample range, and
the sample standard deviation for these data.

Now consider comparing the readings from the
different testers (i.e., consider all three data sets.)
(d) Make back-to-back stem-and-leaf plots for

the two Rockwell data sets. (Use two “leaves”
for observations 500–509, two for the obser-
vations 510–519, etc.)

(e) Make side-by-side boxplots for all three data
sets. (Draw these on the same scale.)

(f) Based on your work in part (e), which of the
three machines would you say produced the
most precise results?

(g) Is it possible to tell from your plot (e) which
machine produced the most accurate results?
Why or why not?

22. Ritchey, Bazan, and Buhman did an experiment
to compare flight times of several designs of pa-
per helicopters, dropping them from the first to
ground floors of the ISU Design Center. The flight
times that they reported for two different designs
were (the units are seconds)

Design 1 Design 2

2.47, 2.45, 2.43, 2.67, 2.69, 3.42, 3.50, 3.29, 3.51, 3.53,

2.48, 2.44, 2.71, 2.84, 2.84 2.67, 2.69, 3.47, 3.40, 2.87

(a) Find the median and the first and third quar-
tiles for the Design 1 data. Then find the .62
quantile of the Design 1 data set.

(b) Make and interpret a normal plot for the De-
sign 1 data. Would you describe this distri-
bution as bell-shaped? If not, in what way(s)
does it depart from being bell-shaped?

(c) Find the sample mean, the sample range, and
the sample standard deviation for the Design 1
data. Show some work.

Now consider comparing the two different de-
signs.
(d) Make back-to-back stem-and-leaf plots for

the two data sets.
(e) Make side-by-side boxplots for the two data

sets. (Draw these on the same scale.)
(f) Based on your work in parts (d) and (e), which

of the two designs would you say produced
the most consistent results? Which design
produced the longest flight times?

(g) It is not really clear from the students’ report
whether the data came from the dropping of
one helicopter of each design ten times, or
from the dropping of ten helicopters of each
design once. Briefly discuss which of these
possibilities is preferable if the object of the
study was to identify a superior design. (If
necessary, review Section 2.3.4.)




