
12
Modeling

12.1 What is a model?

A model is a representation of reality that allows us to understand
something better. There are many types of models, including con-
ceptual, mathematical, and physical models. A physical model is a
physical object or set of objects intended to represent something else
that is too large, small, complex or otherwise inaccessible for direct
investigation. A conceptual model is a collection of hypothesized
relationships between different objects or variables, and is usually
described in narrative. From an early age, we learn how to construct
both physical and conceptual models. Children create conceptual
models to help them understand cause and effect relationships that
lead to either desirable or unwanted outcomes (‘if I jump down one
or two steps, it’s fun, but if I jump down three or more steps it hurts
my legs: jumping farther hurts more’). When my gradeschool son
builds a spaceship from Legos, he is creating a physical model of a
spaceship he has seen in a movie or book. These are not particularly
sophisticated models, but they are nevertheless ways of representing
some aspect of reality (or imagined reality).

As with Legos, mathematical models can serve mostly a desire
for creative play. Like Lego models, it is perfectly possible to create
a mathematical model that represents reality poorly, and is therefore
not very useful. Perhaps we claim to have created a model of a car,
but if we’ve only stacked rectangular bricks together and failed to
add wheels, it is not a particularly good or useful model of a car.
Thus, model construction and use should be done with the broader
problem context in mind. The means should justify the desired ends. Heuristic: Mathematical models are

only as useful as the conceptual models
on which they are based.

In this book, we are interested in mathematical and conceptual
models and the connections between them. Ultimately, our goal
isn’t necessarily to become mathematical modelers, but rather to be
able to construct, use, and understand models that can assist with
problem-solving. Indeed, many mathematical models originate from
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a desire to quantify the relationships in a conceptual model devised
to address a problem. Several possible approaches to quantification
lead to a handful of varieties of mathematical models. We’ll focus
our discussion on three distinct but related types of mathematical
models that differ in their origins and implementation. The first two
are grounded in theory, while the third often arises from statistical
data analysis.

• Analytical models are usually developed from theory based on
fundamental physical, chemical or biological principles. A hypoth-
esis that a tree’s height should scale with it’s trunk diameter raised
to the 2/3 power in order to retain structural integrity is such a
model. These models are often the most general and abstract, and
can sometimes be solved with paper and pencil. However, they
can become hopelessly complex and un-solvable when one tries to
incorporate realistic details and context. The idealizations neces-
sary to make an analytical model solvable can also sometimes limit
its utility.

• Numerical models may be created and motivated in the same
manner as analytical models, but employ techniques for mathe-
matical approximation that permit relaxation of analytical ideal-
izations and introduction of detail without making the equations
too difficult to solve. Numerical models can be solved by hand for
very small systems, but are more appropriately implemented in
computer programs.

• Empirical models may have analytical or numerical components,
but contain parameters that must be quantified by experiment or
systematic observation. Data must be incorporated and usually
analyzed statistically in order to define parameter values. In some
cases, regression is used to constrain the functional relationships
between variables or to identify the value of coefficients. Thus, a
fully empirical model is data-driven or data-calibrated.

We have already seen or worked with a few examples of mod-
els. The Logistic population growth model that we discussed briefly
in Section 10.1.3 is a theoretical model that can be implemented ei-
ther in numerical or analytical form. Even that model, however, has
empirical components, since it’s use in practical problem-solving re-
quires some observational constraints on r and K. When we solved
for total brook trout population in Section 11.2.1, we employed an
empirical model known as the Leslie method, which is based on a
conceptual model of the change in catch probability under declining
population.
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12.1.1 Example: The Universal Soil Loss Equation (USLE)

The widely-used Universal Soil Loss Equation (USLE) is an example
of an empirical model. The master equation for USLE is:

A = RKLSCP (12.1)

where A is the soil loss (usually in tons/acre/year), R is a rainfall-
erosivity factor, K is a soil erodibility factor, L and S are the slope
length and angle factors, C is a ground-cover factor and P is a param-
eter that accounts for soil conservation practices or structures.

The factors in USLE are quantities whose values cannot be mea-
sured directly. Instead, the numerical values are each derived from
a combination of carefully-designed field experiments where all but
one factor is held constant. The factor values are then derived from
measured differences in soil loss.

The great value of the USLE and it’s kin is that it is sufficiently
easy to use that farmers with little formal training in math or com-
puting can easily get satisfactory results. Most factor values can
either be looked up in tables or measured on the ground or from
maps.

The ease of use comes at a cost, however. Because factor values
are derived from experiments, they are strictly valid only within
the range of conditions considered within the experiments. In other
words, if applied in settings where – for example – rainfall intensity
is twice as large as the largest observed in experiments, the reliability
of results is uncertain. Fully empirical models can therefore some-
times be unreliable in conditions outside the range of the conditions
under which factor values were determined.

12.1.2 Example: probability of deer-automobile encounters (Problem 3.3)

As we have already seen, simple theoretical models can sometimes
be sufficient to explore a range of system behaviors, even when func-
tional relationships are uncertain. These models will inevitable by
limited in power by the simplifying assumptions or idealizations
used, but when the science or management problem permit a solu-
tion with substantial uncertainty, this approach is still warranted.

Let’s assume that deer in our county are randomly distributed in
space, and that they have no particular reason to either avoid or seek
out roads. Call the total area of the county Ac and the proportion of
the area occupied by roads f , so that the area of roads Ar = f Ac.
Let’s assume that there are N0 deer in the county. It follows that – if
the deer are randomly distributed – there will be approximately f N0

deer on the road at any moment. What is that number according to
the numbers we produced earlier for Story County, IA? The value of
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f was estimated to be approximately 0.0076, so if there are say 1000

deer in the county, we should expect either 7 or 8 of them on the road
at any given time. That seems reasonable, but that isn’t what we’re
after. We’d like to know about how likely collisions are between
deer and automobiles. So we need to work in something about the
number and distance of car trips through the road system, right?
This is left as an exercise for the student, as there are many possible
ways to approach this.

12.2 Dealing with higher mathematics

Many powerful mathematical models have been devised to explore
and describe phenomena in nature. Some of the most powerful are
those that allow predictions of unobserved or future events or pat-
terns. These can directly inform management decisions provided
that managers trust and understand their results. Unfortunately,
many of these powerful models employ mathematical concepts and
methods that are beyond the typical undergraduate training in math.
Does that mean that most people are doomed to never understand
or use these models? Absolutely not! There isn’t any inherent rea-
son that students need to take calculus, linear algebra, or differential
equations courses before they can comprehend the gist of a model
constructed with those skills. It certainly helps to have at least a
conceptual grasp of some key concepts in calculus, but that doesn’t
translate to a pre-requisite.

12.2.1 Example: prairie dog plague (Problem 3.4)

Since this problem deals with hypothetical future events, it may
not be possible to glean the answer directly from past work or from
observation. Instead, we can construct a simple model of the prairie
dog community with random, probabilistic interactions among well-
mixed individuals.

A common way to model disease transmission is with a compart-
ment model often called SIR. We consider individuals in a popula-
tion to be in one of three (or four) states: Susceptible (S), Infected (I),
and Removed (R) or Recovered. Individuals move from compartment
S to compartment I by disease transmission. Infected individuals in
compartment I then either recover and move to compartment R, or
are removed from the population by death or isolation. These trans-
fers between compartments are often described with a system of
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differential equations:

dS
dt

= −βSI (12.2)

dI
dt

= βSI − γI (12.3)

dR
dt

= γI (12.4)

These differential equations are not easily solved in most cases,
but we can use them as a basis for a numerical simulation of disease
dynamics if we are able to estimate the parameters β and γ. A nu-
merical representation of the first equation might look something like
this, for example:

St+1 = St − βSt It (12.5)

It+1 = It + βSt It − γIt (12.6)

Rt+1 = Rt + γIt (12.7)

This says that in a given time increment, susceptible individuals are
moved from the S compartment to the I (infected) compartment at a
rate that is proportional to the product of the numbers of individuals
in each compartment and the transmission rate constant β. You can
see in the first and second equations above that when a number
of idividuals infected according to the βSI term in lost from the S
compartment (because it is negative), it is gained (positive) in the I
compartment. All individuals are accounted for in moving into or
out of the I compartment. Similarly, individuals move from the I
compartment to the R compartment at a rate governed by the rate
constant γ. Selection of these rate constants to a large extent governs
the behavior of the model, and thus the predicted fate of the prairie
dog colony. But implementing management options informed by
positive model outputs is where the biggest challenge arises.

12.3 Power-Law Scaling

Consider this seemingly innocuous question: are larger
animals heavier than smaller animals?

You: Hmmm, well, yeah I think so?! An adult bear weights more than
a snowshoe hare, for instance.

OK, great, but how would we know if this is true more generally?
And what exactly do we mean by larger? Does that mean taller?
Larger volume? This brings up a few issues that become important
when we’re talking about real quantities rather than abstract vari-
ables. Unambiguously defining quantities can be an important first
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step in communicating quantitative information. In the next section
we’ll be specific about what information is required to fully define
a quantity. For now let’s agree that we’re satisfied with relating the
mass of an animal to its volume. Do animals that take up more space
(i.e., have greater volume) also weigh more? Maybe we can say it
another way: is the weight or mass of an animal proportional to its
body size? We could write this in symbols:

M ∝ V? (12.8)

The symbol ‘∝’ between M (body mass) and V (volume) means
“proportional to”. So this isn’t an equation yet because we’re not
sure anything is equal. And of course it’s nonsense that an animal’s
weight is equal to its volume. There must be some other parameter
that transforms an animal’s volume into a mass. Let’s call it c, and
try it out in an equation:

M = cV (12.9)

But what is c? As we said above, we’d prefer to have some meaning
for the symbols we throw around in equations. Let’s use one of our
old algebraic tools for manipulating equations and “solve the equa-
tion for c”. By that we mean get c onto one side of the equation all by
itself. To get there, we just need to divide both sides of the equation
by V, yielding:

M
V

= c (12.10)
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Figure 12.1: Plot of some hypothetical
measurements of animal mass and
volume.

Now recall that the definition of density is mass per unit volume.
That’s exactly what we have on the left-hand side of the equation! So
our equation now says that c, the parameter we used to transform
volume into mass, is the same as density! So for an individual ani-
mal, the parameter that relates mass to volume is density. As we have
done previously, let’s assume that most animals have a density close
to that of water so this proportionality parameter c doesn’t vary sig-
nificantly among species. So to the extent that it is correct to say that
most animal’s body density is close to that of water, we can argue
that larger animals do indeed weigh more, in general.

This is probably not a very profound revelation to you1. But with1 An entertaining and well-composed
article on some not-so-obvious conse-
quences of size differences in animals
is On Being the Right Size, byt J.B.S. Hal-
dane, published in Harper’s Magazine,
March 1926.

only a few more small leaps in logic, we can get somewhere consider-
ably more interesting. For more than a century, biologists have been
intrigued by a remarkable relationship between the basal metabolic
rate and body mass for animals of a wide range of sizes and shapes.
Amazingly, if one assembles a large set of data and plots it on a
graph with a logarithmic scale, mice, humans and elephants and
most of the rest fall along a straight line! An equation that describes
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this relationship and the line on the graph looks like this:

B = B0Mb (12.11)

where B is the basal metabolic rate, M is body mass as before, and
B0 and b are constants (we’ll see what they mean later!). This equa-
tion is yet another power law, and equations with this form pop up
surprisingly often in ecology once you start looking. We’ll get more
into functions and power laws later on. But for now, some important
points should be made:

• The argument that there should be a proportionality between body
mass and metabolic rate was originally conceived theoretically on
the basis that energy given off by an animal to its surroundings
might depend mostly on the animal’s surface area, while its mass
scales with volume.

• Measurements by many researchers over more than a century have
been compared against this theoretical prediction, with varying
degrees of success. In most cases however, the power-law relation-
ship holds.

• By comparing theoretical predictions with real data, one can dis-
cover truly novel and interesting things about physiological sim-
ilarities or differences between different organisms – insights we
might not have ever developed without the quantitative analyses.

We’ll look into this in more detail a bit later.




