
10
Generalizing Relationships

We have encountered many instances in this book where solving a
problem numerically required numbers that we didn’t have. We often
don’t know alll the numbers needed to solve real problems. In some
cases, the simplest way to overcome this issue is to estimate or guess
a value. However, in many other cases, the value of an important
quantity isn’t constant in space or time – our lack of knowledge is
not a reflection of uncertainty in measurement. Instead, there is a
systematic variation in the real value of a quantity and we need to
allow for those changes. Under these circumstances we need to treat
these quantities as variables that have unknown numerical values.
Perhaps we have some idea of how large or small the numberical
values can get1, but within these limits, the variable can take on any 1 For example, if we’ve used ballpark

estimates and deliberately chosen
high-end estimates of some of the
parameters, this could provide us with
an approximate upper limit on the
value of the variable of interest.

value.
In this new world of uncertainty, we have the tools of algebra at

our disposal. At least in parts of the problem-solving process, this
can be disorienting as we have to carry symbols rather than reducible
values through any operations that we find necessary. However as
we’ll see shortly, performing symbolic manipulations as a means to
solving problems can lead to versatile and reusable solutions. What
we have done prior to now can be called specializing, where we seek
particular numerical values in every calculation when possible. The
alternative, which you’ll recognize as a stepping-stone for algebra, is
to generalize. Heuristic: Express variable quantities

needed for solving a problem as sym-
bolic variables and manipulate them
according to the rules of algebra to
yield general relationships.

Writing algebraic relationships can seem to be hocus pocus
at first. However, the mystique fades a bit when we remind ourselves
that mathematical relationships are little more than formal logical
statements. By carefully assembling what we know about quantities
of interest, striving to sustain generality, and following a few tips, we
can begin to use algebraic reasoning as a powerful tool for creativity
and sense-making.
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Writing algebraic expressions

• Identify the relevant variables and constants

• Introduce descriptive notation for each quantity

• List what is already known about each variable, using expres-
sions with symbolic notation when possible

• Look for ways to set expressions equal to one another based
on what you know; are there two ways to define the same
quantity using the variables of interest?

• Guess or infer unknown relationships

• Write and simplify equated expressions as a symbolic equa-
tion

• Check for dimensional or unit consistency

When we express and manipulate equations with symbolic vari-
ables, we are doing algebra. When we state systematic relationships
between symbolic variables, we’re using functions. Functions can
describe derived, hypothetical, or observed relationships, depending
upon how we arrive at them.

10.1 Families of Functions

In the natural and environmental sciences, a few families of functions
can be used to describe relationships between key variables of inter-
est. We will explore the most prevalent of these kinds of functions,
examining their algebraic composition and the characteristics of their
graphs. In the chapters that follow, we wil see how functions can be
used to describe relationships between measured variables and how
they can be used to devise mathematical models.

10.1.1 Linear functions

The simplest relationship between two variables – let’s call them x
and y – is perhaps something like y = x. This relationship is indeed a
linear relationship, stating only that y is equal to x without any mod-
ification, or that any change in the variable x results in an identical
change in y. In reality, we will rarely encounter any relationships like
this that are worth describing in an equation. Instead we may often
find that the variables of interest are related through a constant of
proportionality, call it m (might as well stick with the notation we
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may have seen elsewhere!). In this case, y = mx is still a linear rela-
tionship, but now for any change in x, we expect a change in y that
is m times as large as the change in x. That is what this function does
for us: it converts any proposed value of x into a corresponding y
according to the definition of the function. Indeed, the definition of
a function in mathematics is an operation that takes a value of an
explanatory or independent variable as input and produces a value
for a unique response or dependent variable as output.
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Figure 10.1: Various linear functions.

Here’s an example: an elephant’s tusks grow continuously with
age, beginning a bit less than a year after birth. Although there is
likely some variability within the population, this relationship allows
biologists to estimate elephant age. Thus, a mathematical description
of this relationship can be written as a linear equation:

l = ra (10.1)

where we are calling tusk length l and age a. Notice that this way of
writing the relationship implies that we are treating a as an indepen-
dent variable (that is, we can think of it as sort of a cause) and l is the
dependent variable (an effect that depends on the cause). Depend-
ing on the circumstances, these roles could be switched. Indeed, it
is easier to measure tusk length than age for a given elephant, so we
might wish to use measurements of tusks to help determine the age
distribution in a wild elephant population.

Also important to remember is that when we are doing science
instead of just math, the variables usually have units and dimen-
sions, which we discussed previously. If we expect our equation to
be meaningful, the dimensions on the left- and right-hand sides of
the equation need to be consistent (i.e. equal). So in the elephant tusk
example r = l/a is a growth rate, must have dimensions of length
per time, or [L T−1] (see how we get that? would that be the same if
we swapped our independent and dependent variables?). If we have
been measuring length in inches and age in years, our value for r
should be in inches per year.

Great! But as we said above, we might wish instead to know the
age as a function of tusk length. So we need to rearrange things a
bit. Let’s now define m as the number of years of age per inch of tusk
length, which is just the reciprocal of r. In other words, m = 1/r,
which also means r = 1/m. Since we’ve just taken a reciprocal here,
the dimensions of m are just the reciprocal of the dimensions of r,
[T L−1].

Now we can re-state our new linear relationship as l = a/m, or
a = ml. In this form, we have the dependent variable (age) on the
left-hand side of the equation and the independent variable (tusk
length) on the right hand side, as is convention. But at this point,
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what is implied about an elephant’s age if it’s tusk length is zero (l =
0)? Regardless of the value of m, plugging zero into this equation
yields a = 0. Of course, as mentioned above, adult tusks do not
begin to develop until several months after birth. So our equation is
probably not very good at representing reality (particularly for young
elephants), and is therefore not yet useful. But suppose we were to
change what we mean by “age” on the left-hand side. It makes sense
that what we’re measuring is growth from the age when the tusks
first appeared, so let’s call that age a0, which is close to 0.5 years. So
the elephant age that we wish to determine is more than we would
have predicted before by the an amount corresponding to the age
when the tusks first appeared, a0. So our new equation, modified to
account for this correction, reads:

a = a0 + ml (10.2)

In the abstract but precise terms of mathematics, we say that a is a
linear function of l with a slope of m and offset (or y-intercept) of a0.
Although it seems obvious in the context of this example, the offset
a0 must have dimensions of time for this equation to be meaningful.
Note that the value of the growth rate, or slope m, can be determined
algebraically by solving the linear equation above for m:

m =
a− a0

l
, (10.3)

which we might recognize as the “rise” of the function, (a − a0)

divided by the “run” l.
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Figure 10.2: Plot of tusk length l as a
function of age a.

In some cases it is unnecessary, but in others we may need to spec-
ify something about the domain (a set of upper and lower constraints
on the values of the independent variable) over which a proposed
relationship is valid. For example, it doesn’t make sense for an ele-
phant to have a negative age any more than it does to have a negative
tusk length. There is probably an upper limit to tusk length as well,
though it is hard to be confident what that might be. To be complete
but conservative, we may specify that the domain of the function as
0 < l < 160 inches. The range for our linear function is the spread
of minimum to maximum values of a corresponding to the minimum
and maximum values in the domain. Note that this last comment
applies to linear functions (though sometimes the signs are reversed),
but for some non-linear functions of interest, maximum and min-
imum values in the range may not correspond to maximum and
minimum values bounding the domain. We’ll see examples of this
later.

Functional relationships that are approximately linear are very
common in the sciences. Indeed, a routine procedure in the analysis
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of multivariate data is linear regression, wherein the coefficients
(slope and intercept) of a linear function that best fits the data are
sought. Linear functions – or nonlinear ones for that matter, as we’ll
see below – can also be postulated hypothetically in the construction
of mathematical models.

10.1.2 Example: fire suppression costs (Problem 3.5)

person hours

$

C

Figure 10.3: Schematic illustration of a
hypothetical linear relationship between
the cost of fire suppression and the
number of person hours of suppression
effort.

The issue of how much suppression effort to use is at the heart of this
problem, so it’s clear that suppression effort should be considered a
variable. As is routine with variable quantities, we should assign a
symbol to the variable and decide, at least for now, what units it will
be quantified with. A single symbol is preferable (though subscripts
are permissible if necessary) to prevent any ambiguity. Therefore,
let’s choose the symbol E for effort, and provisionally assign the
units of person-hours. A person hour has dimensions of [1 T]. Like
acre-feet and other similar units, person hours is compound unit that
we should understand as the number of hours worked per person
multiplied by the number of people. For example, if two people work
8 hours each, that effort represents 16 person hours.

Now we need to deal with the other variable that is implied in this
part of the problem: cost. First, suppose we define C as the symbol
we’ll use, and US dollars as the unit of cost. Relating the cost of
suppression to the effort requires some way of assigning a cost per
unit of effort. Recalling our choice of units, this cost-per-unit-effort
will have units of dollars per person hour, which sure sounds like an
hourly wage. In fact, that’s exactly what it is! So let’s call it w. We
can now state the algebraic equivalent of the sentence “suppression
cost equals the number of person hours of effort times the hourly
wage”. In symbols:

C = wE (10.4)

This equation is illustrated in Figure 10.3 as a straight line increas-
ing from left to right. The slope of the line, analogous to m in our
abstract concept of the prototypical linear function, is w, and the
y-intercept is zero. This latter observation simply articulates the
(hopefully obvious) notion that the cost of zero person hours of labor
should be $0.

10.1.3 Polynomial functions

A polynomial function is one in which the dependent variable also
depends on the independent variable raised to an exponent. Poly-
nomials are among those functions that can have multiple ups and
downs in the dependent variable over the domain of the function. To
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refresh your memory, let’s write an abstract polynomial equation for
starters:

y = b + mx + lx2 + kx3 + ... (10.5)

Here we have a function in which the quantities added together on
the right-hand side have dependence on increasing powers of x, and
the way we’ve written it we imply that the equation could go on in-
definitely, incorporating ever-growing powers of x as we go. One way
to describe a polynomial is by its order, which is nothing more than
the integer values of the exponents of x included. If we take away the
“. . . ” from the equation above and just stop the equation after kx3,
this would be a third-order polynomial, since 3 is the highest expo-
nent of the independent variable x. Sometimes you will see the term
cubic for third-order polynomials, while the term quadratic is used for
second-order polynomials. To be complete, we can even pretend that
the first term on the right-hand side b is really bx0, representing a
“zeroth order” term.
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Figure 10.4: Polynomial functions.

Suppose that we got rid of the l and k terms in the equation above,
which we could simply do by saying that l = k = 0. What’s left is
just the linear function we had above, and we see now that the linear
function is really a special case of a polynomial function, a “first-
order polynomial”. Likewise, if b = m = k = 0, we’re left with just
y = lx2, a second order or quadratic polynomial. It is still a second-
order polynomial if m and b are nonzero. So you see that writing the
equation as we did above allows us to imagine a polynomial of any
order that we choose, and keeping or discarding any terms we wish
by adjusting the lettered coefficients.

So how do these polynomial functions differ from linear functions?
Take as an example the formula for the surface area of a sphere –
perhaps representing a raindrop: As = 4πr2. A simple linear func-
tion as described above has a single independent variable and the
values of the dependent variable depend only on the first power of
the independent variable and a constant of proportionality. We can
write the surface area equation as A = (4πr)r, and now it looks
like we only have the first power of r. Great, but now our constant of
proportionality contains r, so it is not a constant at all but a variable
itself. So nonlinear functions are those that cannot be written as a
relationship between the dependent variable and the first power of
the independent variable times a constant constant of proportionality.

Before we waste too much more time talking about polynomials,
I need to be clear on one thing: When we encounter polynomials in
most undergraduate mathematics classes, we are only considering
functions where the powers of the independent variable are whole in-
tegers. With this in mind, it is worth thinking about whether they are
really useful for us. What relationships depend on integer powers of
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the independent variable? One area where these polynomials are use-
ful in natural science is spatial measurement. you probably remem-
ber that the areas of squares and circles each depend on the second
power of a characteristic length (side or radius). Likewise, volumes of
spheres and cubes depend on the 3

rd power (coincidence?). While we
may never encounter perfect spheres and cubes in the natural world,
we may find occasion to idealize the size and shape of something
(like a sand grain, egg or raindrop as a sphere, a tree root or snake as
a cylinder, etc.) in a simple model so that we can better understand
something about it.

Likewise, some physical phenomena can be described with equa-
tions that depend on a whole number power (often 2) of time or
position. In more complicated problems in the real world, it can also
be advantageous to approximate an unruly function using a so-called
series expansion of the function, which often amounts to a polynomial.

These examples notwithstanding, true polynomial functions do
not arise as commonly in the natural sciences as linear and some
other non-linear functions do2. An important exception, which we’ll 2 But as we’ll see below, there are

certainly relationships in the natu-
ral sciences where the relationships
between variables are best described
with functions that have non-integer
exponents.

grapple with quite a bit later this term, is the so-called logistic or
density-dependent growth function. In ecology, this function de-
scribes the theoretical growth of populations constrained by limited
space or resources. We can write the basic relationship as:

G = rN − r
K

N2, (10.6)

where the dependent variable G is the population growth rate
[1 T−1], the independent variable N is the number of individuals,
r is a growth constant and K is the carrying capacity. This function is
quadratic because N2 is the highest power term.

10.1.4 Power functions
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Figure 10.5: Examples of power func-
tions.

In addition to linear and polynomial functions, it is relatively com-
mon to encounter at least four other classes of functions in the nat-
ural sciences. Power functions arise commonly in ecology and ge-
ography, especially in scaling properties of organisms and habitats
in space. Power functions may include any function in which the
independent variable is raised to an arbitrary exponent, of the form:

y = axb (10.7)

The power function differs from a polynomial in that the exponent
on the independent variable is not constrained to be an integer. Fig-
ure 10.5 compares the appearance of power functions with exponents
greater than and smaller than 1.
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In the biological subdiscipline of island biogeography, a relation-
ship between island area Ai and species diversity S has often been
described with a power law:

S = cAz
i (10.8)

where c is a fitting parameter and z is an exponent that is usually less
than 1.

Another example of a power function appears in the description
of what hydrologists call a stream’s “hydraulic geometry”, which de-
scribes how the width, depth and average velocity of a river change
in time and space3. Channel width w, for example, typically increases3 One of the scientists who developed

and popularized this concept was Luna
Leopold (1915-2006), the second son of
Aldo Leopold.

downstream in a way that can be described as w = aQb, where Q,
the water discharge, is our independent variable and a and b are
empirical constants. Channel depth and velocity are described with
analogous relationships.

10.1.5 Exponential functions
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Figure 10.6: Examples of simple expo-
nential functions.

Exponential functions are different from power functions in that the
independent variable appears as part of the exponent, rather than the
base. A generic exponential function might look something like this:

y = abx. (10.9)

The base may often be e, which is an important (but irrational like π)
number close to 2.718, but needn’t be. Exponential functions describe
ever-increasing or ever-decreasing change, and appear in contexts
like the decay of radioactive substances or unrestrained growth of
populations. The radioactive decay equation might look a bit like
this:

N = N0e−λt (10.10)

A similar form describes the extinction (attenuation) of sunlight with
depth in a water column or forest canopy according to the Beer-
Lambert law:

I = I0e−kd (10.11)

where d is the independent variable. In addition to natural growth
and decay phenomena, exponential functions appear extensively in
economic analysis.

A somewhat more complicated form of exponential function is
sometimes used to describe growth of individuals (fish, trees, etc.)
over time. The Von Bertalanffy growth function (VBGF) can be writ-
ten:

Lt = L∞[1− e−K(t−t0)]. (10.12)
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In general, when the exponential argument is a negative number,
these functions describe decay or asymptotic approach toward a
limiting value. However, when the argument is positive, exponential
functions describe explosive growth.

10.1.6 Logarithmic functions

Closely related to exponential functions are logarithmic functions.
The natural logarithm, sometimes written ln, is the inverse func-
tion of e, meaning that ln (ex) = x. The base-10 logarithm, written
log10 or simply log, behaves in a similar way but for exponential
functions with base 10. So log10 (10x) = x. Both types of logs, and
logarithms with any other base, are functions that increase rapidly
for low values of the independent variable, but increase ever slower
thereafter. We will find logarithms especially useful in transforming
data that we suspect might be a power or exponential function, and
must therefore have a basic command of the algebraic rules that ap-
ply to them. Outside of transformations and inverting exponentials,
however, we won’t encounter logarithms extensively.

Exercises

1. Given the description of species-area relationships given in Sec-
tion 10.1.4 and the notion that the exponent z in Equation 10.8 is
less than 1, describe what this means conceptually. How does the
species diversity change with island area, and how does an incre-
ment of area change affect small islands differently than larger
islands?

2. Using only symbolic variables and constants, write an expression
that defines that time necessary for 95% of a radioactive isotope to
decay. Hint: interpret this to mean that we seek an expression for t when
N/N0 = 0.05.

3. Review the description of Problem 3.2. Write a hypothetical, but
well-justified, algebraic equation relating the volume of herbicide
needed to eliminate woody shrubs, and the basal area per unit
land area of those shrubs. Consider all quantities to be variables,
so use symbols rather than numbers for this.

4. Review the description of Problem 3.1. Using reasonable geomet-
ric idealizations (not computer algorithms), can you write a simple
algebraic equation that relates the length of a wetland’s perimeter
habitat to the wetland’s area?




