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Introduction

This chapter lays a foundation for all that follows: It contains a road map for the
study of engineering statistics. The subject is defined, its importance is described,
some basic terminology is introduced, and the important issue of measurement is
discussed. Finally, the role of mathematical models in achieving the objectives of
engineering statistics is investigated.
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1.1 Engineering Statistics: What and Why

In general terms, what a working engineer does is to design, build, operate, and/or
improve physical systems and products. This work is guided by basic mathematical
and physical theories learned in an undergraduate engineering curriculum. As the
engineer’s experience grows, these quantitative and scientific principles work along-
side sound engineering judgment. But as technology advances and new systems and
products are encountered, the working engineer is inevitably faced with questions
for which theory and experience provide little help. When this happens, what is to
be done?

On occasion, consultants can be called in, but most often an engineer must
independently find out “what makes things tick.” It is necessary to collect and
interpret data that will help in understanding how the new system or product works.
Without specific training in data collection and analysis, the engineer’s attempts can
be haphazard and poorly conceived. Valuable time and resources are then wasted, and
sometimes erroneous (or at least unnecessarily ambiguous) conclusions are reached.
To avoid this, it is vital for a working engineer to have a toolkit that includes the
best possible principles and methods for gathering and interpreting data.

The goal of engineering statistics is to provide the concepts and methods needed
by an engineer who faces a problem for which his or her background does not serve
as a completely adequate guide. It supplies principles for how to efficiently acquire
and process empirical information needed to understand and manipulate engineering
systems.
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Definition 1 Engineering statistics is the study of how best to

1. collect engineering data,

2. summarize or describe engineering data, and

3. draw formal inferences and practical conclusions on the basis of engi-
neering data,

all the while recognizing the reality of variation.

To better understand the definition, it is helpful to consider how the elements of
engineering statistics enter into a real problem.

Example 1 Heat Treating Gears

The article “Statistical Analysis: Mack Truck Gear Heat Treating Experiments”
by P. Brezler (Heat Treating, November, 1986) describes a simple application
of engineering statistics. A process engineer was faced with the question, “How
should gears be loaded into a continuous carburizing furnace in order to mini-
mize distortion during heat treating?” Various people had various semi-informed
opinions about how it should be done—in particular, about whether the gears
should be laid flat in stacks or hung on rods passing through the gear bores. But
no one really knew the consequences of laying versus hanging.

In order to settle the question, the engineer decided to get the facts—toData
collection collect some data on “thrust face runout” (a measure of gear distortion) for gears

laid and gears hung. Deciding exactly how this data collection should be done
required careful thought. There were possible differences in gear raw material lots,
machinists and machines that produced the gears, furnace conditions at different
times and positions within the furnace, technicians and measurement devices that
would produce the final runout measurements, etc. The engineer did not want
these differences either to be mistaken for differences between the two loading
techniques or to unnecessarily cloud the picture. Avoiding this required care.

In fact, the engineer conducted a well-thought-out and executed study.
Table 1.1 shows the runout values obtained for 38 gears laid and 39 gears hung
after heat treating. In raw form, the runout values are hardly understandable.
They lack organization; it is not possible to simply look at Table 1.1 and tell
what is going on. The data needed to be summarized. One thing that was doneData

summarization was to compute some numerical summaries of the data. For example, the process
engineer found

Mean laid runout = 12.6

Mean hung runout = 17.9
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Table 1.1
Thrust Face Runouts (.0001 in.)

Gears Laid Gears Hung

5, 8, 8, 9, 9, 7, 8, 8, 10, 10,
9, 9, 10, 10, 10, 10, 10, 11, 11, 11,
11, 11, 11, 11, 11, 12, 13, 13, 13, 15,
11, 11, 12, 12, 12, 17, 17, 17, 17, 18,
12, 13, 13, 13, 13, 19, 19, 20, 21, 21,
14, 14, 14, 15, 15, 21, 22, 22, 22, 23,
15, 15, 16, 17, 17, 23, 23, 23, 24, 27,
18, 19, 27 27, 28, 31, 36

Further, a simple graphical summarization was made, as shown in Figure 1.1.
From these summaries of the runouts, several points are obvious. One is that

there is variation in the runout values, even within a particular loading method.Variation
Variability is an omnipresent fact of life, and all statistical methodology explicitly
recognizes this. In the case of the gears, it appears from Figure 1.1 that there is
somewhat more variation in the hung values than in the laid values.

But in spite of the variability that complicates comparison between the load-
ing methods, Figure 1.1 and the two group means also carry the message that the
laid runouts are on the whole smaller than the hung runouts. By how much? One
answer is

Mean hung runout−Mean laid runout = 5.3

Gears laid

Gears hung
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Figure 1.1 Dot diagrams of runouts
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Example 1
(continued )

But how “precise” is this figure? Runout values are variable. So is there any
assurance that the difference seen in the present means would reappear in further
testing? Or is it possibly explainable as simply “stray background noise”? Lay-
ing gears is more expensive than hanging them. Can one know whether the extra
expense is justified?

These questions point to the need for methods of formal statistical inferenceDrawing
inferences
from data

from data and translation of those inferences into practical conclusions. Meth-
ods presented in this text can, for example, be used to support the following
statements about hanging and laying gears:

1. One can be roughly 90% sure that the difference in long-run mean runouts
produced under conditions like those of the engineer’s study is in the range

3.2 to 7.4

2. One can be roughly 95% sure that 95% of runouts for gears laid under
conditions like those of the engineer’s study would fall in the range

3.0 to 22.2

3. One can be roughly 95% sure that 95% of runouts for gears hung under
conditions like those of the engineer’s study would fall in the range

.8 to 35.0

These are formal quantifications of what was learned from the study of laid
and hung gears. To derive practical benefit from statements like these, the process
engineer had to combine them with other information, such as the consequences
of a given amount of runout and the costs for hanging and laying gears, and had to
apply sound engineering judgment. Ultimately, the runout improvement was great
enough to justify some extra expense, and the laying method was implemented.

The example shows how the elements of statistics were helpful in solving an
engineer’s problem. Throughout this text, the intention is to emphasize that the
topics discussed are not ends in themselves, but rather tools that engineers can use
to help them do their jobs effectively.
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1. Explain why engineering practice is an inherently
statistical enterprise.

2. Explain why the concept of variability has a central
place in the subject of engineering statistics.

3. Describe the difference between descriptive and
(formal) inferential statistics.
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1.2 Basic Terminology

Engineering statistics requires learning both new words and new technical mean-
ings for familiar words. This section introduces some common jargon for types of
statistical studies, types of data that can arise in those studies, and types of structures
those data can have.

1.2.1 Types of Statistical Studies

When an engineer sets about to gather data, he or she must decide how active to be.
Will the engineer turn knobs and manipulate process variables or simply let things
happen and try to record the salient features?

Definition 2 An observational study is one in which the investigator’s role is basically
passive. A process or phenomenon is watched and data are recorded, but there
is no intervention on the part of the person conducting the study.

Definition 3 An experimental study (or, more simply, an experiment) is one in which the
investigator’s role is active. Process variables are manipulated, and the study
environment is regulated.

Most real statistical studies have both observational and experimental features,
and these two definitions should be thought of as representing idealized opposite
ends of a continuum. On this continuum, the experimental end usually provides
the most efficient and reliable ways to collect engineering data. It is typically
much quicker to manipulate process variables and watch how a system responds
to the changes than to passively observe, hoping to notice something interesting or
revealing.

In addition, it is far easier and safer to infer causality from an experiment thanInferring
causality from an observational study. Real systems are complex. One may observe several

instances of good process performance and note that they were all surrounded by
circumstances X without being safe in assuming that circumstances X cause good
process performance. There may be important variables in the background that are
changing and are the true reason for instances of favorable system behavior. These
so-called lurking variables may govern both process performance and circum-
stances X. Or it may simply be that many variables change haphazardly without
appreciable impact on the system and that by chance, during a limited period of
observation, some of these happen to produce X at the same time that good perfor-
mance occurs. In either case, an engineer’s efforts to create X as a means of making
things work well will be wasted effort.
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On the other hand, in an experiment where the environment is largely regulated
except for a few variables the engineer changes in a purposeful way, an inference
of causality is much stronger. If circumstances created by the investigator are con-
sistently accompanied by favorable results, one can be reasonably sure that they
caused the favorable results.

Example 2 Pelletizing Hexamine Powder

Cyr, Ellson, and Rickard attacked the problem of reducing the fraction of non-
conforming fuel pellets produced in the compression of a raw hexamine powder
in a pelletizing machine. There were many factors potentially influencing the
percentage of nonconforming pellets: among others, Machine Speed, Die Fill
Level, Percent Paraffin added to the hexamine, Room Temperature, Humidity
at manufacture, Moisture Content, “new” versus “reground” Composition of the
mixture being pelletized, and the Roughness of the chute entered by the freshly
stamped pellets. Correlating these many factors to process performance through
passive observation was hopeless.

The students were, however, able to make significant progress by conducting
an experiment. They chose three of the factors that seemed most likely to be
important and purposely changed their levels while holding the levels of other
factors as close to constant as possible. The important changes they observed
in the percentage of acceptable fuel pellets were appropriately attributed to the
influence of the system variables they had manipulated.

Besides the distinction between observational and experimental statistical stud-
ies, it is helpful to distinguish between studies on the basis of the intended breadth
of application of the results. Two relevant terms, popularized by the late W. E.
Deming, are defined next:

Definition 4 An enumerative study is one in which there is a particular, well-defined,
finite group of objects under study. Data are collected on some or all of these
objects, and conclusions are intended to apply only to these objects.

Definition 5 An analytical study is one in which a process or phenomenon is investigated
at one point in space and time with the hope that the data collected will
be representative of system behavior at other places and times under similar
conditions. In this kind of study, there is rarely, if ever, a particular well-defined
group of objects to which conclusions are thought to be limited.

Most engineering studies tend to be of the second type, although some important
engineering applications do involve enumerative work. One such example is the
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reliability testing of critical components—e.g., for use in a space shuttle. The interest
is in the components actually in hand and how well they can be expected to perform
rather than on any broader problem like “the behavior of all components of this
type.” Acceptance sampling (where incoming lots are checked before taking formal
receipt) is another important kind of enumerative study. But as indicated, most
engineering studies are analytical in nature.

Example 2
(continued )

The students working on the pelletizing machine were not interested in any partic-
ular batch of pellets, but rather in the question of how to make the machine work
effectively. They hoped (or tacitly assumed) that what they learned about making
fuel pellets would remain valid at later times, at least under shop conditions like
those they were facing. Their experimental study was analytical in nature.

Particularly when discussing enumerative studies, the next two definitions are
helpful.

Definition 6 A population is the entire group of objects about which one wishes to gather
information in a statistical study.

Definition 7 A sample is the group of objects on which one actually gathers data. In the
case of an enumerative investigation, the sample is a subset of the population
(and can in some cases include the entire population).

Figure 1.2 shows the relationship between a population and a sample. If a crate of
100 machine parts is delivered to a loading dock and 5 are examined in order to
verify the acceptability of the lot, the 100 parts constitute the population of interest,
and the 5 parts make up a (single) sample of size 5 from the population. (Notice the
word usage here: There is one sample, not five samples.)

Sample

Population

Figure 1.2 Population and sample
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There are several ways in which the meanings of the words population and
sample are often extended. For one, it is common to use them to refer to not only
objects under study but also data values associated with those objects. For example,
if one thinks of Rockwell hardness values associated with 100 crated machine parts,
the 100 hardness values might be called a population (of numbers). Five hardness
values corresponding to the parts examined in acceptance sampling could be termed
a sample from that population.

Example 2
(continued )

Cyr, Ellson, and Rickard identified eight different sets of experimental conditions
under which to run the pelletizing machine. Several production runs of fuel pellets
were made under each set of conditions, and each of these produced its own
percentage of conforming pellets. These eight sets of percentages can be referred
to as eight different samples (of numbers).

Also, although strictly speaking there is no concrete population being investi-
gated in an analytical study, it is common to talk in terms of a conceptual population
in such cases. Phrases like “the population consisting of all widgets that could be
produced under these conditions” are sometimes used. We dislike this kind of lan-
guage, believing that it encourages fuzzy thinking. But it is a common usage, and it
is supported by the fact that typically the same mathematics is used when drawing
inferences in enumerative and analytical contexts.

1.2.2 Types of Data

Engineers encounter many types of data. One useful distinction concerns the degree
to which engineering data are intrinsically numerical.

Definition 8 Qualitative or categorical data are the values of basically nonnumerical char-
acteristics associated with items in a sample. There can be an order associated
with qualitative data, but aggregation and counting are required to produce
any meaningful numerical values from such data.

Consider again 5 machine parts constituting a sample from 100 crated parts. If each
part can be classified into one of the (ordered) categories (1) conforming, (2) rework,
and (3) scrap, and one knows the classifications of the 5 parts, one has 5 qualitative
data points. If one aggregates across the 5 and finds 3 conforming, 1 reworkable, and
1 scrap, then numerical summaries have been derived from the original categorical
data by counting.

In contrast to categorical data are numerical data.
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Definition 9 Quantitative or numerical data are the values of numerical characteristics
associated with items in a sample. These are typically either counts of the
number of occurrences of a phenomenon of interest or measurements of
some physical property of the items.

Returning to the crated machine parts, Rockwell hardness values for 5 selected
parts would constitute a set of quantitative measurement data. Counts of visible
blemishes on a machined surface for each of the 5 selected parts would make up a
set of quantitative count data.

It is sometimes convenient to act as if infinitely precise measurement were
possible. From that perspective, measured variables are continuous in the sense
that their sets of possible values are whole (continuous) intervals of numbers. For
example, a convenient idealization might be that the Rockwell hardness of a ma-
chine part can lie anywhere in the interval (0,∞). But of course this is only an
idealization. All real measurements are to the nearest unit (whatever that unit may
be). This is becoming especially obvious as measurement instruments are increas-
ingly equipped with digital displays. So in reality, when looked at under a strong
enough magnifying glass, all numerical data (both measured and count alike) are
discrete in the sense that they have isolated possible values rather than a continuum
of available outcomes. Although (0,∞) may be mathematically convenient and
completely adequate for practical purposes, the real set of possible values for the
measured Rockwell hardness of a machine part may be more like {.1, .2, .3, . . .}
than like (0,∞).

Well-known conventional wisdom is that measurement data are preferable to
categorical and count data. Statistical methods for measurements are simpler and
more informative than methods for qualitative data and counts. Further, there is
typically far more to be learned from appropriate measurements than from qualitative
data taken on the same physical objects. However, this must sometimes be balanced
against the fact that measurement can be more time-consuming (and thus expensive)
than the gathering of qualitative data.

Example 3 Pellet Mass Measurements

As a preliminary to their experimental study on the pelletizing process (discussed
in Example 2), Cyr, Ellson, and Rickard collected data on a number of aspects
of machine behavior. Included was the mass of pellets produced under standard
operating conditions. Because a nonconforming pellet is typically one from which
some material has broken off during production, pellet mass is indicative of
system performance. Informal requirements for (specifications on) pellet mass
were from 6.2 to 7.0 grams.
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Example 3
(continued )

Information on 200 pellets was collected. The students could have simply
observed and recorded whether or not a given pellet had mass within the specifi-
cations, thereby producing qualitative data. Instead, they took the time necessary
to actually measure pellet mass to the nearest .1 gram—thereby collecting mea-
surement data. A graphical summary of their findings is shown in Figure 1.3.
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Figure 1.3 Pellet mass measurements

Notice that one can recover from the measurements the conformity/noncon-
formity information—about 28.5% (57 out of 200) of the pellets had masses that
did not meet specifications. But there is much more in Figure 1.3 besides this.
The shape of the display can give insights into how the machine is operating and
the likely consequences of simple modifications to the pelletizing process. For
example, note the truncated or chopped-off appearance of the figure. Masses do
not trail off on the high side as they do on the low side. The students reasoned that
this feature of their data had its origin in the fact that after powder is dispensed
into a die, it passes under a paddle that wipes off excess material before a cylinder
compresses the powder in the die. The amount initially dispensed to a given die
may have a fairly symmetric mound-shaped distribution, but the paddle probably
introduces the truncated feature of the display.

Also, from the numerical data displayed in Figure 1.3, one can find a per-
centage of pellet masses in any interval of interest, not just the interval [6.2, 7.0].
And by mentally sliding the figure to the right, it is even possible to project the
likely effects of increasing die size by various amounts.

It is typical in engineering studies to have several response variables of interest.
The next definitions present some jargon that is useful in specifying how many
variables are involved and how they are related.
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Definition 10 Univariate data arise when only a single characteristic of each sampled item
is observed.

Definition 11 Multivariate data arise when observations are made on more than one
characteristic of each sampled item. A special case of this involves two
characteristics—bivariate data.

Definition 12 When multivariate data consist of several determinations of basically the same
characteristic (e.g., made with different instruments or at different times),
the data are called repeated measures data. In the special case of bivariate
responses, the term paired data is used.

It is important to recognize the multivariate character of data when it is present. Hav-
ing Rockwell hardness values for 5 of 100 crated machine parts and determinations
of the percentage of carbon for 5 other parts is not at all equivalent to having both
hardness and carbon content values for a single sample of 5 parts. There are two
samples of 5 univariate data points in the first case and a single sample of 5 bivariate
data points in the second. The second situation is preferable to the first, because it
allows analysis and exploitation of any relationships that might exist between the
variables Hardness and Percent Carbon.

Example 4 Paired Distortion Measurements

In the furnace-loading scenario discussed in Example 1, radial runout measure-
ments were actually made on all 38+ 39 = 77 gears both before and after heat
treating. (Only after-treatment values were given in Table 1.1.) Therefore, the
process engineer had two samples (of respective sizes 38 and 39) of paired data.
Because of the pairing, the engineer was in the position of being able (if de-
sired) to analyze how post-treatment distortion was correlated with pretreatment
distortion.

1.2.3 Types of Data Structures

Statistical engineering studies are sometimes conducted to compare process perfor-
mance at one set of conditions to a stated standard. Such investigations involve only
one sample. But it is far more common for several sets of conditions to be compared
with each other, in which case several samples are involved. There are a variety of
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standard notions of structure or organization for multisample studies. Two of these
are briefly discussed in the remainder of this section.

Definition 13 A (complete) factorial study is one in which several process variables (and
settings of each) are identified as being of interest, and data are collected under
each possible combination of settings of the process variables. The process
variables are usually called factors, and the settings of each variable that are
studied are termed levels of the factor.

For example, suppose there are four factors of interest—call them A, B, C, and D for
convenience. If A has 3 levels, B has 2, C has 2, and D has 4, a study that includes
samples collected under each of the 3× 2× 2× 4 = 48 different possible sets of
conditions would be called a 3× 2× 2× 4 factorial study.

Example 2
(continued )

Experimentation with the pelletizing machine produced data with a 2× 2× 2
(or 23) factorial structure. The factors and respective levels studied were

Die Volume low volume vs. high volume

Material Flow current method vs. manual filling

Mixture Type no binding agent vs. with binder

Combining these then produced eight sets of conditions under which data were
collected (see Table 1.2).

Table 1.2
Combinations in a 23 Factorial Study

Condition Number Volume Flow Mixture

1 low current no binder
2 high current no binder
3 low manual no binder
4 high manual no binder
5 low current binder
6 high current binder
7 low manual binder
8 high manual binder

When many factors and/or levels are involved, the number of samples in a
full factorial study quickly reaches an impractical size. Engineers often find that
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they want to collect data for only some of the combinations that would make up a
complete factorial study.

Definition 14 A fractional factorial study is one in which data are collected for only some
of the combinations that would make up a complete factorial study.

One cannot hope to learn as much about how a response is related to a given set
of factors from a fractional factorial study as from the corresponding full factorial
study. Some information must be lost when only part of all possible sets of conditions
are studied. However, some fractional factorial studies will be potentially more
informative than others. If only a fixed number of samples can be taken, which
samples to take is an issue that needs careful consideration. Sections 8.3 and 8.4
discuss fractional factorials in detail, including how to choose good ones, taking
into account what part of the potential information from a full factorial study they
can provide.

Example 2
(continued )

The experiment actually carried out on the pelletizing process was, as indicated
in Table 1.2, a full factorial study. Table 1.3 lists four experimental combinations,
forming a well-chosen half of the eight possible combinations. (These are the
combinations numbered 2, 3, 5, and 8 in Table 1.2.)

Table 1.3
Half of the 23 Factorial

Volume Flow Mixture

high current no binder
low manual no binder
low current binder
high manual binder
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1. Describe a situation in your field where an observa-
tional study might be used to answer a question of
real importance. Describe another situation where
an experiment might be used.

2. Describe two different contexts in your field where,
respectively, qualitative and quantitative data might
arise.

3. What kind of information can be derived from
a single sample of n bivariate data points (x, y)
that can’t be derived from two separate sam-
ples of, respectively, n data points x and n data
points y?

4. Describe a situation in your field where paired data
might arise.
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5. Consider a study of making paper airplanes, where
two different Designs (say, delta versus t wing), two
different Papers (say, construction versus typing),
and two different Loading Conditions (with a paper
clip versus without a paper clip) are of interest in
terms of their effects on flight distance. Describe

a full factorial and then a fractional factorial data
structure that might arise from such a study.

6. Explain why it is safer to infer causality from an
experiment than from an observational study.
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1.3 Measurement: Its Importance and Difficulty

Success in statistical engineering studies requires the ability to measure. For some
physical properties like length, mass, temperature, and so on, methods of measure-
ment are commonplace and obvious. Often, the behavior of an engineering system
can be adequately characterized in terms of such properties. But when it cannot,
engineers must carefully define what it is about the system that needs observing and
then apply ingenuity to create a suitable method of measurement.

Example 5 Measuring Brittleness

A senior design class in metallurgical engineering took on the project of helping
a manufacturer improve the performance of a spike-shaped metal part. In its
intended application, this part needed to be strong but very brittle. When meeting
an obstruction in its path, it had to break off rather than bend, because bending
would in turn cause other damage to the machine in which the part functions.

As the class planned a statistical study aimed at finding what variables
of manufacture affect part performance, the students came to realize that the
company didn’t have a good way of assessing part performance. As a necessary
step in their study, they developed a measuring device. It looked roughly as
in Figure 1.4. A swinging arm with a large mass at its end was brought to a

Angle
past vertical

60°

40°

20° Metal part

Figure 1.4 A device for measuring brittleness
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horizontal position, released, and allowed to swing through a test part firmly
fixed in a vertical position at the bottom of its arc of motion. The number of
degrees past vertical that the arm traversed after impact with the part provided an
effective measure of brittleness.

Example 6 Measuring Wood Joint Strength

Dimond and Dix wanted to conduct a factorial study comparing joint strengths
for combinations of three different woods and three glues. They didn’t have
access to strength-testing equipment and so invented their own. To test a joint,
they suspended a large container from one of the pieces of wood involved and
poured water into it until the weight was sufficient to break the joint. Knowing
the volume of water poured into the container and the density of water, they could
determine the force required to break the joint.

Regardless of whether an engineer uses off-the-shelf technology or must fabri-
cate a new device, a number of issues concerning measurement must be considered.
These include validity, measurement variation/error, accuracy, and precision.

Definition 15 A measurement or measuring method is called valid if it usefully or appro-
priately represents the feature of an object or system that is of engineeringValidity
importance.

It is impossible to overstate the importance of facing the question of measurement
validity before plunging ahead in a statistical engineering study. Collecting engi-
neering data costs money. Expending substantial resources collecting data, only to
later decide they don’t really help address the problem at hand, is unfortunately all
too common.

The point was made in Section 1.1 that when using data, one is quickly faced
with the fact that variation is omnipresent. Some of that variation comes aboutMeasurement

error because the objects studied are never exactly alike. But some of it is due to the fact
that measurement processes also have their own inherent variability. Given a fine
enough scale of measurement, no amount of care will produce exactly the same
value over and over in repeated measurement of even a single object. And it is naive
to attribute all variation in repeat measurements to bad technique or sloppiness. (Of
course, bad technique and sloppiness can increase measurement variation beyond
that which is unavoidable.)

An exercise suggested by W. J. Youden in his book Experimentation and Mea-
surement is helpful in making clear the reality of measurement error. Consider
measuring the thickness of the paper in this book. The technique to be used is as
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follows. The book is to be opened to a page somewhere near the beginning and one
somewhere near the end. The stack between the two pages is to be grasped firmly
between the thumb and index finger and stack thickness read to the nearest .1 mm
using an ordinary ruler. Dividing the stack thickness by the number of sheets in the
stack and recording the result to the nearest .0001 mm will then produce a thickness
measurement.

Example 7 Book Paper Thickness Measurements

Presented below are ten measurements of the thickness of the paper in Box,
Hunter, and Hunter’s Statistics for Experimenters made one semester by engi-
neering students Wendel and Gulliver.

Wendel: .0807, .0826, .0854, .0817, .0824,
.0799, .0812, .0807, .0816, .0804

Gulliver: .0972, .0964, .0978, .0971, .0960,
.0947, .1200, .0991, .0980, .1033

Figure 1.5 shows a graph of these data and clearly reveals that even repeated
measurements by one person on one book will vary and also that the patterns of
variation for two different individuals can be quite different. (Wendel’s values
are both smaller and more consistent than Gulliver’s.)

Wendel

Gulliver

Thickness (mm)

Thickness (mm)

.100.090.080 .110

.100.090.080 .110

.120

.120

Figure 1.5 Dot diagrams of paper thickness measurements

The variability that is inevitable in measurement can be thought of as having
both internal and external components.

Definition 16 A measurement system is called precise if it produces small variation in
repeated measurement of the same object.Precision



1.3 Measurement: Its Importance and Difficulty 17

Precision is the internal consistency of a measurement system; typically, it can be
improved only with basic changes in the configuration of the system.

Example 7
(continued )

Ignoring the possibility that some property of Gulliver’s book was responsible for
his values showing more spread than those of Wendel, it appears that Wendel’s
measuring technique was more precise than Gulliver’s.

The precision of both students’ measurements could probably have been
improved by giving each a binder clip and a micrometer. The binder clip would
provide a relatively constant pressure on the stacks of pages being measured,
thereby eliminating the subjectivity and variation involved in grasping the stack
firmly between thumb and index finger. For obtaining stack thickness, a microm-
eter is clearly a more precise instrument than a ruler.

Precision of measurement is important, but for many purposes it alone is not
adequate.

Definition 17 A measurement system is called accurate (or sometimes, unbiased) if on
average it produces the true or correct value of a quantity being measured.Accuracy

Accuracy is the agreement of a measuring system with some external standard.
It is a property that can typically be changed without extensive physical change
in a measurement method. Calibration of a system against a standard (bringing
it in line with the standard) can be as simple as comparing system measurements
to a standard, developing an appropriate conversion scheme, and thereafter using
converted values in place of raw readings from the system.

Example 7
(continued )

It is unknown what the industry-standard measuring methodology would have
produced for paper thickness in Wendel’s copy of the text. But for the sake of
example, suppose that a value of .0850 mm/sheet was appropriate. The fact that
Wendel’s measurements averaged about .0817 mm/sheet suggests that her future
accuracy might be improved by proceeding as before but then multiplying any
figure obtained by the ratio of .0850 to .0817—i.e., multiplying by 1.04.

Maintaining the U.S. reference sets for physical measurement is the business of
the National Institute of Standards and Technology. It is important business. Poorly
calibrated measuring devices may be sufficient for local purposes of comparing
local conditions. But to establish the values of quantities in any absolute sense, or
to expect local values to have meaning at other places and other times, it is essential
to calibrate measurement systems against a constant standard. A millimeter must be
the same today in Iowa as it was last week in Alaska.

The possibility of bias or inaccuracy in measuring systems has at least two im-
portant implications for planning statistical engineering studies. First, the fact that
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measurement systems can lose accuracy over time demands that their performanceAccuracy and
statistical

studies
be monitored over time and that they be recalibrated as needed. The well-known
phenomenon of instrument drift can ruin an otherwise flawless statistical study.
Second, whenever possible, a single system should be used to do all measuring. If
several measurement devices or technicians are used, it is hard to know whether the
differences observed originate with the variables under study or from differences in
devices or technician biases. If the use of several measurement systems is unavoid-
able, they must be calibrated against a standard (or at least against each other). The
following example illustrates the role that human differences can play.

Example 8 Differences Between Technicians in Their Use of a Gauge

Cowan, Renk, Vander Leest, and Yakes worked with a company on the monitoring
of a critical dimension of a high-precision metal part produced on a computer-
controlled lathe. They encountered large, initially unexplainable variation in this
dimension between different shifts at the plant. This variation was eventually
traced not to any real shift-to-shift difference in the parts but to an instability
in the company’s measuring system. A single gauge was in use on all shifts,
but different technicians used it quite differently when measuring the critical
dimension. The company needed to train the technicians in a single, standardized
method of using the gauge.

An analogy that is helpful in understanding the difference between precision
and accuracy involves comparing measurement to target shooting. In target shoot-
ing, one can be on or off target (accurate or inaccurate) with a small or large cluster
of shots (showing precision or imprecision). Figure 1.6 illustrates this analogy.

Not accurate,
not precise

Accurate,
not precise

Not accurate,
precise

Accurate,
precise

Figure 1.6 Measurement /Target shooting analogy
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Good measurement is hard work, but without it data collection is futile. To
make progress, engineers must obtain valid measurements, taken by methods whose
precision and accuracy are sufficient to let them see important changes in system
behavior. Usually, this means that measurement inaccuracy and imprecision must
be an order of magnitude smaller than the variation in measured response caused by
those changes.
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1. Why might it be argued that in terms of producing
useful measurements, one must deal first with the
issue of validity, then the issue of precision, and
only then the issue of accuracy?

2. Often, in order to evaluate a physical quantity
(for example, the mean yield of a batch chemi-
cal process run according to some standard plant
operating procedures), a large number of measure-
ments of the quantity are made and then averaged.

Explain which of the three aspects of measure-
ment quality—validity, precision, and accuracy—
this averaging of many measurements can be ex-
pected to improve and which it cannot.

3. Explain the importance of the stability of the mea-
surement system to the real-world success of a sta-
tistical engineering study.
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1.4 Mathematical Models,
Reality, and Data Analysis

This is not a book on mathematics. Nevertheless, it contains a fair amount of
mathematics (that most readers will find to be reasonably elementary—if unfamiliar
and initially puzzling). Therefore, it seems wise to try to put the mathematical content
of the book in perspective early. In this section, the relationships of mathematics to
the physical world and to engineering statistics are discussed.

Mathematics is a construct of the human mind.While it is of interest to someMathematical
models and

reality
people in its own right, engineers generally approach mathematics from the point of
view that it can be useful in describing and predicting how physical systems behave.
Indeed, although they exist only in our minds, mathematical theories are guides in
every branch of modern engineering.

Throughout this text, we will frequently use the phrase mathematical model.

Definition 18 A mathematical model is a description or summarization of salient features of
a real-world system or phenomenon in terms of symbols, equations, numbers,
and the like.

Mathematical models are themselves not reality, but they can be extremely effective
descriptions of reality. This effectiveness hinges on two somewhat opposing prop-
erties of a mathematical model: (1) its degree of simplicity and (2) its predictive
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ability. The most powerful mathematical models are those that simultaneously are
simple and generate good predictions. A model’s simplicity allows one to maneuver
within its framework, deriving mathematical consequences of basic assumptions that
translate into predictions of process behavior. When these are empirically correct,
one has an effective engineering tool.

The elementary “laws” of mechanics are an outstanding example of effective
mathematical modeling. For example, the simple mathematical statement that the
acceleration due to gravity is constant,

a = g

yields, after one easy mathematical maneuver (an integration), the prediction that
beginning with 0 velocity, after a time t in free fall an object will have velocity

v = gt

And a second integration gives the prediction that beginning with 0 velocity, a time t
in free fall produces displacement

d = 1

2
gt2

The beauty of this is that for most practical purposes, these easy predictions are quite
adequate. They agree well with what is observed empirically and can be counted
on as an engineer designs, builds, operates, and/or improves physical processes or
products.

But then, how does the notion of mathematical modeling interact with theMathematics
and statistics subject of engineering statistics? There are several ways. For one, data collection

and analysis are essential in fitting or estimating parameters of mathematical
models. To understand this point, consider again the example of a body in free fall.
If one postulates that the acceleration due to gravity is constant, there remains the
question of what numerical value that constant should have. The parameter g must
be evaluated before the model can be used for practical purposes. One does this by
gathering data and using them to estimate the parameter.

A standard first college physics lab has traditionally been to empirically evalu-
ate g. The method often used is to release a steel bob down a vertical wire running
through a hole in its center and allowing 60-cycle current to arc from the bob through
a paper tape to another vertical wire, burning the tape slightly with every arc. A
schematic diagram of the apparatus used is shown in Figure 1.7. The vertical posi-
tions of the burn marks are bob positions at intervals of 1

60 of a second. Table 1.4
gives measurements of such positions. (We are grateful to Dr. Frank Peterson of
the ISU Physics and Astronomy Department for supplying the tape.) Plotting the
bob positions in the table at equally spaced intervals produces the approximately
quadratic plot shown in Figure 1.8. Picking a parabola to fit the plotted points in-
volves identifying an appropriate value for g. A method of curve fitting (discussed
in Chapter 4) called least squares produces a value for g of 9.79m/sec2, not far from
the commonly quoted value of 9.8m/sec2.
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Paper tape

Arc
Sliding
metal
bob

Bare
wire Bare

wire

AC Generator

Figure 1.7 A device for measuring g

Table 1.4
Measured Displacements of a Bob in Free Fall

Point Number Displacement (mm) Point Number Displacement (mm)

1 .8 13 223.8
2 4.8 14 260.0
3 10.8 15 299.2
4 20.1 16 340.5
5 31.9 17 385.0
6 45.9 18 432.2
7 63.3 19 481.8
8 83.1 20 534.2
9 105.8 21 589.8

10 131.3 22 647.7
11 159.5 23 708.8
12 190.5

Notice that (at least before Newton) the data in Table 1.4 might also have been
used in another way. The parabolic shape of the plot in Figure 1.8 could have
suggested the form of an appropriate model for the motion of a body in free fall.
That is, a careful observer viewing the plot of position versus time should conclude
that there is an approximately quadratic relationship between position and time (and
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Figure 1.8 Bob positions in free fall

from that proceed via two differentiations to the conclusion that the acceleration
due to gravity is roughly constant). This text is full of examples of how helpful it
can be to use data both to identify potential forms for empirical models and to then
estimate parameters of such models (preparing them for use in prediction).

This discussion has concentrated on the fact that statistics provides raw material
for developing realistic mathematical models of real systems. But there is another
important way in which statistics and mathematics interact. The mathematical theory
of probability provides a framework for quantifying the uncertainty associated with
inferences drawn from data.

Definition 19 Probability is the mathematical theory intended to describe situations and
phenomena that one would colloquially describe as involving chance.

If, for example, five students arrive at the five different laboratory values of g,

9.78, 9.82, 9.81, 9.78, 9.79

questions naturally arise as to how to use them to state both a best value for g
and some measure of precision for the value. The theory of probability provides
guidance in addressing these issues. Material in Chapter 6 shows that probability
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considerations support using the class average of 9.796 to estimate g and attaching
to it a precision on the order of plus or minus .02m/sec2.

We do not assume that the reader has studied the mathematics of probability,
so this text will supply a minimal introduction to the subject. But do not lose sight
of the fact that probability is not statistics—nor vice versa. Rather, probability is a
branch of mathematics and a useful subject in its own right. It is met in a statistics
course as a tool because the variation that one sees in real data is closely related
conceptually to the notion of chance modeled by the theory of probability.
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1. Explain in your own words the importance of mathematical models to engineering practice.
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1. Calibration of measurement equipment is most
clearly associated with which of the following
concepts: validity, precision, or accuracy? Explain.

2. If factor A has levels 1, 2, and 3, factor B has
levels 1 and 2, and factor C has levels 1 and 2, list
the combinations of A, B, and C that make up a
full factorial arrangement.

3. Explain how paired data might arise in a heat
treating study aimed at determining the best way
to heat treat parts made from a certain alloy.

4. Losen, Cahoy, and Lewis purchased eight spanner
bushings of a particular type from a local machine
shop and measured a number of characteristics of
these bushings, including their outside diameters.
Each of the eight outside diameters was measured
once by two student technicians, with the follow-
ing results. (The units are inches.) Considering
both students’ measurements, what type of data
are given here? Explain.

Bushing 1 2 3 4

Student A .3690 .3690 .3690 .3700

Student B .3690 .3695 .3695 .3695

Bushing 5 6 7 8

Student A .3695 .3700 .3695 .3690

Student B .3695 .3700 .3700 .3690

5. Describe a situation from your field where a full
factorial study might be conducted (name at least
three factors, and the levels of each, that would
appear in the study).

6. Example 7 concerns the measurement of the thick-
ness of book paper. Variation in measurements is
a fact of life. To observe this reality firsthand,
measure the thickness of the paper used in this
book ten times. Use the method described imme-
diately before Example 7. For each determination,
record the measured stack thickness, the number
of sheets, and the quotient to four decimal places.
If you are using this book in a formal course,
be prepared to hand in your results and compare
them with the values obtained by others in your
class.

7. Exercise 6 illustrates the reality of variation in
physical measurement. Another exercise that is
similar in spirit, but leads to qualitative data, in-
volves the spinning of U.S. pennies. Spin a penny
on a hard surface 20 different times; for each trial,
record whether the penny comes to rest with heads
or tails showing. Did all the trials have the same
outcome? Is the pattern you observed the one you
expected to see? If not, do you have any possible
explanations?
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8. Consider a situation like that of Example 1 (in-
volving the heat treating of gears). Suppose that
the original gears can be purchased from a variety
of vendors, they can be made out of a variety of
materials, they can be heated according to a va-
riety of regimens (involving different times and
temperatures), they can be cooled in a number of
different ways, and the furnace atmosphere can
be adjusted to a variety of different conditions. A
number of features of the final gears are of interest,
including their flatness, their concentricity, their
hardness (both before and after heat treating), and
their surface finish.
(a) What kind of data arise if, for a single set

of conditions, the Rockwell hardness of sev-
eral gears is measured both before and after
heat treating? (Use the terminology of Sec-
tion 1.2.) In the same context, suppose that
engineering specifications on flatness require
that measured flatness not exceed .40 mm.
If flatness is measured for several gears and
each gear is simply marked Acceptable or Not
Acceptable, what kind of data are generated?

(b) Describe a three-factor full factorial study that
might be carried out in this situation. Name
the factors that will be used and describe the
levels of each. Write out a list of all the differ-
ent combinations of levels of the factors that
will be studied.

9. Suppose that you wish to determine “the” axial
strength of a type of wooden dowel. Why might it
be a good idea to test several such dowels in order
to arrive at a value for this “physical constant”?

10. Give an example of a 2× 3 full factorial data
structure that might arise in a student study of the
breaking strengths of wooden dowels. (Name the
two factors involved, their levels, and write out all
six different combinations.) Then make up a data
collection form for the study. Plan to record both
the breaking strength and whether the break was
clean or splintered for each dowel, supposing that
three dowels of each type are to be tested.

11. You are a mechanical engineer charged with im-
proving the life-length characteristics of a hydro-
static transmission. You suspect that important

variables include such things as the hardnesses,
diameters and surface roughnesses of the pistons
and the hardnesses, and inside diameters and sur-
face roughnesses of the bores into which the pis-
tons fit. Describe, in general terms, an observa-
tional study to try to determine how to improve
life. Then describe an experimental study and say
why it might be preferable.

12. In the context of Exercise 9, it might make sense
to average the strengths you record. Would you
expect such an average to be more or less precise
than a single measurement as an estimate of the
average strength of this kind of dowel? Explain.
Argue that such averages can be no more (or less)
accurate than the individual measurements that
make them up.

13. A toy catapult launches golf balls. There are a
number of things that can be altered on the con-
figuration of the catapult: The length of the arm
can be changed, the angle the arm makes when it
hits the stop can be changed, the pull-back angle
can be changed, the weight of the ball launched
can be changed, and the place the rubber cord
(used to snap the arm forward) is attached to the
arm can be changed. An experiment is to be done
to determine how these factors affect the distance
a ball is launched.
(a) Describe one three-factor full factorial study

that might be carried out. Make out a data
collection form that could be used. For each
launch, specify the level to be used of each of
the three factors and leave a blank for record-
ing the observed value of the response vari-
able. (Suppose two launches will be made for
each setup.)

(b) If each of the five factors mentioned above is
included in a full factorial experiment, a min-
imum of how many different combinations of
levels of the five factors will be required? If
there is time to make only 16 launches with
the device during the available lab period, but
you want to vary all five factors, what kind of
a data collection plan must you use?
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14. As a variation on Exercise 6, you could try using
only pages in the first four chapters of the book.
If there were to be a noticeable change in the ul-
timate precision of thickness measurement, what
kind of a change would you expect? Try this out

by applying the method in Exercise 6 ten times
to stacks of pages from only the first four chap-
ters. Is there a noticeable difference in precision
of measurement from what is obtained using the
whole book?




