2017 Reciprocal Meat Conference – Muscle and Lipid Biology and Biochemistry

Meat and Muscle BiologyTM

Fatty Acid Composition of Meat Retail Display from Nellore Steers Fed Different Oil Sources

F. S. Costa¹, A. R. Cabral^{2*}, S. L. Silva³, W. Henrique¹, J. A. Orozco², L. F. Mueller⁴, A. M. Ferrinho⁴, and A. S. C. Pereira⁴

¹Paulista Agency Agribusiness Technology, Sao Jose do Rio Preto, Brazil; ²Animal Science, Texas A&M University, College Station, TX, USA; ³Animal Science, University of Sao Paulo/FZEA; ⁴Animal Science, University of Sao Paulo/FMVZ, Pirassununga, Brazil

Keywords: beef, linolenic acid, longissimus muscle, vegetable oil Meat and Muscle Biology 1(3):153

Objectives

The aim was to evaluate the fatty acids (FA) composition of meat samples exposed to retail display conditions for 3 d from Nellore steers fed different oil sources during the feedlot finishing.

Materials and Methods

Ninety-six Nellore (Bos indicus) steers were fed for 81 d with diets containing different oil sources: soybean (SOY-6.6% ether extract- EE), sunflower (SUN- 6.9% EE), linseed (LIN-6.8% EE) and a diet control (CON- without addiction of oil- 3.5% EE). Diets were composed of 21% corn silage and 79% concentrate (dry corn grain, soybean meal, citrus pulp, urea, mineral nucleus and calcitic limestone) and inclusion of oils (3.5%) was made by partial substitution of corn grain. After 81 d of feeding, animals were slaughtered $(507.5 \pm 17.3 \text{ kg LW} \text{ and } 5.2 \text{ mm of backfat thickness})$ and samples of longissimus muscle (2.5 cm thick) were collected at 12th rib level after 48 h postmortem. Steaks were placed on Polyfoam trays, overwrapped with an oxygenpermeable polyvinylchloride film and stored for 3 d under simulated retail display conditions of illumination (Halogen light; 2000 lx) and temperature (0 to 2°C). After this period, steaks were frozen and analyzed for FA composition using the methods by Folch et al. (1957) and Kramer et al. (1997), and quantified using a gas chromatography. The experiment was set up as a completely randomized block (initial body weight) design and analyzed using the mixed model, considering diets as fixed effects.

Results

No effect (P > 0.05) of oil addiction in diet was observed for most FA percentage (average among all treat-

ments): c9 t11 CLA ($0.42\% \pm 0.04$) and total concentrations of monounsaturated (45.17% \pm 0.86), saturated (SFA; $41.13\% \pm 0.75$), polyunsaturated (PUFA; $10.06\% \pm 0.85$), n-3 (1.50% \pm 0.20), n-6 (8.3% \pm 0.70). The c6 18:1 concentration was higher (P = 0.04) in meat from steers fed LIN $(0.36\% \pm 0.03)$ and SOY $(0.37\% \pm 0.03)$, in comparison to CON ($0.19\% \pm 0.04$). This c6 18:1 increased concentration is seen as beneficial to human health because of cis positional configuration. Linolenic acid was in higher concentration (P = 0.01) in animals fed LIN ($0.96\% \pm 0.05$) compared to other treatments $(0.46\% \pm 0.05)$, which would be expected due to the high concentration of 18:3 n-3 in linseed oil. This is a desirable result, because the goals of feeding LIN were to increase n-3 FA in the meat because of their benefits to human health. In consequence, meat from LIN fed animals had a high n-6:n-3 ratio (4.15 ± 0.55) which is close to the recommended ratio (4.0) by the World Health Organization-WHO (2003). The meat of animals fed SUN and SOY showed n-6:n-3 ratio of 8.75 and 7.66, respectively, which are higher than recommended by the WHO. Despite no differences among treatments for n-6 FA, the high n-6:n-3 ratio observed for SUN and SOY occurred probably due to the high amount of 18:2 n-6 in these oils. The PUFA:SFA (0.25 ± 0.02) ratio was not affected by diets (P > 0.05) and was below the recommended ratio which is greater than or equal to 0.4. The index of enzymes activity $\Delta 9$ desaturase C16 (11.05% \pm 0.36), $\Delta 9$ desaturase C18 $(72.07\% \pm 1.18)$ and elongase $(65.48\% \pm 0.50)$ were not influenced by diets (P > 0.05).

Conclusion

The LIN diet provided meat with better FA composition considering the higher concentration of linolenic acid and adequate relation of n-6:n-3, which is positive for human health.

www.meatandmusclebiology.com

© American Meat Science Association.

doi:10.221751/rmc2017.146

This is an open access article distributed under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)