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Reasoning with Data

This chapter summarizes some of the key concepts and relationships
of single-variable statistics that we might find useful for characteriz-
ing measurements, particularly when we have measured a quantity
at multiple times, or we’ve measured many individual members of
a population or collection. This is not intended to be an exhaustive
introduction to statistics, and does not in any way substitute for a
proper statistics course. It does, however, point to some connections
that we can make between the measurement and characterization of
data and the scientific description of nature that we sometimes seek.

6.1 Measurement and Sampling

In the natural sciences we often need to estimate or measure a quan-
tity or set of quantities that is too large, too numerous, or too com-
plex to characterize completely in an efficient way. We can instead
characterize it approximately with a representative sample. A represen-
tative sample is a small subset of the whole that is measured in order
to characterize the whole.

Figure 6.1: Cobbles on the bed of the
Cub River, Idaho.

Consider an example. In small headwater streams, many aspects
of biotic health are linked with the size of the substrate – the sand,
pebbles or boulders that compose the streambed. But it is impractical
to measure all the gajillions of particles scattered over the entire bed.
Instead, we attempt to get a smaller but representative sample of
the bed material. This may be done in a number of different ways,
but two common methods are: 1) to take one or more buckets full of
sediment from the streambed and do a detailed particle-size analysis
in a laboratory; and 2) measure the size of 100 randomly selected
particles from the bed. Both methods obtain a sample, but each may
represent the true streambed in a different way. The bucket method
requires us to choose sample sites on the streambed. Our choices
might be biased toward those places where sampling might be easier,
the bed more visible, or the water shallower. In this case, our results



60 iowa state university

might not be representative of the streambed as a whole.
The “pebble count” method, on the other hand, is intended to pro-

duce a more random sample of the streambed1. A person wading1 This method is sometimes called the
“Wolman pebble count” method for
Reds Wolman, the scientist who first
described and popularized it.

in the stream steps diagonally across the channel, and at each step
places her index finger on the streambed immediately in front of the
toe of her boot. The diameter of the particle that her finger touches
first is measured, and then she repeats the process, zig-zagging
across the channel until she has measured 100 (or some larger pre-
determined number) particles. In principle, this random sample is
more representative of the streambed, particularly as the number of
particles in the sample is increased. Of course, increasing the number
of particles in the sample increases the time and effort used, but with
diminishing returns for improving the accuracy of the sample.

Hypothetically-speaking, an alternative pebble-count method
could be to stretch a tape measure across the stream and measure the
particle size at regular intervals, say every half meter. We can call this
strategy the “point count” method. This alternative is appealing since
it ensures that samples are distributed evenly across the channel and
that samples are not clustered in space. However, it is conceivable
that such systematic sampling could lead to a systematic bias2. If for2 Systematic sampling is sometimes

an easier, more straight-forward ap-
proach to sampling. However, if the
setting within which sampling is tak-
ing place might have some systematic
structure, systematic sampling could
inadvertently bias the sample.

example the streambed had clusters or patterns of particles in it that
had a wavelength of 0.5 m, you could be inadvertently sampling only
a certain part of the top of each dune, which might skew your results
toward particle sizes that are concentrated on dune crests. Thus, a
random sample is usually preferable as it is less susceptible to this
kind of systematic bias.

Quantities derived from a random sample are unrelated to
one another in the same way that the size of one grain measured
during a pebble count has no influence on the size of the next one.
Part of our sequence of data might look like this:

12, 2, 5, 26, 4, 28, 19, 29, 3, 15, 31, 19, 24, 27, 7, 22, 28, 33, 21, 28, 13, 15,
25, 10, 14, 13, 16, 18, 33, 5

The random nature of this set of data allows us to use some of the
familiar ways of describing our data, while boosting our confidence
that we are also properly characterizing the larger system that we are
sampling.

6.1.1 Example: mark-recapture

A frequent concern of the wildlife ecologist is the abundance and
health of a particular species of interest. Ideally, we could count and
assess the health of every individual in a population, but that is usu-
ally not practical - heck, we have a tough enough time counting and

https://en.wikipedia.org/wiki/M._Gordon_Wolman


quantitative problem solving in natural resources 61

assessing the health of all the humans in a small town! Instead of try-
ing to track down every individual though, we can do a decent job by
simply taking a random sample from the population and performing
the desired analysis on that random sample. As we have seen, if we
are sufficiently careful about avoiding bias in our sampling, we can
be reasonably confident that our sample will tell us something use-
ful (and not misleading) about the larger population that the sample
came from.

If our concern is mainly with the population of a target species in
a certain area, we can use a method called mark-recapture, or capture-
recapture. The basic premise is simple: we capture some number of
individuals in a population at one time, band, tag or mark them
in such a way that they can be recognized later as individuals that
were previously captured, then release them. Some time later, after
these individuals have dispersed into the population as a whole,
we capture another set. The proportion of the individuals in the
second capture who are marked should, in theory, be the same as the
proportion of the whole population that we marked to begin with. If
the number of individuals we marked the first time around is N1, the
number we captured the second time around is N2, and the number
in the second group that bore marks from the first capture is M, the
population P may be estimated most simply as:

P =
N1N2

M
(6.1)

This comes from the assumption that our sample each time is ran-
dom, and that the marked individuals have exactly the same like-
lihood of being in the second capture as they did in the first: 1/P.
Therefore, if we sampled and marked a fraction N1/P the first time
around and sample N2 the second time around, then we should ex-
pect a fraction M/N2 of them to be marked.

Of course this whole plan can be foiled if some key assumptions
are not met. For example, we need the population to be “closed” –
that is, individuals do not enter and leave the population such that
our sample is not coming from the same set of individuals each time.
Problems could also ensue if our “random” sample isn’t random, if
somehow the process of marking individuals either harmed them
or made their likelihood of re-capture more or less likely, or if the
time we allowed for them to re-mix with their population was not
appropriate. On the last point, you can imagine that if we recapture
tortoises 10 minutes after releasing them from their first capture, our
second sample will not be very random. On the other hand, if we
recapture marked fish 20 years after they were first marked, many of
them may have died and been replaced by their offspring, and thus
our assumption of a “closed” population is violated. So in planning
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a mark-recapture study, space and timescales need to be taken into
account.

It is worth noting that the method described here is about the most
stripped down version of mark-recapture. There are many modifi-
cations to the method and the equation used to compute population
that either account for immigration/emigration, multiple recaptures,
some possible re-recaptures, etc. There are also related methods us-
ing tagging and marking that can be used to explore the dispersal of
individuals, migration routes and alot more!

6.2 Describing measurements

Measurements, or “data”, can inform and influence much of a re-
source manager’s work objectives, since they convey information
about the systems of interest. Sometimes the data speak for them-
selves: raw numbers are sufficiently clear and compelling that noth-
ing more needs to be done to let the data speak. More commonly,
however, the data need to be summarized and characterized through
one or more processes of data processing and data reduction. Pro-
cessing might simply refer to a routine set of algorithms applied to
raw data to make it satisfy the objectives of the project or problem.
Data reduction usually summarizes a large set of data with a smaller
set of descritptive statistics. For a set of measurements of a simple
quantity, for example, we might wish to know:

Things we often want to know about our data

1. what is a typical observation?

2. how diverse are the data?

3. how should these properties of the data be characterized for
different types of quantities?

The first point suggests the use of our measures of central ten-
dency: mean, median and mode. The second goal relates to measures
of spread or dispersion in the data. For example, how close are most
values in the data set to the mean?

6.3 Central tendency

The central tendency of a data set is a characteristic central value
that may be the mean, median, or mode. Which of these measures
of central tendency best characterizes the data set depends on the
nature of the data and what we wish to characterize about it.
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Most of us are already familiar with the concept of a mean, or av-
erage value of a set of numbers. We normally just add together all of
the observed values and divide by the number of values to get the
mean. Actually, this is the arithmetic mean, and there are many alter-
native ways of computing different kinds of means that are useful in
particular circumstances, but we won’t worry about these now. For
our purposes, the arithmetic mean is the mean we mean when we say
mean or average. It would be mean to say otherwise.

Before continuing, lets briefly discuss the different kinds of nota-
tion what we might use when talking about data. To define some-
thing like the mean with an equation, we’d like to make the defi-
nition as general as possible, i.e., applicable to all cases rather than
just one. So we need notation that, for example, does not specify the
number of data points in the data set but allows that to vary. If we
want to find the mean (call it x̄) of a set of 6 data points (x1, x2, and
so on), one correct formula might look like this:

x̄ =
x1 + x2 + x3 + x4 + x5 + x6

6
(6.2)

and of course this is correct. But we can’t use the same formula for a
dataset that has 7 or 8 values, or anything other than 6 values. Fur-
thermore, it is not very convenient to have to write out each term in
the numerator if the data set is really large. So we need a shorthand
that is both brief and not specific to a certain number of data points.
One approach is to write:

x̄ =
x1 + x2 + ... + xn

n
(6.3)

where we understand that n is the number of observations in the
data set. The ellipsis in the numerator denotes all the missing values
between x2 and xn, the last value to be included in the average. Using
this type of equation to define the mean is much more general than
the first example, and is more compact as long as there are 4 or more
values to be averaged.

One additional way you might see the mean defined is using so-
called “sigma notation”3, where it looks like this: 3 This symbol is a handy shorthand

for the process of adding a bunch of
quantities together, but also serves the
purpose of scaring many poor students
away. Once you realize that it’s just an
abbreviation for listing all the the terms
to be added (x1 + x2 + ...) and some of
the rules for doing so, it becomes a tad
less fearsome.

x̄ =
1
n

n

∑
i=1

xi (6.4)

where the big Σ is the summation symbol. If you’ve never encoun-
tered this before, here’s how to interpret it: the “summand”, the stuff
after the Σ, is to be interpreted as a list of values (in this case xi) that
need to be added together, and i starts at 1 and increases until you
get to n. You can see the rules for what i means by looking at the
text below and above the Σ. Below where it says i = 1 that means
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that i begins with a value of 1 and increases with each added term
until i = n, which is the last term. So in the end, you can interpret
this to have a meaning identical to the equivalent expressions above,
but in some cases this notation can be more compact and explicit. It
also looks fancier and more intimidating, so people will sometimes
use this notation to scare you off, even though it gives you the same
result as the second equation above.

6.3.1 Mean versus Median

For some data sets, the mean can be a misleading way to describe the
central tendency. If your creel after a day of fishing includes 5 half-
pound crappies, a 3/4-pound walleye, 4 one-pound smallmouths and
one 16-pound muskie, it would be correct but misleading to say that
the average size of the fish you caught was 2.1 pounds. The distribu-
tion of weights includes one distant outlier, the muskie, that greatly
distorts the mean, but all of the other fish you caught weighed one
pound or less. We might say in this case that the mean is sensitive to
outliers.

species weight (lbs.)
crappie 0.5
crappie 0.5
crappie 0.5
crappie 0.5
crappie 0.5
walleye 0.75

smallmouth 1.0
smallmouth 1.0
smallmouth 1.0
smallmouth 1.0
muskie 16

mean 2.1
median 0.75

Table 6.1: A decent day’s catch on the
lake.

The median is an alternative measure of central tendency that is
not sensitive to outliers. It is simply the value for which half the ob-
servations are greater and half are smaller. From your fishing catch,
the 0.75 pound walleye represents the median value, since 5 fish (the
crappies) were smaller and 5 fish (the smallies and the muskie) were
larger. The median may also be thought of as the middle value in
a sorted list of values, although there is really only a distinct mid-
dle value when you have an odd number of observations. In the
event that you’ve got an even number of observations, the median is
halfway between the two middle observations.

6.3.2 Mode

The mode is the value or range of values that occurs most frequently
in a data set. Since you caught 5 half-pound fish and fewer of every
other weight value in the dataset, the mode of this distribution is
0.5 pounds. Now if the weights we’ve reported above are actually
rounded from true measured weights that differ slightly, this defini-
tion becomes less satisfactory. For example, suppose the half-pound
crappies actually weighed 0.46, 0.49, 0.5, 0.55 and 0.61 pounds. None
of these are actually the same value, so can we say that this is still a
mode? Indeed we can if we choose to discretize or bin these data. We
might say that our fish weights fall into bins that range from 0.375

to 0.625, 0.625 to 0.875, 0.875 to 1.125, and so on. In this case, since
all of our crappies fall in the range 0.375 to 0.625 (which is 5± 1/8
lbs), this size range remains the mode of the data set. We can see this
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visually in a histogram, which is just a bar-chart showing how often
measurements fall within each bin in a range (Figure 6.2).

Figure 6.2: A histogram showing
the frequency of observations of fish
weights. The height of each bar corre-
sponds to the number of fish in each
of the weight bins along the horizontal
axis. Values are scrunched to the edges
because the large dispersion of data.

It is permissible to identify multiple modes in a data set if it im-
proves the description. The first mode is the data bin that appears
most frequently, but second and third and additional modes can be
used as well. A second mode in our fish sample is in the 1-pound
bin, which included 4 smallmouth bass. It is particularly useful in

In some cases, multi-modal data can be
suggestive of a mixed sample; that is,
there is more than just one type of thing
or from more than just one source in
the sample.

the case of multimodal data sets to report the modes because the
multimodal nature of the data set cannot be represented by the
mean or the median. In fact, if you were only presented with the
list of weights, you might still have a hunch that there were multiple
species or multiple age-classes present in the creel due to the multi-
modal weights.

In practice, reporting all of these measures of central tendency
may deliver the most complete picture of data, but as we’ve seen
each is particularly useful in some cases and can be misleading in
others. That said, we can actually infer additional properties of the
dataset by noting, for example, the difference between the mean and
median.

6.4 Spread

As mentioned previously, one way to quantify dispersion of a data
set is to find the difference between any given observation and the
expected value or sample mean. If we write this:

xi − x̄, (6.5)

we can call each such difference a residual. A could be used to de-
scribe the relationship between individual data points and the sample
mean, but doesn’t by itself characterize the spread of the entire data
set. But what if we add together all of these residuals and divide
by the number of data points? Well, this should just give us zero,
according to the definition of the mean! But suppose instead that
we squared the residuals before adding them together. The formula
would look like:

1
n

n

∑
i=1

(xi − x̄)2 (6.6)

This expression is defined as the variance and is strangely denoted
by σ2, but you’ll see why in a minute. Squaring the residuals made
most of them larger and made negative residuals positive. It also ac-
centuated those outlier data points that were farther from the mean.
Now if we take the square root of the variance, we’re left with a fi-
nite positive value that very well represents how far data typically
are from the mean: the standard deviation of the sample, or σ4. The 4 If you keep track of the units of these

different measures of spread, you’ll
notice that the standard deviation
should have the same units that the
original data, xi does.
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formal definition of standard deviation looks like this:

σ =

√
1
n

n

∑
i=1

(xi − x̄)2 (6.7)

The gives us a good sense for how far from the mean a typical mea-
surement lies. We can now characterize a sample as having a mean
value of x̄ and standard deviation of σ, or saying that typical values
are x̄ ± σ. But in reality, if we computed x̄ and σ, the bounds set by
x̄− σ and x̄ + σ only contain about 68% of the data points. If we want
to include more of the data, we could use two standard deviations
above and below the mean, in which case we’ve bounded more than
95% of the data.

6.5 Error & Uncertainty

One piece of information we have thus far omitted from our list of
properties that fully define a quantity’s value is uncertainty. This is
particularly important when we are quantifying something that has
been measured directly or derived from measurements. Thus, to even
more completely define the value of a measured quantity, we should
include some estimate of the uncertainty associated with the number
assigned to it. This will often look like:

x = xbest ± δx, (6.8)

where x is the thing we are trying to quantify, xbest is our best guess
of its value, and δx is our estimate of the uncertainty. Though it will
depend on the quantity in question, our best estimate will often be
the result of a single measurement or – better yet – the mean of a
number of repeated measurements.The preferred value xbest for a quantity

of interest will often be the mean of
repeated measurements of that quantity.

6.5.1 Uncertainty in measured quantities

All measurements are subject to some degree of uncertainty, arising
from the limited resolution of the instrument or scale used to make
the measurement, or from random or systematic errors resulting
from the method or circumstances of measurement. Let’s consider an
example:

Suppose two fisheries biologists each measured the lengths of
ten of the brook trout captured during the electrofishing traverse
from Problem 3.7. Both used boards with identical scales printed
on them, graduated to half of a centimeter. They then plan to put
their measurements together to get a data set of 20 fish. One of them
was trained to pinch together the tail fins to make this measurement,
while the other was not. In addition, because they wished not to
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harm the fish, they made their measurements quickly, even if the fish
flopped and wiggled during the measurement. What are the poten-
tial sources of error and how big are they relative to one another?

For starters, implicit in the graduations on this board is that the
user cannot confidently read any better than half-centimeters off the
scale. He or she can, however, visually interpolate between two adja-
cent graduations to improve precision (see below). However, this step
is inherently subjective and limits the certainty of the measurement.
We might call this instrumental error because its magnitude is set by
the instrument or device use to make the measurement. One way to
reduce this source of error is to use a more finely-graduated scale. Instrumental error is fixed by the

resolution of the device used to make
a measurement, and can usually only
be reduced by using a more precise
instrument.

A second source of error arises from the hasty measurements and
the fact that the fish were not necessarily cooperative. Perhaps the
mouth was sometimes not pressed up all the way against the stop, or
the fish wasn’t well aligned with the scale. Some lengths may have
been too large or small as a result, yielding a source of error that was
essentially random. Indeed, we can call this random error since its
sign and magnitude are largely unrelated from one measurement
to the next. Reducing this source of error in this case would require Random measurement errors may be

mitigated by repeating measurements.either more careful and deliberate effort at aligning and immobilizing
the fish, or making multiple measurements of the same fish. Both
of these solutions could endanger the fish and may therefore not be
desirable.

A third source of error is associated with the difference in the
way the two scientists dealt with the tail fin. Length measurements
made with the fins pinched together will usually be longer than those
without. Had they measured the same group of ten fish, one set of
measurements would have yielded lengths consistently smaller than
the other. This is a systematic error, and can often be troublesome
and difficult to detect. This highlights the need for a procedural state- Systematic errors result in data that

deviate systematically from the true
values. These errors may often be more
difficult to detect and correct, and
data collection efforts should make
great pains to eliminate any sources of
systematic error.

ment that establishes clear guidelines for measurements wherever
such sources of systematic error can arise.

Each of these types of error can affect the results of the measure-
ments, and should be quantified and included in the description of
the best estimate of fish length. But errors can affect the best estimate
in different ways. Instrumental error, as described above, can itself
either be random or systematic. The printed scale on one of the fish
measurement boards could be stretched by a factor of 3% compared
to the other, resulting in a systematic error. Likewise one board might
be made from plastic that is more slippery than the other and thus
more difficult to align the fish on. This could result in additional
random error associated with that device. But what are the relation-
ships between these types of errors and the best estimate that we are
seeking?
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Error or variation? Questions to ask yourself

1. What were possible sources of error in your measurements?
Are they random or systematic?

2. How can you tell the difference between error in measure-
ment and natural variability?

6.5.2 Real variability

Not all deviations from the mean are errors. For real quantities in
nature, there is no good reason to assume that, for example, all age-0
brook trout will be the same length. Indeed we expect that there are
real variations among fish of a single age cohort due to differences in
genetics, feeding patterns, and other real factors. If we’re measuring
a group of age-0 fish to get a handle on how those fish vary in size,
then at least some of the variation in our data reflects real variation
in the length of those fish. How do we tease out the variation that is
due to errors from the variation that is due to real variability?

Often a good approach is to try to independently estimate the
magnitude of the measurement errors. If those measurement errors
are about the same magnitude as the variations (residuals) within the
data, then it may not be possible to identify real variability. However,
in the more likely event that our measurements are reasonably ac-
curate and have small measurement errors compared to their spread
about the mean, then the indicated variations probably reflect true
variability.

This observation returns us to our earlier question: when we seek
to characterize some quantity how should we identify our best es-
timate and our degree of uncertainty in that estimate. If we wish to
characterize a single quantity and our certainty that our best estimate
is close to or equal to the true value, we should use the mean of re-
peated measurements of this value and the standard error of those
measurements. The standard error can be readily estimated by divid-
ing the standard deviation of the repeated measures by the number
of measurements n:

SE =
σ√
n

. (6.9)

This should be equivalent to the standard deviation of a number of
estimates of the mean x̄, if several samples were taken from the full
population of measurements. Like the standard deviation, we can
be about about 68% confident that the range xbest + SE to xbest − SE
includes the true value we wish to characterize, but if we use 1.96 SE
instead, we can have 95% confidence5. A complete statement, then, of5 Note that we are currently assuming

that our measurements are normally
distributed.
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our best estimate with 95% certainty in this context is to say:

x = xbest ± 1.96 SE, (6.10)

If instead we desire a characterization of a typical value and range
for something that has real variability among individuals in a popu-
lation, we will usually describe it with the mean and standard devia-
tion.

x = xbest ± 1.96 σ, (6.11)

6.6 Distributions

The kind of data we’ve been talking about thus far is univariate: a
single quantity with variable values like the diameter of a stream-
bed particle, or the length of a fish. As we know, not all age-0 brook
trout are the same size. In a first-pass capture of 50 fish, for example,
we should expect some variability in length that might reflect age,
genetics, social structure, or any other factor that might influence de-
velopment. The variation may be visualized graphically in a number
of ways. We’ll start with a histogram.

Figure 6.3: A histogram showing the
distribution of simulated (random)
measurements of the length of 100

snakes.

A histogram shows the distribution of a set of discrete measure-
ments – that is the range of values and the number of data points
falling into each of a number of bins, which are just ranges of val-
ues (112.5 to 117.5 is one bin, 117.5 to 122.5 another. . . ). This can be
called a frequency distribution, and a histogram is one of the best
ways to visualize a frequency distribution (Figure 6.3).

But what if we had uniformly distributed data? A uniform dis-
tribution means that it is equally likely that we’ll find an individual
with a length on the low end (97.5-102.5 mm) of the range as any
other. That would look quite different – there would be no hump
in the middle of the histogram, but rather a similar number of mea-
surements of each possible length. The uniform distribution is great:
in fact, we count on uniformity sometimes. If you are at the casino
and rolling the dice, you probably assume (unless you’re dishonest)
that there is an equal probability that you’ll roll a 6 as there is that
you’ll roll a 1 on any given die. We can call that a uniform probabil-
ity distribution for a single roll of a die. But What if the game you
are playing counts the sum of the numbers on 5 dice? Is there still a
uniform probability of getting any total value from 5 to 30?

Figure 6.4: Sum of the values of five
dice, rolled 100 times each.

We could actually simulate that pretty easily by randomly choos-
ing (with a computer program like R6 or Excel) five integers between

6 R is a top choice software for general-
purpose data analysis and modeling.
It is free software, works on most com-
puter platforms, and has nearly infinite
capabilities due to the user-contributed
package repository. Learn more about R
at https://cran.r-project.org/

1 and 6 and adding them together. Figure 6.4 shows the plot that
comes out. Looks sorta like a bell curve, right? Well, how likely is
it that you’ll get five 1’s or five 6’s? Not very, right? You’re no more
likely to get one each of 1,2,3,4 and 5 either, right? However, there

https://cran.r-project.org/
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are multiple ways to get a 1,2,3,4 and 5 with different dice showing
each of the possible numbers, whereas there is only one way to get
all sixes and one way to get all ones. So there are better chances that
you’ll get a random assortment of numbers, some higher and some
lower, and their sum will tend toward a central value, the mean of
the possible values. So, since your collection of rolls of the dice rep-
resent a random sample from a uniform distribution, the sum of
several rolls will be normally distributed.

What’s it got to do with fish? If we sample brook trout randomly
from one stream reach and measure their lengths, we might expect
them to be normally distributed. Describing such a normal distribu-
tion with quantities like the mean and standard deviation gives us
the power to compare different populations, or to decide whether
some individuals are outliers. The nuts and bolts of those compar-
isons depend on how the type of distribution represented by the
population. An ideal normal distribution is defined by this equation:

f (x) =
1√
2πσ

exp
[
(x− µ)2

2σ2

]
(6.12)

and it’s graph, in the context of our original hypothetical distribu-
tion of fish lengths, looks like the red line in Figure 6.5. In order to
compare the continuous and discrete distributions, we’ve divided the
counts in each bin by the total number in the sample (50), to yield
a density distribution. The blue line is just a smoothed interpolation
of the top centers of each bar in the discrete distribution, so it gen-
erally reflects the density of data within each bin. As you can see,
the discrete distribution density and the continuous normal distribu-
tion functions are similar, but there are some bumps in the discrete
distribution that don’t quite match the continuous curve. As you
can imagine though, that difference would become less pronounced
as your dataset grows larger. Related to this, then, is the idea that
your confidence in the central tendency and spread derived from your
dataset should get better with more data.

Figure 6.5: Superimposed discrete
distribution density (bars), interpolated
continuous density from the discrete
distribution (blue line), and an ideal
continuous distribution function with
the same mean and standard deviation.

Exercises

1. Download the data from Derek Ogle’s InchLake2 dataset from
the fishR data website. Using either a spreadsheet or data analysis
package, isolate the bluegill from the dataset and identify the
following:

(a) Mean bluegill length.

https://raw.githubusercontent.com/droglenc/FSAdata/master/data-raw/InchLake2.csv
https://raw.githubusercontent.com/droglenc/FSAdata/master/data-raw/InchLake2.csv
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(b) Standard deviation of bluegill length.

(c) Mean bluegill weight.

(d) Standard deviation of bluegill weight.

2. The graph and data table below and right show measurements of
brook trout lengths from pass #1 of the electrofishing campaign
described in Problem 3.7. Use these resources to answer the fol-
lowing questions:

(a) Judging from the histogram in Figure 2, does the dataset con-
tain just one mode or more than one? What might be the reason
for this?

(b) What is the mean and standard-deviation for the (presumed)
age-0 portion of this sample?

Figure 6.6: A complete frequency
distribution of brook trout lengths from
electrofishing pass #1 from Problem 3.7.
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index 1 2 3 4 5 6 7 8 9 10

1 313 135 342 297 137 112 379 116 142 154

2 288 322 241 364 360 348 265 127 297 143

3 355 110 152 107 157 338 135 345 251 110

4 127 372 164 417 364 358 113 329 83 366

5 305 343 129 378 298 245 392 121 371 394

6 256 397 114 292 146 147 243 320 294 154

7 406 301 156 294 396 132 296 349 247 313

8 261 406 332 381 329 250 233 316 130 104

9 248 294 427 295 316 339 328 255 344 121

10 312 339 271 323 272 259 120 123 316 301

11 401 114 279 160 293 321 217 301 240 133

12 135 370 275 137 139 130 276 299 296 111

13 323 250 414 308 317 362 336 332 429 114

14 141 163 264 325 151 167 380 100 138 120

15 160 321 246 351 369 146 284 108 131 136

16 263 131 376 374 419 310 431 121 321 326

17 125 410 312 347 113 297 89 96 294 134

18 342 356 110 131 139 296 285 99 313 372

19 361 428 344 301 365 347 283 158 331 397

20 149 155 307 165 321 224 137 333 132 231

21 329 133 305 388 319 120 389 330 411 143

22 306 261 359 126 143 386 338 179 319 140

23 273 320 122 144 384 112 408 316 344 303

24 122 324 137 331 92 113 341 399 353 305

25 287 117 354 332 376 282 244 335 157 144

Table 6.2: Brook trout length data from
electrofishing pass #1. All lengths in
mm.




