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Abstract: The abundance of intramuscular fat (marbling) and tenderness are 2 key determining factors of beef quality,
whereas muscle growth determines the meat production efficiency. Marbling accumulation is due to both hyperplasia
and hypertrophy of intramuscular fat cells (adipocytes). On the other hand, intramuscular fibroblasts are major contributors
for the formation of connective tissue and its cross-linking, which are responsible for background toughness of beef.
Interestingly, muscle cells, adipocytes, and fibroblasts are derived from a common pool of mesenchymal progenitors during
embryonic development. In the early embryos, a portion of progenitor cells in anlage commit to the myogenic lineage,
whereas nonmyogenic cells become adipo-fibrogenic cells or other cells. These myogenic cells proliferate extensively
and further develop into primary and secondary muscle fibers and satellite cells, whereas adipo-fibrogenic cells form
the stromal-vascular fraction of muscle where intramuscular adipocytes and fibroblasts reside. Strengthening prenatal myo-
genesis and muscle development enhances lean growth, whereas promoting intramuscular adipocyte formation elevates
marbling. Because the abundance of progenitor cells in animals declines as their development progresses, it is more effec-
tive to manipulate progenitor cell differentiation during early development. Maternal nutrition and other environmental
factors affect progenitor cell commitment, proliferation, and differentiation, which programs muscle growth and marbling
fat development of offspring, affecting the quantity and quality of meat production.
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Introduction

Enhancing muscle growth increases the lean-fat ratio
and production efficiency of meat animals. On the
other hand, marbling (intramuscular fat) and tender-
ness are top quality problems associated with beef.
For meat animals, all muscle fibers are formed before
birth, and enhancing prenatal myogenesis and muscle
development form more muscle fibers, which pro-
motes lean growth of subsequent animals (Zhu et al.,
2006). Marbling fat formation is due to both hyperpla-
sia and hypertrophy of intramuscular adipocytes. The
formation of adipocytes mainly occurs during the fetal
and neonatal stages, and better maternal nutrition

improves intramuscular adipocyte formation, resulting
in adipocyte hyperplasia. In addition, intramuscular
connective tissue and its cross-linking are responsible
for the background toughness of meat. Fibroblasts
mainly contribute to the formation of connective tis-
sues, and their reduction improves beef tenderness
(Liu et al., 2021). As a result, changes in the cellular
abundancy and composition of muscle affect meat pro-
duction efficiency and quality.

The prenatal stage is critical for the formation of
myogenic, adipogenic, and fibrogenic cells (Du et al.,
2010). During the embryonic stage, a portion of pro-
genitor cells (PCs) in the dermomyotome first differ-
entiate into myogenic cells, which further mature into
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muscle fibers and satellite cells during the fetal stage
and after birth (Zhao et al., 2021). On the other hand,
nonmyogenic cells in the dermomyotome form intra-
muscular adipocytes, fibroblasts, and other cells.
Their lineage commitments and differentiation are sen-
sitive to changes in maternal nutrition and other factors
and, thus, the prenatal stage provides a unique oppor-
tunity to enhance lean growth and intramuscular adipo-
cyte formation while reducing connective tissue
accumulation, improving the production efficiency
and meat quality (Zhao et al., 2023).

In this review, we first discuss the embryonic com-
mitments of PCs to myogenic, adipogenic, and fibro-
genic cells and their effects on fetal and postnatal
development. Then, we summarize the effects of
maternal nutrition on prenatal muscle, fat, and connec-
tive tissue formation and their subsequent effects on
beef production and quality.

Prenatal Muscle Development

Skeletal muscle development

During embryonic development, somitogenesis
sequentially occurs along the body axis (Tam, 1981).
Following formation, somites further split into the der-
momyotome and sclerotome (Venters et al., 1999).
Next, a portion of PCs within the dermomyotome start
to express myogenic factor 5 (Myf5), committing PCs to
myogenic cells, which further develop intomuscle fibers
and satellite cells at later stages (Seale et al., 2008;
Murphy and Kardon, 2011; Chal and Pourquié, 2017).
Besides forming dermis and subcutaneous fat, nonmyo-
genic PCs in the dermomyotome, referred to as primary

fibroblasts (Saga et al., 1997; Fazilaty et al., 2019;
Leavitt et al., 2020), are precursors of fibro-adipogenic
progenitors (FAPs), fibroblasts, and adipocytes in adult
muscle (LeBleu and Neilson, 2020). Biologically, fibro-
blasts and other cells synthesize connective tissues and
other components, which form the stromal tissue for
muscle structural integrity and muscle fiber connection
to bones; on the other hand, they have critical impacts on
the tenderness and marbling fat formation and, thus, the
eating quality of meat (Fig. 1).

Myogenesis can be separated into 2 steps: com-
mitment and differentiation. Myogenic commitment
is initiated by the expression of Myf5, which then
induces the expression of other myogenic regulatory
factors (MRFs) including MyoD, myogenin, and
MRF4, converting committed PCs into differentiated
muscle cells (Rudnicki et al., 1993; Relaix et al., 2005;
Tapscott, 2005; Bajard et al., 2006; Sato et al., 2010;
Bentzinger et al., 2012). Myocyte enhancer factor 2
partners with MRFs to drive myogenic differentiation
(Grifone et al., 2005; Buckingham, 2006; Shen et al.,
2006; Potthoff and Olson, 2007; Taylor and Hughes,
2017).

The primary muscle fibers formed de novo in the
embryonic stage serve as scaffolds for the formation
of fetal muscle fibers (Swatland, 1973); these embry-
onic myogenic cells and PCs proliferate and provide
myogenic cells for secondary muscle fiber formation
during the fetal stage. In addition, these cells contribute
to the formation of satellite cells in offspring muscle
(Gros et al., 2005; Murphy and Kardon, 2011; Chal
and Pourquié, 2017). Thus, embryonic myogenic proc-
ess has critical roles in determining fetal and postnatal
muscle growth and development.

Figure 1. Diagram showing the development of embryonic muscle and fibro-adipogenic progenitor (FAP) cells, which subsequently develop into fetal
muscle and intramuscular adipocytes, fibroblasts, and resident FAPs. Of note, embryonic cells have high plasticity and, thus, myogenic and fibro-adipogenic
commitments are not exclusive. NC= notochord; NT= neurotube.
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The secondary myogenesis that occurs during the
fetal stage forms most muscle fibers. Depending on fetal
maturity at birth, the occurrence of secondary myogen-
esis is slightly different among different animal species,
which occurs during mid- to late gestation in pigs (up to
around 90 d, term 114 d) (Wigmore and Stickland, 1983)
and mid-gestation in cattle (up to around 200 d, term
284 d) (Bonnet et al., 2010). Therefore, the prenatal
stage, especially mid-gestation, is critical for skeletal
muscle development (Greenwood et al., 2000). Be-
cause muscle fibers are derived from the fusion of myo-
genic cells, higher abundance of myogenic cells results
in more muscle fiber formation (Zhu et al., 2004). The
source of fetal myogenic cells includes the proliferation
of myogenic cells derived from embryos and the con-
tinued myogenic differentiation of proliferating PCs.
Maternal nutrition and growth factors profoundly affect
the proliferation and formation of myogenic cells and
thus the number of secondary muscle fibers (Zhu et al.,
2004, 2008; Tong et al., 2009; Yan et al., 2010). On the
other hand, myostatin inhibits myogenic cell prolifera-
tion, and its mutation dramatically enhances prenatal
muscle fiber formation, resulting in “double muscling”
cattle (McPherron and Lee, 1997).

Postnatal muscle growth is mainly due to hypertro-
phy, in which muscle fibers increase in size and length
(Brameld et al., 2000), wherein satellite cells have criti-
cal roles. Muscle satellite cells, originated from the
embryonic myotome, lie between the sarcolemma of
myofibers and surrounding basal lamina in adult skel-
etal muscle (Reznik, 1969). Their proliferation and
myogenic differentiation provide the majority of nuclei
in adult muscle fibers (Allen et al., 1979), showing their
critical roles in postnatal muscle growth. Insufficient
prenatal myogenesis will not only reduce the number
of muscle fibers but also the density of satellite cells,
persistently reducing lean growth. In support of this,
runt piglets have suppressed fetal muscle development
because of insufficient placental delivery of nutrients
and have lower muscle mass permanently (Aberle,
1984; Handel and Stickland, 1987).

Adipose and Connective Tissue
Development

Adipose tissue development

There are 4major fat depots, including visceral, sub-
cutaneous, intermuscular, and intramuscular depots, of
which only intramuscular fat is highly desirable; the
accumulation of other fats is a liability to producers
because of their low commercial value. During prenatal

development, these 4 fat depots do not form at the same
time. Instead, the first detection of adipocytes is in the
perirenal fat of beef cattle, followed by subcutaneous
fat and intermuscular adipocytes (Bonnet et al., 2010).
In perinatal fat, adipocytes were detected as early as
80 d of gestation (dG), whereas adipocytes in the inter-
muscular fat are detectable at 180 dG (Taga et al., 2011).
The appearance of discernable intramuscular adipocytes
occurs much later. Most adipocytes are formed during
the fetal and early postnatal stages, and adipocyte hyper-
plasia largely ceases in the visceral fat after birth (Bonnet
et al., 2010). Adipocyte hyperplasia is ongoing lifelong
but reduces as animals become older (Robelin, 1981;
Cianzio et al., 1985) because of the declining density
of PCs in fat depots. Therefore, changes caused by
maternal nutrition during gestation and other physiologi-
cal conditions during the fetal, postnatal, and early post-
weaning stages affect adipogenesis and the total number
of adipocytes in each depot of meat animals.

The delayed formation and maturation of intramus-
cular adipocytes provide an opportunity to specifically
enhance intramuscular adipogenesis and marbling fat.
Intramuscular adipogenesis mainly occurs during the
late fetal/neonatal stage to about 250 d of age in beef
cattle. Because adipogenesis is ongoing in neonatal
calves, early weaning to 250 d of age is a unique time
window to specifically enhancemarblingwith less effect
on the fatness of other depots, termed as the “marbling
window” (Wertz et al., 2001, 2002; Pyatt et al., 2005;Du
et al., 2013). Supplementation of nutrients or other bio-
active compounds to enhance adipogenesis during this
stage may specifically enhance intramuscular adipogen-
esis and marbling.

Adipogenesis can also be separated into 2 stages:
commitment and differentiation (MacDougald and
Mandrup, 2002). For the adipogenic commitment
of PCs into preadipocytes, zinc finger protein 423
(ZFP423) is a key transcriptional factor (Gupta et al.,
2010). ZFP423 further induces the expression of perox-
isome proliferator-activated receptor (PPAR) γ, which is
a key transcription factor initiating the adipogenic differ-
entiation (Gupta et al., 2010, 2012). PPARγ cooperates
with CCAAT/enhancer-binding proteins to induce the
expression of adipogenic-specific genes (Spiegelman
and Flier, 1996; Rosen and MacDougald, 2006).
These cells then accumulate lipid droplets and become
mature adipocytes (Brun and Spiegelman, 1997).
Feedlot fattening with high corn feeds enhances intra-
muscular adipocyte hypertrophy and increases mar-
bling, but its effectiveness depends on the presence of
intramuscular adipocytes formed during the earlier
developmental stage.
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Connective tissue development

Connective tissue, mainly collagen, is responsible
for the background toughness of meat, and tender beef,
such as ribeye steak, has low collagen content
(McCormick, 1999). Moreover, not only content but
collagen cross-linking is even more important for ten-
derness. Cross-linking increases as the animal age
increases and, thus, only young animals produce high-
quality beef. In addition, collagen content and cross-
linkingarepositively correlated (Archile-Contreras et al.,
2010). Fibrogenesis, referring to connective tissue for-
mation by fibroblasts, is highly active during the fetal
and neonatal stages, which form a connective tissue net-
work for maintaining muscle integrity. Transforming
growth factor (TGF)-β is the critical factor stimulating
fibrogenesis (Liu and Pravia, 2010). Three isoforms of
TGF-β have been identified, which are TGF-β1, TGF-
β2, and TGF-β3; TGF-β1 is primarily expressed in
muscle (Ghosh et al., 2005). All TGF-β isoforms acti-
vate downstream SMAD signaling to enhance fibrogen-
esis (Attisano and Wrana, 1996; Letterio and Roberts,
1998). The SMAD signaling not only activates the
expression of fibrogenic genes such as procollagen
but also lysyl oxidase catalyzing collagen cross-linking
(Massagué and Chen, 2000).

Collagen turnover reduces cross-linking (Archile-
Contreras et al., 2010). However, collagens have a very
low turnover rate, and their turnover is regulated by
matrix metalloproteinases (MMPs) (Visse and Nagase,
2003; Huang et al., 2012b). Collagen turnover is accel-
erated by compensatory growth and extracellular remod-
eling, which increases tenderness (Hill, 1967; Archile-
Contreras et al., 2011). In our studies in sheep and cattle,
the expression of collagens, lysyl oxidase, and MMPs is
correlated, showing their coordinated roles in the forma-
tion of intramuscular connective tissue (Huang et al.,
2012b).

Adipocytes and fibroblasts share a common
pool of progenitor cells

During embryonic muscle development, PCs first
diverge to either myogenic PCs or nonmyogenic cells.
Of these nonmyogenic cells, a major portion become
adipo-fibrogenic PCs, which are precursor cells for
intramuscular adipocytes, fibroblasts, resident FAPs,
and other cells in muscle. Postnatally, intramuscular
adipocytes and fibroblasts are developed from resident
FAPs (Joe et al., 2010; Uezumi et al., 2010, 2011). As a
result, intramuscular adipogenesis and fibrogenesis can
be considered as a competitive process; enhancing adi-
pogenic differentiation of adipo-fibrogenic PCs and

FAPs can reduce their fibrogenic differentiation, which
may increase intramuscular adipocytes and reduce
fibroblasts, improving both marbling and tenderness.
Based on available studies, ZFP423 is a key transcrip-
tional factor enhancing the adipogenic commitment of
PCs and FAPs into adipocytes. On the other hand,
enhancing TGFβ signaling increases fibrogenic differ-
entiation and collagen synthesis (Huang et al., 2012a).

Manipulating Progenitor Cell
Differentiation Through Maternal
Nutrition

Maternal nutrition and muscle development

Fetal developmental programming, also called the
Barker hypothesis, refers to the profound impacts of
maternal nutrition on fetal development, which perma-
nently affect metabolic health of offspring (Drake and
Walker, 2004). During fetal development, essential
organs and tissues such as the brain and heart have
higher nutrient partitioning priority compared with
skeletal muscle and adipose tissue. As a result, mater-
nal nutrient deficiency and stress preferentially affect
skeletal muscle and adipose tissue development (Zhu
et al., 2006). Most studies on maternal nutrition and
fetal development in livestock were conducted in
sheep, in which both maternal nutrient restriction and
overnutrition were used (Stannard and Johnson, 2004;
Quigley et al., 2005; Tong et al., 2008, 2009; Zhu et al.,
2008; Yan et al., 2010). These studies demonstrated the
lasting effects of maternal nutrient deficiency on
muscle growth in lambs (Zhu et al., 2006), pigs (Dwyer
et al., 1994), and guinea pigs (Ward and Stickland,
1991).

For ruminant animals, fetal muscle development
mainly occurs during early tomid-gestation, andmater-
nal nutrient restriction limits the proliferation and for-
mation of myogenic cells, resulting in reduced muscle
fiber formation. On the other hand, muscle fiber forma-
tion largely stops at late gestation in ruminant animals,
and nutrient restriction does not affect muscle fiber
numbers but reduces fiber sizes (Greenwood et al.,
1999) as well as satellite cell density (Woo et al.,
2011). After birth, there is no further increase in muscle
fiber numbers, and muscle grows through hypertrophy
of individual muscle fibers, for which satellite cells are
critically important (Russell and Oteruelo, 1981).
Therefore, reduction in fetal myogenesis negatively
affects long-term growth of muscle (Stannard and
Johnson, 2004; Zambrano et al., 2005; Zhu et al., 2006).
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Consistently, 50% nutrient deficiency during early to
mid-gestation of ewes suppressed the formation of sec-
ondary myofibers (Zhu et al., 2004), which correlated
with reduced muscle mass in subsequent lambs (Zhu
et al., 2006). Correspondingly, maternal 60% caloric
restriction in cows during 30 to 140 dG reduced muscle
fiber size at 140 dG (Gonzalez et al., 2013). In addition,
both restricted (60% of nutrient requirement) or
overfed (140%) ewes during 30 to 90 dG decreased
secondary muscle fiber formation and the density of
PAX7þ myogenic cells (Gauvin et al., 2020).
Therefore, both nutrient deficiency and overfeeding
alter fetal muscle development, including the number
and size of fibers, muscle mass, and satellite cell den-
sity in offspring muscle.

Up to now, studies on maternal nutrition and fetal
development have been focused on mid- to late gesta-
tion (Du et al., 2015). However, accumulating studies
show the importance of periconceptional period on
embryonic development, which alters fetal and off-
spring development (Velazquez et al., 2019). The
embryonic development is characterized by morpho-
genesis; at the cellular level, extensive epigenetic
remodeling occurs in PCs during this stage, which
persistently alters their differentiation and cellular
properties in later stages (Velazquez, 2015; Dunford
and Sangster, 2017; Velazquez et al., 2019).

In beef cattle, the embryonic stage is up to 50 dG
(Lonergan et al., 2016), and the periconceptional
period mainly includes 60 d pre- and post-breeding
(Caton et al., 2020; Copping et al., 2020). Sheep ges-
tation lasts about half of cattle gestation, and thus, the
periconceptional periods is around 30 d before and after
mating (Reynolds et al., 2014; Caton et al., 2020). Both
under- and overnutrition of ewes before conception
reduce oocyte quality, which compromises embryonic
development (Lozano et al., 2003; Borowczyk et al.,
2006; Grazul-Bilska et al., 2012). In cows, nutritional
restriction postconception delayed embryonic develop-
ment (Kruse et al., 2017). In heifers, maternal nutrition
during the first 50 dG alters the expression of nutrient
transporters in placenta, generating long-term changes
in fetal and postnatal development (Crouse et al., 2017,
2021; Greseth et al., 2017). Maternal nutrient restric-
tion during the first 50 d of pregnancy in heifers alters
gene expression of the hind limb muscle of the 50 dG
conceptus (Crouse et al., 2019; Diniz et al., 2021).

Primary myofibers form between 21 to 60 dG in
cattle (Russell and Oteruelo, 1981), and impairment
of embryonic myogenesis affects fetal and offspring
muscle development. Nutrient deficiency (60%) during
30 to 85 dG of cows reduced the number of PAX7þ

myogenic progenitors in fetal muscle (Gonzalez et al.,
2013). Additionally, 50% nutrient deficiency 1 wk
before and after mating in ewes increased the size
but reduced the number of fetal myofibers (Sen et al.,
2016).

Finally, maternal nutrition also affects the muscle
fiber composition of offspring. Muscle fiber composi-
tion affects postmortem glycolysis and thus the water-
holding capacity of meat. Oxidative Type I fibers
contain higher intramyocellular lipids and other com-
pounds, increasing meat flavor, whereas glycolytic
fibers increase postmortem glycolysis. Unlike rodents
and pigs, type IIx is the dominant fast fiber type instead
of type IIb in ruminant animals. Fifty percent nutrient
deficiency during 30 to 70 dG in ewes reduced the den-
sity of glycolytic myofibers while increasing oxidative
myofibers at birth (Fahey et al., 2005). But in well-
nourished lambs, maternal nutrient restriction increased
glycolytic myofibers, likely because of the compensa-
tory growth (Zhu et al., 2006). Consistently, in sows,
a maternal high-fat diet starting from 60 dG increased
glycolytic fibers in neonatal muscle (Hu et al., 2021).
Therefore, maternal nutrition affects muscle fiber com-
position of offspring.

Maternal nutrition regulates prenatal
adipogenesis and fibrogenesis

Depending on adipose depots, the developmental
sources of adipocytes are different. Although intramus-
cular adipocytes and fibroblasts are mainly derived
from PCs inside dermomyotome, adipocytes in other
depots are derived from the lateral plate mesoderm
and others. The formation of adipose tissue occurs
slightly later than embryonic myogenesis, and the
major formation of adipose and connective tissue
occurs during the late gestation stage and early post-
natal stage in calves. As a result, maternal nutrition dur-
ing pregnancy and lactation affects the adipose tissue
development of calves and the resulting quality of beef
(Du et al., 2011).

Maternal undernutrition during late gestation and
lactation reduces overall adipocyte formation in neo-
nates. However, after these offspring grow up, they
are fatter because of the simultaneous reduction in
muscle mass, which reduces energy consumption,
driving excessive energy for lipid storage and pro-
foundly increasing adipocyte hypertrophy. In alignment,
20% nutrient restriction during the fetal develop-
ment increased the 12th rib fat thickness of cattle
(Mohrhauser et al., 2015). Maternal nutrient restriction
during 28 to 80 dG in ewes increased neonatal fat mass
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in sheep (Bispham et al., 2005).Maternal nutrient restric-
tion in sows increases intramuscular connective tissue in
offspring (Karunaratne et al., 2005), likely because of a
reduction in muscle development, which increases the
PC differentiation into fibro-adipogenic cells.

On the other hand, a high energy diet during gesta-
tion and lactation increases adipocyte formation, which
stimulates adipocyte hyperplasia, translating into a
higher proportion of adipose tissue in offspring
(Rattanatray et al., 2010; Nicholas et al., 2013).
Consistently, in ewes, 150% overnutrition from 60 d
before conception to birth increased intramuscular fat
and connective tissue contents in offspring lambs
(Yan et al., 2011; Huang et al., 2012b). In addition, runt
piglets that had experienced nutrient deficiency during
gestation have higher adipose and connective tissue con-
tents comparedwith the largest piglet (Karunaratne et al.,
2005). Feeding early weaned calves with a high-grain
diet increased intramuscular fat and marbling (Moisá
et al., 2015), consistent with the “marbling window”
concept.

Intramuscular adipocytes and fibroblasts are devel-
oped from muscle resident FAPs, which are descend-
ants of embryonic fibro-adipogenic PCs. In beef
cattle, the density of fibro-adipogenic PCs and FAPs
declines as animals become older (Du et al., 2017).
The density of FAPs differs because of genetics and
nutrition. Wagyu, the Japanese Black cattle, are well
known for their very high marbling (Gotoh et al.,
2014). Previously, we found that Wagyu cattle have
both elevated adipocytes and fibroblasts, likely because
of the genetic effects that predispose the cattle to fibro-
adipogenesis during early development (Duarte et al.,
2013). In addition, maternal nutrition, especially over-
nutrition, increases the density of embryonic fibro-
adipogenic PCs, which elevates the accumulation of
both intramuscular adipocytes and connective tissue.
In our studies, maternal overnutrition increased intra-
muscular fibrogenesis and adipocytes in skeletal muscle
of sheep (Huang et al., 2010). In agreement, maternal
overnutrition increased connective tissue and intramus-
cular fat in fetal and offspring cattle (Duarte et al., 2014).

Besides maternal nutrient deficiency or overnourish-
ment, vitamins may also affect adipose development.
Retinoic acid (RA) binds to RA receptors, which is
required for adipogenesis. RA is a ligand of RAX recep-
tor, which partners with PPARγ to initiate adipogenesis.
We previously found that neonatal vitaminA administra-
tion increased intramuscular fat content by 45% without
an increase in overall fatness (Harris et al., 2018;Yu et al.,
2022). Consistently, vitamin A injection at birth
enhanced beef marbling in Montana×Nellore steers

(Maciel et al., 2022). Vitamin A increases proliferation
of FAPs and promotes their adipogenic differentiation
(Harris et al., 2018; Maciel et al., 2022; Yu et al.,
2022). On the other hand, RA also stimulates lipid oxi-
dation through activation of PPARα and β/δ in mature
adipocytes (Wang et al., 2016). Therefore, during the
fattening stage, vitamin A restriction is used to reduce
lipid oxidation, which increases adipocyte hyperplasia
and marbling fat deposition (Pickworth et al., 2012;
Gotoh et al., 2014).

Summary and Conclusions

During embryonic development, uncommitted
PCs in dermomyotome first commit to the myogenic
lineage, whereas nonmyogenic cells develop into
adipo-fibrogenic PCs, which further differentiate into
intramuscular adipocytes, fibroblasts, and resident
FAPs in mature muscle. Maternal nutrition and other
physiological conditions alter PC commitments, which
generate persistent effects on fetal and offspringmuscle
development and beef quality. Nutrient restriction dur-
ing the fetal stage reduces muscle fiber formation,
whereas restriction at late gestation and lactation sup-
presses intramuscular adipocyte formation.Wagyu cat-
tle, known for their extremely high marbling, have
lower myogenesis but elevated adipo-fibrogenesis,
which increases FAP density and boosts intramuscular
adipocyte hyperplasia, forming extremely high mar-
bling during the fattening stage. Therefore, maternal
nutrition profoundly affects the early development of
progeny, which is one of the most efficient and effec-
tive stages for nutritional management to enhance meat
production efficiency and quality.
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