#### 2017 Reciprocal Meat Conference - Undergraduate Research Competition

Meat and Muscle Biology<sup>TM</sup>

## Effects of Nitrite Source, Reducing Agents, and Holding Time on Color Development in a Cured Meat Model System

J. A. Posthuma\*, F. D. Rasmussen, and G. A. Sullivan

Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA

 Keywords: alternative curing, cured color development, holding times, reducing agents, Sodium nitrite

 Meat and Muscle Biology 1(3):165

 doi:10.221751/rmc2017.160

# **Objectives**

The objective of this study was to determine the effects of nitrite source, the addition of reducing agents, and holding times prior to cooking on color development in a cured meat model system.

## **Materials and Methods**

Emulsified beef sausages were manufactured using 4 different combinations of nitrite sources and reducing agents: 1) sodium nitrite (SN; 156 ppm), 2) SN (156 ppm) and sodium erythorbate (SE; 495 ppm), 3) pre-converted celery juice powder (CJP; VegStable 504, Florida Food Products, Inc., Eustis, FL; providing 100 ppm of sodium nitrite), 4) CJP (providing 100 ppm of nitrite) and cherry powder (CP; VegStable 515, Florida Food Products, Inc., Eustis, FL; providing 440 ppm ascorbic acid). Beef, ice (20%), salt (2%) and the appropriate amount of sodium nitrite and reducing agents were chopped for 1 min in a food processor at 2000 rpm (Blixer 6V, Robot Coupe, Robot Coupe, Ridgeland, MS). For each treatment, the meat batter was placed in 5, 100 mL beakers, and held at 21°C for 5, 15, 30, 60, and 120 min prior to cooking. The emulsions were cooked in a water bath for 30 min at 40°C and 30 min at 80°C and then cooled for 30 min in an ice bath. Samples were then evaluated for objective color (Minolta CR400; L\*, a\*, b\*), residual nitrite, total meat pigment, and cured meat pigment. Three independent replications were produced. Data were analyzed using the GLIMMIX procedure of SAS (SAS Inst. Inc., Cary, NC) using a  $2 \times 2 \times 5$  factorial arrangements with main effects of nitrite source, with or without reducing agents and holding time and their interactions. Means were separated using Tukey's adjustment ( $P \le 0.05$ ).

## **Results**

A significant nitrite source by reducing agent interaction was identified for cured meat pigment and residual nitrite ( $P \le 0.006$ ). The SN+SE samples had the greatest amount of cured meat pigment (130.9 ppm) followed by CJP+CH (127.8 ppm), SN (74.7 ppm), and CJP (51.9 ppm) where each treatment was different than all other treatments. Residual nitrite was greatest in SN (79.7 ppm), SN+SE (62.6 ppm) and CJP (59.3 ppm) were intermediate and similar, and CJP+CH (31.64 ppm) had the least. Treatments with reducing compounds (SE or CP) were more red (P < 0.001; a\* 15.8) and less yellow (P = 0.016; b\* 8.8) than those without reducing compounds (a\*10.7; b\* 9.2). Similarly, samples cured with SN were more red (P < 0.001; a\* 13.9) and less yellow (P = 0.009; b\* 8.8) than those cured with CJP (a\* 12.6; b\* 9.2) but the differences were not as great the effect of reducing agents. Total meat pigment (P > 0.06) and L\* (P > 0.32) were not affected by nitrite source or reducing agents. Holding time was not included in any significant interactions (P > .349). The only significant main effect of holding time was for a\* (P = 0.011) where sausages held for 120 min was more red than those held for 5, 15, and 30 min.

#### Conclusion

The addition of reducing agents (SE or CP) had the largest impact on cured meat color development and reduced the residual nitrite in a cured meat model system. Treatments with SN had slightly greater cured color development than CPJ treatments. Holding times prior to cooking had limited impact on cured meat color development.

www.meatandmusclebiology.com

© American Meat Science Association.

This is an open access article distributed under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

