
11
Relationships Between Variables

In the previous chapter, our discussion of variables and functions
largely assumed that relationships were known or developed inde-
pendent of any measurement or data. However, functional relation-
ships between variables can also be derived from data. Here, we
explore two concepts that help us understand the strength and nature
of systematic relationships between variables.

11.1 Correlation

In common parlance, the word correlation suggests that two events
or observations are linked with one another. In the analysis of data,
the definition is much the same, but we can even be more specific
about the manner in which events or observations are linked. The
most straight-forward measure of correlation is the linear correlation
coefficient, which is usually written r (and is, indeed, related to the r2

that we cite in assessing the fit of a regression equation). The value
of r may range from -1 to 1, and the closer it is to the ends of this
range (i.e., | r |→ 1), the stronger the correlation. We may say that
two variables are positively correlated if r is close to +1, and nega-
tively correlated if r is close to -1. Poorly correlated or uncorrelated
variables will have r closer to 0.

Figure 11.1: Correlation between the
maximum lifespan and gestation period
of various mammals, r = 0.73.

Figure 11.2: Correlation between the
number of litters per year and the litter
size of various mammals, r = 0.36.

In the margin are two plots comparing life-history and repro-
ductive traits of various mammals. In the first one, Figure 11.1, the
arrangement of points in a band from lower left to upper right on
the graph is relatively strong, corresponding to a relatively high r of
0.73. In contrast, the correlation between litter number per year and
litter size in Figure 11.2 is (surprisingly?) weak, producing more of a
shotgun pattern and r a modest 0.36.

In the abstract, the mathematical formula for the correlation be-
tween two variables, x and y, can be written:
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where the subscript i corresponds to the ith observation, the overbar
indicates mean values, and σx and σy are standard deviations. The
specifics of this formula are not of great interest to us. The important
thing to understand is that when positive changes in one variable
are clearly linked with positive changes in a second variable, this
indicates a good, positive correlation, r > 0. The same is true if
negative changes in one variable correspond to negative changes in
the other. However, positive changes in one variable corresponding
to negative changes in another indicate negative correlation, r < 0.
It is also important to note that this is a good measure of correlation
only for linear relationships, and even if two variables are closely
interdependent, if their functional dependence is not linear, the r
value will not be particularly helpful.

Nevertheless, correlation can still help us identify key relation-
ships when we first encounter a dataset. Consider the changes in
weather variables measured at a meteorological station as a function
of time. Weather data can be very overwhelming due to the num-
ber of variables and the sheer volume of data. One handy way to
isolate some of the strongest interdependencies among variables of
interest is to look for correlations. A correlation matrix plot is es-
sentially a grid of plots where each variable is plotted against all the
other variables in a square array of panels. Relationships with strong
positive or negative correlations immediately jump out, suggesting
which relatinships we might wish to investigate further. For exam-
ple, let’s look at a month-long weather dataset downloaded from
www.wunderground.com.

There is alot of information in these plots, so let’s look at them
piece by piece. Notice that the panels on the diagonal from upper left
to lower right would be a variable plotted against itself (r = 1), and
they are therefore replaced by a density distribution for each variable.
Also notice that since the upper right half would be a mirror image
of the lower left, there is just a number in each of those panels rather
than a plot. In any case, here we have just selected four variables of
potential interest, and you can immediately see that there is a strong
positive correlation between mean temperature and mean dew point,
with r = 0.962. The strength of the correlations from these plots
(the six in the lower left) is indicated by the correlation coefficient
in the (mirrored) corresponding panel in the upper right. There are
also relatively strong negative correlations between temperature
and pressure, and dew point and pressure. In contrast, we see weak
correlations between humidity and temperature and humidity and
pressure, as indicated by the low r values.

The important thing to remember from all of this is what the cor-
relation coefficient can tell us: a high, positive correlation between

www.wunderground.com
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Figure 11.3: Correlation plots for
weather data from Ames, IA, April
2014.
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two variables indicates that when one goes up, so does the other. A
high negative correlation indicates that as one goes up, the other goes
down. Low correlation coefficients indicate that a consistent linear
relationship cannot be established. If correlation is established, how-
ever, this analysis doesn’t yet provide details about the functional
relationships present.

11.2 Regression

Regression is the process of fitting a mathematical function to a set of
data points using some criterion for judging “goodness-of-fit”. The
resulting “best-fit” function may then be used to predict unknown
values, to forecast future values, or to evaluate the dependence of
one variable upon another. Goodness-of-fit can be determined by one
of many statistical techniques that determine how well a function
describes the variations in the data used to generate it. The most
common criterion for goodness-of-fit is called “least-squares”, so
you might sometimes see the whole process called least-squares
regression. Least squares means what it sounds like, sort of. When
a function (let’s write it y = f (x)) is tested for goodness-of-fit, the
difference between the y-values predicted by the test function, each
of which we can call ȳi, at a given xi, and the yi-values in the data
set are found, squared, and added together for the entire dataset.
The best-fit line is then the one for which the sum of the squares of
the residuals are minimized (least). This is very commonly done for
linear equations, but we can use the same techniques for nonlinear
equations as well.

Figure 11.4: Schematic representation of
the quantities involved in finding best-
fit functions by least-squares regression.

Some data sets that we may encounter just don’t appear to have
linear trends though. In these cases, we can try transforming one or
both variables1 or we can attempt to perform nonlinear regression.1 Some common data transformations

include logarithmic, exponential, and
reciprocal. In these transformations,
a modified variable is created by
performing the selected operation
on the original variable values.

As with many of the statistical and spatial methods discussed in this
book, the heavy lifting for most of these options can – and probably
should – be done with computer software. However, we should still
be aware of what is happening

11.2.1 Example: brook trout electrofishing (Problem 3.7)

cumulative catch catch/effort
86 2.46

137 1.76

169 1.14

178 0.29

Having isolated the age-0 brook trout from each electrofishing tra-
verse and computed the catch per unit effort cue of that subset, we
may now employ the Leslie method to estimate the total population
of age-0 brook trout in the study reach. In this method, we create a
dependent variable ccumul. corresponding to the cumulative num-
ber of fish removed in each pass, the “cumulative catch”. We then
plot and perform a linear regression of the catch per unit effort as a
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function of cumulative catch, as illustrated in Figure 11.5.

Figure 11.5: Catch per unit effort as a
function of total catch for age-0 brook
trout, from Table 11.2.1.

By the Leslie method if we extrapolate the best-fit line to a vertical-
axis value cue = 0, the cumulative catch value where that occurs
is the estimated total population. This value can be estimated from
the graph itself, but the result is better if we solve the for the value
directly from the best-fit line. The equation of the best-fit line for this
regression is:

cue = −0.0208ccumul. + 4.38. (11.2)

Note that the slope of this line (−0.0208), consistent with intuition, is
a negative number. The y-intercept 4.38 corresponds to the hypothet-
ical initial catch per unit effort at the very start of the first traverse.
Rearranging and solving for ccumul. gives

ccumul. = 210.6− 48.1cue (11.3)

and we find that the estimated total population is 210.

Exercises

1. Discuss in a paragraph the benefits and drawbacks of deciding,
prior to any data analysis, what type of function to seek best-fit
parameters for.

2. In Section 11.2.1, we skipped several steps in the algebraic ma-
nipulation that allowed solution for ccumul.. Carry out all the in-
termediate steps, showing your work completely, and determine
whether the solution cited above is acceptable.

3. Find a dataset that interests you within a public ecological or nat-
ural resource data repository2, identify variables within a dataset 2 For example, browse the Global

Registry of Biodiversity Repositories.that may be related, and perform a regression to see the nature of
that relationship.

https://www.gbif.org/dataset/search
https://www.gbif.org/dataset/search



