
13
Models of growth and decay

Some of the most well-known applications of quantitative analy-
sis in the life sciences relate to describing changes in processes or
ecosystem properties with time. Among the most important exam-
ples is population change, where the number of individuals N in a
population is expressed as a function of the independent variable t:
N = f (t). In this chapter we will explore two types of exponential
functions and a polynomial function that form the basis for describ-
ing and predicting population change and a lot more.

13.1 Exponential functions & population models
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Figure 13.1: The typical ever-changing
growth and decay of the exponential
function.

An exponential function is one in which the independent variable ap-
pears in the exponent, or power, of some other quantity. The equation
y = ax is an example of a simple exponential function if x is the in-
dependent variable and y is the dependent variable. In this case, the
constant a can be called the base, since it is the quantity that is raised
to a power. From our high school math classes, we learned about
exponential and logarithmic (the inverse of exponential) functions
mostly with bases of 10 and e, where e is Euler’s number (∼ 2.718)
and is sometimes written exp(something). But we can have an expo-
nential function with any arbitrary base.

Exponential functions arise frequently in economics, physics, and
in some contexts in ecology. Imagine, for example, a population of
marbled murrelets in a coastal bay in the Pacific Northwest1. At 1 Why murrelets you might ask? As

you’ll see shortly, it is convenient to
begin with “simple” populations,
where the causes of population changes
estimated from visual surveys are
limited.

some time, suppose their population was 100 individuals. With time,
this can change as individuals die or reproduce. If we assume no
murrelets emigrate or immigrate (are added to or subtracted from the
population), changes in population with time are controlled only by
birth and death rates, and we can say the population N after one year
is:

N1 = N0 + B− D (13.1)

In this equation, we take N0 to be a constant, initial population. The
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birth and death rates may scale with the population, such that they
can be represented like this:

B = b× N, D = d× N (13.2)

where b and d are birth and death rates per individual. So, for exam-
ple, if the birth rate is approximately 0.15 individuals per murrelet
per year2, and death rate is 0.05 individuals per murrelet per year, we2 Note that this birth rate is given per

individual. Obviously males cannot
give birth to offspring, so a better way
to express fertility or fecundity is in
terms of birth rates per female; however
the per individual or per capita birth rate
is easier to work with.

can write our equation for population as:

N = N0 + 0.15N0 − 0.05N0 (13.3)

If we simplify the right-hand side of this, we have N after one year as
a simple function of N0:

N = (1 + 0.15− 0.05)N0 (13.4)

N = 1.1N0 (13.5)

If you plug in 100 for N0, this gives us an unsurprising result that
population is 110 murrelets. This makes sense, since we get 0.15×
100 = 15 births and 0.05× 100 = 5 deaths during that year.

Now if we project into future years (where t is the number of
years after our initial measurement of population N0) with the same
relationship, we’ll see that after another year of births and deaths,
we’ll get:

Nt=2 = 1.1(1.1N0) (13.6)

where the quantity in parentheses is the population after one year,
now incremented by another series of births and deaths. We can
rearrange that equation slightly to yield:

Nt=2 = N0 × 1.12 (13.7)

After another year, we’ll get:

Nt=3 = N0 × 1.13 (13.8)

And by now you probably see the pattern. If t is the number of years
after an initial population census N0, our projection of population is:

Nt = N0 × 1.1t (13.9)

Interpreted as N as a function of t, this is an exponential function
with a base of 1.1 and a constant N0. Note that a very similar func-
tion could describe compounding interest on a loan, savings account
or credit card balance, if the principal (the amount saved or bor-
rowed) remains unchanged over time.
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We could have written our equation above a bit differently. In-
stead of keeping a constant reference to N0, we could have said that
population next year depends only on the population this year and
the birth and death rates this year. This alteration would give us:

Nt+1 = Nt + B− D = Nt + Nt(b− d) = Nt(1 + r) (13.10)

where r = b− d can be defined as the population’s intrinsic growth
rate. There is no difference in the result of this equation if we apply
the same assumptions and constraints as we did in the first version,
but this form of the equation is a bit more versatile. It will also be-
come useful to us in a few days. We can call it a discrete difference
equation.

Before we move on, notice a few things about our population
model. First, population is unrestrained. The only factors influencing
the growth rate are birth and death rate, and these are considered
constants. In reality, these might not be constant as individuals com-
pete for limited resources. Alterations to this model to account for
this fact will be introduced next time. Also, notice that the intrinsic
growth rate r is positive because we have said that the birth rate is
higher than the death rate. It is, of course, possible for the reverse to
be true: death rate could be larger than the birth rate, and the result-
ing r would be negative. As you can see from the above equations, a
negative r would result in an exponential decrease in population with
time.

When r = 0, we may say that the growth rate is zero and births
balance deaths. The birth rate that balances death rate is sometimes
called “replacement”, since it replaces each death with a birth.

13.1.1 More exponentials

One place where exponential functions appear in the natural sciences
is in animal physiology, particularly where processes are regulated
by temperature. The “surface area” theory for metabolic scaling dis-
cussed above suggests that basal metabolic rate scales allometrically
with the mass of the animal. As we hinted at above, this hypothesis
stems from the postulate that metabolic rate scales with the surface
area (through which heat can be lost), which is in turn a function of
[L2], where [L] is a characteristic length of the animal. Mass, how-
ever, scales with the volume of the animal, which is a function of [L3].
If we combine the two relationships to express metabolic rate as a
function of mass, we get the allometric relationship:

B ∝ Mb (13.11)

where B is metabolic rate, M is body mass, and b is the scaling expo-
nent, which is equal to 2/3 according to the surface area theory. We



136 iowa state university

briefly acknowledged that several studies in the 20th century suggest
that the 2/3-power scaling is not correct, and that a 3/4-power scal-
ing might be more appropriate. Nevertheless, the general form of the
relationship is reasonable. To transform this proportionality into an
equation, we could introduce a constant B0, so that we have

B = B0Mb (13.12)

If we interpret B as the dependent variable and M as the indepen-
dent variable, this is clearly a power function because M is the base.
Contrast this type of equation with the population equation above,
where the independent variable t was the exponent.

The simple power-law equation for metabolic rate has some sim-
ple applications for which it is useful, but it fails to describe many
important phenomena that are seen by animal physiologists. One is
the fact that metabolic rate is also very sensitive to temperature. A
modification to the simple power law was proposed not too long ago
in this Science paper. The modification supposes that metabolic rate
depends on the kinetics of biochemical reactions on a cellular scale,
which are in turn temperature dependent. In chemistry, the temper-
ature dependence of reactions is often expressed as an exponential
function of temperature through the Arrhenius relationship:

R ∝ e−
E

kT (13.13)

where R is a reaction rate constant and E/k is an energy-related
constant for a given reaction, and T is temperature. While this looks
a bit ugly, it is an incredibly important relationship for chemistry,
physics, and now biology, because it does a surprisingly good job of
describing how temperature affects physical and chemical processes.

Let’s look for a moment at the general form of this equation by
imagining a similar function

R = e−1/T (13.14)

where we consider temperature T to be the independent variable. As
you can see, as temperature increases, the exponent becomes smaller
and approaches zero. Since x0 = 1 for all x, this function approaches
1 as temperature increases, but becomes very small for small T. Of
course, we cannot compute 1/T for T = 0, and for that reason the
Arrhenius equation is written for T in Kelvin rather than Celsius.

In any case, a much improved relationship for the basal metabolic
rate of animals that includes both a dependence on body mass and
temperature can be written:

B ≈ B0Mbe−
E

kT (13.15)

http://www.sciencemag.org/content/293/5538/2248.short
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This is a more complex function because it contains two independent
variables (mass and temperature), but can be visualized by treating
one of them as a constant while the other varies. If we imagine how
metabolic rate changes for a single ectothermic organism of a given
mass as body temperature changes, it might have a pattern that looks
similar to the plot above, but that approaches a value of B0 with
increasing temperature.3 3 If you’re interested in more on this

topic, revisit this neat article written
for the Nature Education Project, and
the references therein, or check out this
summary of the paper that examined
this function.

13.2 Adding complexity

Our first population growth model was a simple exponential one.
We assumed unrestrained growth with a constant per-capita (per
individual) rate parameter r = b − d, where b and d are per capita
birth and death rates. Our year-to-year prediction of population N
with this growth model is

N1 = N0(1 + r) (13.16)

Given an initial population N0, the population after t years was

N = N0(1 + r)t (13.17)

While we arrived at this result with just some reason and algebra,
a more general solution can be found using calculus. We won’t
worry too much with how this solution is obtained, nor will you
be expected to reproduce it, but it is always nice to see how more
advanced topics can help us with the problem at hand. So here is a
quick summary of how the calculus version works:

If we re-write our first incremental population change equation
above

N1 = N0 + rN0 (13.18)

N1 − N0 = rN0 (13.19)

Notice that the left-hand side is now just the population change over
one year. One of the strategies of calculus that allows elegant solu-
tion of complex problems is to imagine “smooth” changes, where
the increment over which those changes are measured in vanish-
ingly small. While this is obviously an oversimplification of popu-
lation dynamics (i.e., many animals have discrete breeding seasons
so that births are clustered during a relatively small period of time,
and no births occur during the remainder of the year), but in many
cases we don’t need to worry too much about this. We express these
vanishingly-small change increments with derivatives, where the

http://www.nature.com/scitable/knowledge/library/body-size-and-temperature-why-they-matter-15157011
http://www.sciencemag.org/content/293/5538/2191.full
http://www.sciencemag.org/content/293/5538/2191.full
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derivative of N with respect to t can be translated as the instanta-
neous rate of population change as a function of time, i.e., the popu-
lation growth rate. With this strategy, the above equation is written:

dN
dt

= rN (13.20)

Applying some second semester calculus, we’d come up with the
following solution, which works at all t:

N = N0ert (13.21)

Compare this equation with the one above, N = N0(1 + r)t, which
we developed with discrete differences. Graph both functions and
see if they match reasonably well. They should be close, but not
exactly the same. The discrete model is, in fact, subtly different, and
is often called the geometric model for population growth, while the
exponential version is the classical Malthusian model.

Calculus aside, the above unrestrained population models are use-
ful as a starting point, but they neglect any mechanisms of slowing
population growth. In most settings, resource limitation slows or
reverses growth rates as population increases. If you’re not familiar
with the story of St. Matthews Island reindeer, it is an interesting
illustration of this effect taken to an extreme.

A fairly simple way to account for resource limitation, and to
thereby restrain population growth according to some carrying ca-
pacity K, is to include an “interaction” term for our growth rate.
Using the same notation as above, an increment of growth in this
new population model is:

N1 = (1 + r)N0 −
(1 + r)N2

0
K

(13.22)

This looks a bit clunky, but we can clean it up with a little bit of alge-
bra and by making the same kinds of calculus-oriented modifications
that we made above:

dN
dt

= rN
(

1− N
K

)
(13.23)

As above, the derivative term on the left hand side is the rate of pop-
ulation change as a function of time, or the population growth rate. If
we write the equation with G for growth rate on the left-hand side, it
looks a bit more manageable:

G = rN
(

1− N
K

)
(13.24)

G = rN − r
K

N2 (13.25)

http://www.gi.alaska.edu/AlaskaScienceForum/article/when-reindeer-paradise-turned-purgatory
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As you can see, the growth rate is just a second-order polynomial
equation. As such, it’s graph might be a bit familar to us: it is a
downward-opening parabola that crosses the x-axis at x = 0 and
x = K. This is the logistic population growth model, perhaps the
simplest way of incorporating density dependence and carrying ca-
pacity into the description of population changes in a place with
finite resources.

Solving this differential equation is not particularly easy, but for-
tunately for us, smart people have found useful solutions. The most
straight-forward solution for N as a function of t is:

N =
N0K

N0 + (K− N0)e−rt (13.26)

Here is an example of a case where we can defer to the experts who
came before us and simply borrow their result for our own use. The
fact is, even with the above solution, there is plenty of complexity in
the logistic population model since we must define, for any particular
scenario, several of the parameters before we can use it to any avail:
K, N0, and r.

13.2.1 Example: minimizing suppression and loss costs (Problem 3.5)

The hypothetical functions we have proposed for the suppression
cost C and net value change Vnc were simple idealizations and would
need to be modified according to better understandings of cost-effort
relationships. Nevertheless, our cost-plus-net-value-change function
can still allow an instructive optimization. Our function reads:

C + Vnc = wE + V0e−kE, (13.27)

where the first term on the right-hand side is the cost of suppres-
sion activities, while the second term is the net value change in case
of fire. The lowest-cost state is clearly the bottom of the dip in Fig-
ure 3.2, but can we identify that point algebraically? If we use a little
calculus, we can indeed.

In first-semester calculus, we learn that the maxima and minima of
functions can be found by setting the derivative equal to zero. In this
case:

d
dE

(C + Vnc) = w− kV0e−kE = 0. (13.28)

For our purposes here, I won’t explain how we arrive at this, but
suffice it to say that when we solve the right-hand equality for E, we
retrieve the effort corresponding to the minimum total C + Vnc. We’ll
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follow the algebraic manipulations through here:

w− kV0e−kE = 0 (13.29)

w = kV0e−kE (13.30)
w

kV0
= e−kE (13.31)

ln
(

w
kV0

)
= −kE (13.32)

E = −1
k

ln
(

w
kV0

)
(13.33)

This result isn’t necessarily pretty, but it provides a robust analytical
solution that depends only on the coefficients we assigned to the trial
functions, and that can be easily modified for different coefficient
values.

Exercises

1. Review Section 13.2.1. In the equation for cost plus net value
change, there is a constant k. What are it’s units?

2. Propose some reasonable values for the constants and coefficients
for the fire-suppression problem in Section 13.2.1 and determine
the optimal effort and its cost.

3. Review Section 12.1.2 and ensure that you are comfortable with
the analysis presented there – or that you have developed and
justified your own approach to achieving an analogous solution.
Propose and execute a strategy for incorporating car trips through
the county road network in order to estimate the probable number
of collisions in a given span of time.

4. Review Section 12.2.1. Construct and evaluate a spreadsheet
model to solve the numerical approximation of the SIR system
of equations.




