2017 Reciprocal Meat Conference - Muscle and Lipid Biology and Biochemistry

Meat and Muscle BiologyTM

Aging, Antioxidant-Enhancement, and Modified Atmospheric **Packaging Improves Appearance of Dark-Cutting Beef**

K. Wills*, R. Mitacek, M. Pfeiffer, G. Mafi, D. Van Overbeke, D. Jaroni, and R. Ramanathan

Animal Science, Oklahoma State University, Stillwater, OK, USA

Keywords: aging, antioxidant, dark-cutter, enhancement, modified atmospheric packaging Meat and Muscle Biology 1(3):146

doi:10.221751/rmc2017.139

Objectives

Color is the most crucial component of a consumer's decision when purchasing beef. Due to their dark appearance, dark-cutters will be discounted at the packing facility. Improving the appearance can increase the value of dark-cutting beef resulting in a greater profit for producers and retailers. The objective of this study was to evaluate the effects of wet-aging, antioxidant-enhancement, and modified atmospheric packaging on color of dark-cutting beef during simulated retail display.

Materials and Methods

No-roll dark cutting (pH > 6.0) strip loins (n = 12) and 10 USDA choice (pH range 5.45 to 5.55) strip loins (IMPS #180) were randomly selected from a commercial purveyor within 3 d post-harvest. Dark cutting loins were sectioned into 2 equal sections and assigned to 1 of 3 aging periods 7, 14, and 21 d, then cut into 3 equal sections and assigned to 1 of 3 treatments, control, 0.1% rosemary, and 0.2% rosemary. Choice loins were sectioned into 3 equal sections and randomly assigned to respective aging periods. Following aging, loins assigned to rosemary enhancement treatments were enhanced to 110% their green weight with a solution consisting of deionized water and 1.1% or 2.2% oleoresin rosemary (Kalsec Herbalox). Following aging and enhancement, sections were sliced into 1.9-cm steaks and assigned to 1 of 3 packaging treatments;

high-oxygen modified atmospheric packaging (HiOx-MAP; $80\% O_2$ and $20\% CO_2$), carbon-monoxide (CO-MAP; 0.4% CO, 69.6% N, and 30% CO₂) and polyvinyl chloride overwrap (PVC; 20% O₂). Steaks were on display under continuous fluorescent lighting for 5 d. The surface color was measured utilizing a HunterLab Miniscan XE Plus spectrophotometer each day of display. Lipid oxidation was determined on 0 and 5 d of display utilizing the thiobarbituric acid reactive substances (TBARS) assay. Data were analyzed using the Mixed Procedure of SAS (SAS Inst. Inc., Cary, NC) and values were considered significant at P < 0.05. The experiment was replicated 8 times (n = 8).

Results

The combination of aging, modified atmospheric packaging, and antioxidant-enhancement improved (P < 0.05) redness (a* values) and lightness (L* values) of dark-cutting beef compared with control dark-cutting beef. HiOx-MAP packaging was the most effective (P < 0.05) in improving surface color compared with CO-MAP and PVC packaging.

Conclusion

The results indicate that the combination of postharvest technologies such as aging, antioxidant enhancement and packaging has potential to improve surface color and value of dark-cutting beef.