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Abstract: Rapid evaporative ionization mass spectrometry (REIMS) is a novel technique that provides rapid chemical
information on biological tissues and has the potential to predict beef quality attributes in real time. This study aims to
assess the ability of analysis by REIMS coupled with chemometric modeling to predict the quality attributes of wet-aged
beef at the grading time. USDA Select and upper two-thirds Choice (n= 42, N= 84) striploins (longissimus lumborum
[LL]) and tenderloins (psoas major [PM]) were collected 36 h postmortem from a commercial beef abattoir. The LL
and PM were cut into portions and aged for 3, 14, and 28 d. Aged samples were analyzed for slice shear force,
Warner-Bratzler shear force (WBS), and trained sensory panels (tenderness, juiciness, and flavor attributes), and results
were used to categorize both LL and PM into binary classes. Additionally, slivers of the longissimus dorsi muscle between
the 12th and 13th rib were collected during grading (36 h postmortem) and analyzed using REIMS. The REIMS data were
used to build predictive models for tenderness, juiciness, and flavor classes for the 3 aging periods and 2muscles. Prediction
accuracies of all models were higher than classifying the samples by chance (P< 0.05), except WBS of 3 d aging model
(P> 0.05). However, model accuracies were not too high, which could be due to overlaps between classes, small sample
sizes, and unbalanced data, which could negatively affect predictive models. Results demonstrated that the chemical finger-
prints obtained with REIMS could potentially sort carcasses by flavor, juiciness, and tenderness in real time. However, the
full realization of this approach will require an increased sample size and the development of a sampling method that allows
improved separation between sensory classes.
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Introduction

Beef palatability depends on tenderness, juiciness,
and flavor. Tenderness has been previously defined
as the most important quality trait for consumer sat-
isfaction when consuming beef (Wheeler et al.,
1990; Miller et al., 1995). However, when tenderness
is acceptable, beef flavor plays a major role in the

overall eating experience (Goodson et al., 2002;
Behrends et al., 2005; Legako et al., 2015; Liu et al.,
2020). In addition, juiciness contributes 7.4% to the
overall palatability of beef (O’Quinn et al., 2018).
TheUSDAquality grade attempts to predict palatabil-
ity attributes of beef based on carcass traits, including
sex, lean texture/firmness, marbling score, and animal
maturity, although the marbling score is the main
determinant. The USDA quality grade segregates
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carcasses by the probability of having a positive eating
experience (O’Quinn et al., 2018). However, the instru-
mental marbling score explains less than 45% variabil-
ity in juiciness, 40% variability in tenderness, and 61%
overall palatability of the longissimus muscle (Smith
et al., 1985; Emerson et al., 2013). Therefore, the cur-
rent grading system does not account for other signifi-
cant sources of variation in tenderness and juiciness.

Real-time assessment of beef quality traits (flavor,
tenderness, and juiciness) at production speeds is chal-
lenging, and implementation of techniques such as sen-
sory analysis or shear force measurement is impractical.
Large commercial beef facilities process approximately
4,000 to 6,000 heads of beef cattle per day (MacDonald
etal.,2000;DeOtteetal.,2010).Currentmethodstoassess
beefquality attributes are slowcomparedwith theproduc-
tion rate of commercial facilities.Mechanicalmethods for
measuringbeef tenderness, suchas slice shear force (SSF)
or Warner-Bratzler shear force (WBS), have been sug-
gested to be implemented in line (Shackelford et al.,
1999). However, mechanical methods are not popular
among producers because a 1-inch ribeye steak is wasted
during the analysis (Wheeler et al., 2002).

Nondestructive techniques that can predict beef pal-
atability traits (flavor, tenderness, and juiciness) in real
time could improve the current grading system. Rapid
evaporative ionization mass spectrometry (REIMS) is
an ambient mass spectrometry technique that enables
rapid analysis of biological tissues in situ, without sam-
ple preparation (Balog et al., 2016). Because this method
does not require sample preparation, data collection
takes only a few seconds, making REIMS a good alter-
native for assessing quality attributes in production lines.
Previously, REIMS analysis coupled with chemometric
modeling was used to classify beef striploins samples
aged 14 d into “tough” and “tender” classes defined
by a cutoff of 20 kg of SSF for tenderness. Results dem-
onstrated that this technique could classify beef samples
into the 2 tenderness categories with 91% accuracy
(Gredell et al., 2019). However, the analysis for this
study was performed on steaks aged 14 d, so the poten-
tial of REIMS data to be used to predict quality during
grading is still unknown. Therefore, this study aimed to
evaluate the ability of REIMS analysis coupled with
chemometric modeling as a real-time method to predict
meat tenderness, juiciness, and flavor of agedmeat using
data collected at the grading time.

Materials and Methods

Product collection, aging, and measurement of
sensory attributes were performed at Texas Tech

University. REIMS data acquisition and data analysis
were performed at Colorado State University (CSU).

Product collection and aging

Forty-two (n= 42) USDA Select and 42 USDA
upper 2/3 of the Choice grade (High and Average
Choice) were selected from a commercial beef process-
ing facility over 3 production days. Slivers of the long-
issimus lumborum (LL) muscle were collected between
the 12th and 13th ribs from both sides of the carcasses at
the time of grading (GR; around 36 h postmortem), fro-
zen with liquid nitrogen, transported to CSU in coolers
with dry ice, and stored at −80°C until further analysis.
After grading, whole striploins (LL) and tenderloins
(psoas major [PM]) were collected from both sides of
the carcasses and transported in coolers (2°C to 4°C)
to the Texas Tech University meat laboratory. Upon
arrival, LL (from both sides of the carcasses) was fabri-
cated into 6-cm sections. The gluteus medius from the
posterior part of the LL was excluded. Similarly, heavy
connective tissue was removed from the PM from both
sides and fabricated into 9-cm sections. Each section
per muscle was vacuum sealed and randomly assigned
to 1 of the 3 aging periods (3, 14, and 28 d). Portions
were aged at 0°C to 2°C for the corresponding aging
period and were stored at −80°C until further analysis.
Frozen LL sections were fabricated into two 2.54-cm
steaks using a band saw, and each steak was randomly
assigned to shear force and sensory panels. Likewise,
frozen PM sections were fabricated into three 2.54-cm
steaks, and two steaks were randomly assigned to
sensory panels and the remaining steak to shear force.

Cooking procedure

Steaks for sensory panels and shear force evalu-
ation were cooked using the same procedure. Frozen
steaks were thawed at 0°C to 2°C for 24 to 48 h to attain
raw internal temperatures of 0°C to 2°C before cook-
ing. Steaks were cooked in an oven (Model SCC
WE 61 E; Rational, Landsberg am Lech, Germany)
at 204°C and 0% relative humidity to a peak internal
temperature of 71°C. Peak internal temperatures
were recorded in the geometric center of the steaks
using a thermometer (AccuTuff 34032, Cooper-
Atkins Corporation, Middlefield, CT).

Trained sensory panel

The LL and PM sensory panels were performed
similarly but separately. Panels of the LL were per-
formed in 42 sessions and the PM in 44 sessions, with
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a maximum of 2 sessions/day, a resting time of at least
7 h between sessions, a maximum of 12 samples/
session, and at least 8 trained panelists/session. All
samples (n= 504 per USDA grade) were randomly
assigned to each session, ensuring that both USDA
quality grades and all aging treatments were present.
Immediately after cooking, external fat and connective
tissue were removed, and the steaks were cut into small
cubes. Two to three cubes were served to the panelists

in individual booths equipped with a red incandescent
light. Panelists evaluated tenderness, juiciness, and
12 flavor descriptors from the beef lexicon (Adhikari
et al., 2011) described in Table 1 on a 100-mm unstruc-
tured line scale. For all flavor attributes, the left end of
the line scale was anchored with “not present,” and the
right end represented “extremely intense.” For juici-
ness and tenderness, the left end was fixed with
“extremely dry” and “extremely tough,” and the right
one with “extremely juicy” and “extremely tender,”
respectively. A warm-up sample (USDA Low Choice
strip steak) was served at the beginning of each session
to calibrate panelists. Consensus on the attributes of the
warm-up sample was reached before moving to the
study samples.

Shear force

The tenderness of both muscles was evaluated
using WBS and SSF as described by Shackelford et al.
(1999) and Lorenzen et al. (2010). Samples were
cooked, and internal peak temperatures were recorded
following the protocol described. Within 2 to 3 min
after recording peak temperature, the lateral ends of
the steak were removed, and a 1 × 5 cm slice was cut
parallel to the muscle fiber. SSF was measured by
shearing the slice perpendicular to muscle fibers with
a universal testing machine (Instron Corp., Norwood,
MA) equipped with a flat, blunt-end blade (500 mm/
min crosshead speed and 100 kg load capacity).
The remaining part of the sample was cooled down
to room temperature or below, and 2 to 6 cores (1.2 cm
diameter) were removed parallel to the muscle fiber
orientation. The WBS was measured by shearing each
core perpendicular to the fiber with the universal test-
ing machine equipped with a WBS blade (74.2 mm
wide × 138.7 mm long × 0.99 mm thick, 200 mm/
min crosshead speed, and 100 kg load cell capacity).

Rapid evaporative ionization mass
spectrometry

Analysis of the GR samples was performed using a
quadrupole time-of-flight mass spectrometer (Synapt
G2-Si Q-ToF, Waters Corporation, Milford, MA)
equipped with a REIMS source (Waters Corporation).
An electronic probe (Waters Corporation) powered by
an electrosurgical generator (Erbe VIO 50C, Erbe
Elektromedizin GmbH, Tübingen, Germany) was used
as the sampling device. The electrosurgical generator
was set to dry cut mode and maximum cutting power
of 40 W. Mass spectra from 100 to 1,500 m/z were
acquired in negative ion mode, with cone voltage at

Table 1. Definition and reference standards for beef
sensory attributes and their intensities based on
Adhikari et al. (2011), where 0= “not present,”
“extremely dry,” or “extremely tough,” and 100=
“extremely intense,” “extremely juicy,” or “extremely
tender”

Attribute Definition Reference

Tenderness The overall tenderness of the
sample

Strip steak to 71°C= 60
Tenderloin to 71°C= 95

Juiciness The amount of perceived juice
that is released from the
product during mastication

Carrot= 55
Strip steak cooked to
79°C= 60
Strip steak cooked to
57°C= 75
Watermelon= 95

Beef
Flavor ID

Amount of beef flavor identity
in the sample

Swanson Beef Broth= 35
Beef brisket (71°C)= 80

Bitter The fundamental taste factor
associated with a caffeine
solution

0.01% caffeine
solution= 15
0.02% caffeine
solution= 25

Browned Aromatic associated with the
outside of grilled or broiled
meat; seared but not blackened
or burnt

Beef suet (broiled)= 55

Buttery Sweet, dairy-like aromatic
associated with natural butter

Land O’Lakes unsalted
butter= 45

Fat-Like The aromatics associated with
cooked animal fat

Hillshire Farm Beef Lit’l
Smokies= 45
Beef suet= 80

Liver-Like The aromatics associated with
cooked organ meat/liver

Beef liver= 50

Metallic The impression of slightly
oxidized metal, such as iron,
copper, and silver spoons

0.10% potassium chloride
solution= 10
Select striploin steak
(60°C internal)= 25
Dole canned pineapple
juice= 40

Roasted Aromatic associated with
roasted meat

80% lean ground
chuck= 65

Sour The fundamental taste factor
associated with citric acid

0.015% citric acid
solution= 10
0.050% citric acid
solution= 25

Umami Flat, salty, somewhat brothy.
The taste of glutamate, salts of
amino acids, and other
molecules called nucleotides

0.035% Accent Flavor
Enhancer solution= 50
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40 V and heater bias at 60 V. Samples were thawed at
0°C to 4°C for 16 to 24 h and randomly sorted for
REIMS analysis. The sampling device was used to gen-
erate at least 5 burns over the surface of individual sam-
ples. Burns were made in the 4 corners and the middle of
a 2.5 by 2.5 cm square from the surface of the samples,
and each burn lasted approximately 1 s. Extra burns
were made in a random location equidistant to the last
burn when additional burns were required because of
low signal intensity. A 40 μg/L of leucine-enkephalin/
isopropanol (Sigma-Aldrich, St. Louis, MO) solution
was injected directly into the REIMS sources (flow
rate: 200 μL/min) for lock mass correction. REIMS data
were preprocessed with AMX Recognition software
(v. 1.0.2184.0, Waters Corporation). This process
included lock mass correction using leucine-enkephalin
(554.2615 m/z), background subtraction using standard
MassLynx preprocessing algorithms, total ion current
normalization, peak binning in 0.5 m/z intervals, selec-
tion and averaging 5 peaks per sample, and exclusion of
bins in the range of 550 to 600m/z to remove the internal
standard peak.

Tenderness, juiciness, and flavor
classification

Individual samples were classified into 2 classes of
juiciness, sensory panel tenderness (SPT), SSF, WBS,
and flavor performance. Classification cutoffs for juici-
ness and tenderness were set close to the mean value of
each attribute to achieve relatively balanced classes.
LL and PM samples with juiciness values≤ 55 were
classified as “dry,” and samples with values> 55 were
classified as “juicy.” LL samples with SPT≥ 55 were
classified “tender,” and samples with values< 55 were
classified as “tough,”whereas PM samples with SPT≥
77 were classified “tender,” and samples with values<
77 were classified as “tough.” SSF cutoffs were 14.0
and 12.0 kg, and WBS cutoffs were 3.1 and 2.9 kg
for LL and PM, respectively. Because the PM is
more tender than the LL muscle, the tenderness
cutoffs for the PM muscle were set lower than for
the LL muscle to achieve balanced classes (McKeith
et al., 1985; Legako et al., 2015; Nair et al., 2019).
Samples with higher values of SSF and WBS than
the cutoffs were classified as “tough,” and lower than
the cutoff were classified as “tender.”

Hierarchical clustering was used to group samples
into classes with similar flavor performance. Principal
component analysis (PCA) of the 13 flavor attributes
was performed using the PCA function from the
FactoMineR package (Lê et al., 2008). Then, the

HCPC function from the FactoMineR package was
used to group the samples with similar flavor perfor-
mance based on the first 5 principal components.
Samples aligned to positive flavor attributes were
assigned to the “positive” class and those aligned to
the negative ones to the “negative” class. Pairwise
comparisons of the proportion of samples within each
class for each aging treatment were analyzed with
McNemar’s test, a confidence level of 0.05, and
Bonferroni adjustment using the pairwise_mcnemar_t-
est function from the rstatix package (Kassambara,
2021). Comparisons of proportions were performed
using carcass numbers as blocks and individually for
each muscle because the classification cutoffs differ
by muscle.

Predictive model building

Classification models were built using REIMS data
of GR samples to predict quality attributes of PM and
LL samples on days 3, 14, and 28. Before modeling,
mass bins were mean-centered and normalized to the
variance of all samples. Models were built using com-
binations of 3 dimension reduction methods and 15
machine-learning algorithms. PCA, feature selection
(FS), and combined principal component analysis–
feature selection (PCAFS) methods were used to
reduce the dimensionality of the REIMS data. The
PCA was performed with the PCA function from the
FactoMineR package, and the number of principal
components was selected with a scree plot. In FS,
highly correlated mass bins (|r| >0.9) were identified
and removed from the data; then, a recursive feature
elimination was performed using the rfe function from
the caret package (Kuhn, 2008). The PCAFS was per-
formed with PCA, followed by recursive feature elimi-
nation using the aforementioned functions. Fifteen
machine-learning algorithms, including 14 (Table 2)
from the caret package repository (Kuhn, 2008)
and PLS-DA using the plsDA function from the
DiscriMiner package (Sanchez, 2012), were used to
build predictive models for each combination of
muscle, aging period, response variable, and dimen-
sionality reduction method. All models were trained
using 10-fold cross-validation using the train function
for models from the caret package and manually for the
PLS-DA. The PLS-DA plots with 95% confident inter-
val ellipses were produced to visualize data overlap
using the function plsda from the mixOmics package
(Lê Cao et al., 2016).

The performance of the models was evaluated with
the accuracy, sensitivity, and specificity obtained with
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the confusionMatrix function from the caret package.
A one-sided binomial test with a 95% confidence inter-
val was used to evaluate if model accuracies were
greater than the largest class proportion. Sensitivity
and specificity were used to evaluate the performance
of the models to classify individual classes. Sensitivity
was calculated by dividing the number of samples clas-
sified correctly as positives by the total actual positives,
whereas specificity was calculated as the fraction of
negatives samples classified correctly by the total
actual negatives. “Tough,” “dry,” and “positive” sam-
ples were treated as positive for sensitivity calculations
of tenderness, juiciness, and flavor performance mod-
els, respectively. However, “tender,” “juicy,” and
“negative” were treated as negative for specificity cal-
culations. The statistical analysis described here was
performed in R statistical computing program (v. 4.1.0,
2018).

Results and Discussion

Tenderness and juiciness classes

The LL and PM samples were classified into
“tough” and “tender” classes for tenderness based on
3 measurement methods (SSF, WBS, and SPT) and
into “dry” and “juicy” classes for juiciness. The
numbers of samples per class and aging period of LL
and PM are presented in Tables 3 and 4, respectively.
As expected, the proportion of tough LL samples
decreased with the aging time (P< 0.05, Table 3)
for all tenderness measurement methods. Tenderness

increases with aging because of the proteolysis of struc-
tural proteins of the muscles (Koohmaraie, 1996).
However, there were no differences in the proportions
of PM samples classified as tough in SPT (P> 0.05) for
all aging periods. The proportion of PM samples clas-
sified as tough by the SSF method on day 3 was greater
than the proportion of tough samples on day 14 and 28
postmortems (P< 0.05). Also, the proportion of tough
samples byWBS on day 3 was greater than the propor-
tion of tough samples on day 28 (P< 0.05, Table 4).

Table 2. R machine-learning algorithms, functions,
and libraries used for building classification models

Algorithm Function Libraries

Stochastic gradient boosting gbm gbm, plyr

Support vector machine radial kernel svmRadial kernlab

Support vector machine linear kernel svmLinear kernlab

Support vector machine polynomial kernel svmPoly kernlab

Linear discriminant analysis lda MASS

eXtreme gradient boosting xgbTree xgboost, plyr

Penalized discriminant analysis pda mda

Boosted logistic regression LogitBoost caTools

Random forest rf randomForest

Generalized linear model glm stats

Lasso and elastic-net regularized generalized
linear models

glmnet glmnet,
Matrix

K-nearest neighbors knn class

Recursive partitioning tree rpart rpart

Bagged classification tree treebag ipred, plyr,
e1071

Table 3. Number of observations (percent) of
striploins (LL) per class of SSF, WBS, SPT, flavor,
and juiciness

Attribute Classes1 3 d 14 d 28 d

SSF Tender (SSF≤ 14.0 kg) 21 (25.3)a 44 (55.0)b 66 (82.5)c

Tough (SSF> 14.0 kg) 62 (74.7)a 36 (45.0)b 14 (17.5)c

WBS Tender (WBS≤ 3.1 kg) 17 (20.5)a 44 (55.0)b 60 (75.0)c

Tough (WBS> 3.1 kg) 66 (79.5)a 36 (45.0)b 19 (23.8)c

SPT Tender (SPT≥ 55) 12 (14.5)a 28 (35.4)b 57 (71.3)c

Tough (SPT< 55) 71 (85.5)a 51 (64.6)b 23 (28.8)c

Flavor1 Positive 53 (63.9)a 46 (58.2)ab 35 (43.8)b

Negative 30 (36.1)a 33 (41.8)ab 45 (56.3)b

Juiciness Dry ( juiciness≤ 55) 37 (44.6) 39 (49.4) 40 (50.0)

Juicy ( juiciness> 55) 46 (55.4) 40 (50.6) 40 (50.0)

a–cAttributes in the same row lacking common superscript differ
(P< 0.05).

1Flavor classes based on hierarchical clustering of the samples using
principal component analysis.

LL= longissimus lumborum; SPT= sensory panel tenderness; SSF=
slice shear force; WBS=Warner-Bratzler shear force.

Table 4. Number of observations (percent) of tender-
loins (PM) per class of SSF, WBS, SPT, flavor, and
juiciness

Attribute Classes1 3 d 14 d 28 d

SSF Tender (SSF≤ 12.0 kg) 32 (38.1)a 47 (57.3)b 50 (61)b

Tough (SSF> 12.0 kg) 52 (61.9)a 35 (42.7)b 32 (39)b

WBS Tender (WBS≤ 2.9 kg) 34 (40.5)a 39 (47.6)ab 52 (63.4)b

Tough (WBS> 2.9 kg) 50 (59.5)a 43 (52.4)ab 30 (36.6)b

SPT Tender (SPT≥ 77) 54 (64.3) 41 (48.8) 45 (54.2)

Tough (SPT< 77) 30 (35.7) 43 (51.2) 38 (45.8)

Flavor1 Positive 43 (51.2)a 43 (51.2)a 23 (27.7)b

Negative 41 (48.8)a 41 (48.8)a 60 (72.3)b

Juiciness Dry ( juiciness≥ 55) 31 (36.9) 39 (46.4) 43 (51.8)

Juicy ( juiciness< 55) 53 (63.1) 45 (53.6) 40 (48.2)

a,bAttributes in the same row lacking common superscript differ
(P< 0.05).

1Flavor classes based on hierarchical clustering of the samples using
principal component analysis.

PM= psoas major; SPT= sensory panel tenderness; SSF= slice shear
force; WBS=Warner-Bratzler shear force.
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The effect of aging on tenderness is muscle-specific,
which could explain why the proportions of tough
LL samples decreased in all aging periods and a differ-
ent behavior was observed with the PM samples.
Tenderness of the LL muscle can improve during 21
d of aging, whereas tenderness of the PM muscle does
not improve after 7 d of aging (Nair et al., 2019). The
proportion of dry samples did not change with aging
periods in both muscles. These results were expected
because the juiciness of LL and PM steaks does not

change with wet-aging (Lepper-Blilie et al., 2016;
Foraker et al., 2020; Kim et al., 2021).

Flavor classes

The LL and PM samples aged 3, 14, and 28 d were
classified using PCA of the 10 flavor attributes evalu-
ated in the sensory panels (Figures 1 and 2). Loading
plots of PCA of both muscles showed that brown,
beefy, and roasted flavors were positively correlated,

Figure 1. Principal component analysis (PCA) of 10 flavor attributes of beef striploins (longissimus lumborum [LL]; n= 242) aged 3, 14, and 28 d.
(A) Loading plot of PCA and (B) flavor classes based on hierarchical clustering of the samples in the PCA.

Figure 2. Principal component analysis (PCA) of 10 flavor attributes of beef tenderloins (psoas major [PM]; n= 251) aged 3, 14, and 28 d. (A) Loading
plot of PCA and (B) flavor classes based on hierarchical clustering of the samples in the PCA.
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and these attributes were negatively associated with
livery flavor. As expected, fat-like and buttery flavors
were associated together because the intensity of both
of these attributes has been shown to increase with
intramuscular fat (Legako et al., 2016; O’Quinn et al.,
2016). However, they were more closely related to
umami than to other flavors. Foraker et al. (2020) found
similar results when performing a discriminant func-
tion analysis of aged beef LL sensory attributes.
They found that positive flavors such as roasted, beef
identity, fat-like, and browned were positively associ-
ated with each other but negatively associated with
off-flavors (sour, liver-like, oxidized, and metallic).
Gredell (2018) also found similar results when per-
forming a PCA of beef samples from different
USDA grades, cattle breeds, and production systems.
PCA analysis by Gredell (2018) showed association
of browned, beef identity, buttery, and fat-like flavors.

Hierarchical clustering of the sensory data resulted
in 2 classes that were defined as “positive” and “neg-
ative” (Figures 1 and 2). Samples classified as positive
were mostly located in the positive quadrant of dimen-
sion 1 of the PCA, corresponding to higher intensity of
the positive attributes and lower intensity of the nega-
tive attributes. Classifications were mostly driven by
dimension 1 of the PCA, and the major contributor
to this dimension was the beef identity. Foraker et al.
(2020) and Gredell (2018) obtained similar results by
performing a multivariable analysis of flavor attributes.
Both studies concluded that beef flavor identity was the
major contributor to separating samples with positive
from negative performance. The proportion of LL sam-
ples classified as positive after 3 d of aging was greater
than the proportion of samples classified as positive
after 28 d (P< 0.05, Table 3). More PM samples were
classified as positive on 3 and 14 d of aging compared
with 28 d (P< 0.05, Table 4).

Classification models of tenderness, juiciness,
and flavor of striploins

Three different dimensionality reduction methods
(PCA, FS, and PCAFS) combined with different
machine-learning algorithms were trained using 10-
fold cross-validation. Accuracies of the best models
for each attribute and aging time of LL are reported
in Figure 3. The sensitivity and specificity of the high-
est performing models are presented in Table 5.

Tenderness. All the highest performance models for
tenderness, except for the WBS of 3 d (d3) model,
showed accuracies higher than the proportion of the

largest class (P< 0.05, Figure 3). These results demon-
strate that the models’ prediction abilities were better
than the chance of guessing the tenderness classes and
that REIMS can predict the tenderness of LL.
However, the models’ accuracies were different for
the tenderness measurement methods and aging periods
(Table 5). The combination of FS and Lasso and elastic-
net regularized generalized linear models (GLMNET)
performed the best in predicting SSF of d3 with
85.8% accuracy, whereas for 14 d (d14) and 28 d
(d28), the PCAFS with extreme gradient boosting
(XGBoost) were the best models, with 84.8% and
91.5% accuracies, respectively (Table 5). None of the
models were able to predict WBS d3 (P> 0.05), but
FS with random forest predicted WBS d14 with
82.5% and PCAFS with support vector machine with
polynomial kernel (SVM poly) predicted WBS d28
with 93.7% accuracy. The FS and XGBoost models
were the best to predict SPT of d3 and d14 with
93.9% and 87.4% accuracy, and FS with PLS-DA dis-
played 82.5% accuracy in predicting SPT d28 (Table 5).
Because the cutoffs to separate samples into tenderness
classes were close to the means and tenderness is a
numerical attribute, classes overlapped in the PLS-DA
plots (Figures 4 to 6). The PLS-DA is a supervised algo-
rithm that projects the data into new hyperplanes that
optimize linearity between the data and the response var-
iable (Gareth et al., 2021). Therefore, overlaps between
classes suggest that the REIMS profiles of samples
located in the overlapped area are similar and induce
errors in the classification models. The PLS-DA plot
of SSF andWBSof d28 and SPTof d3 showed the small-
est overlap between those tenderness classes, which may
explain the highest accuracy of those models.

Although SSF d28 and SPT d3 models showed
high accuracy, their sensitivity to classify tough

Figure 3. Model accuracies of best performance striploin (longissi-
mus lumborum [LL]) models for slice shear force (SSF), Warner-Bratzler
shear force (WBS), sensory panel tenderness (SPT), juiciness, and flavor
aged 3, 14, and 28 d. *p value<0.05, **p value <0.01.
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samples was low (Table 5). The best performing model
for tenderness was the WBS d28, showing an accuracy
of 94.8%with 84.2% sensitivity and 96.7% specificity.
The specificity of all tenderness models increased with
aging, and the sensitivity of all tenderness models
decreased with aging, except for the WBS models.
The ability of REIMS to classify tough samples
decreased with aging time, and the ability to sort tender
samples increased with aging time (Table 5). This
observation could be attributed to the data structure

used in this study. Data of d3 and d28 were unbalanced
because most d3 observations were tough, whereas most
d28 were tender. Machine-learning algorithms perform
poorly when data are unbalanced because the models
favor the larger class (Cieslak and Chawla, 2008). In
addition, overlaps between classes and small numbers
of observations in the minority groups contribute to
the low performance of predictive models (Batista et al.,
2004). The results obtained in this study were similar to
those reported by Gredell et al. (2019). These authors

Table 5. Top prediction accuracies (based on 10-fold cross-validation, percent) for striploin (LL) tenderness,
juiciness, and flavor based on REIMS of GR samples

Models1 Aging Period2 Top Model3 Number of Features Maximum Accuracy p Value Sensitivity Specificity

SSF d3 FS/GLMNET 155 85.8 1.2E-02 95.2 57.1

d14 PCAFS/XGBoost 12 84.8 1.7E-10 80.6 88.6

d28 PCAFS/XGBoost 3 91.5 2.1E-02 50.0 100.0

WBS d3 FS/XGBoost 41 86.8 6.2E-02 95.5 52.9

d14 FS/RF 29 82.5 2.0E-07 77.8 86.4

d28 PCAFS/SVM Poly 21 93.7 3.3E-05 84.2 96.7

SPT d3 FS/XGBoost 23 93.9 1.4E-02 58.3 100.0

d14 FS/XGBoost 46 87.4 4.6E-06 78.6 92.2

d28 FS/PLS-DA 600 82.5 1.5E-02 47.8 96.5

Flavor d3 FS/GBM 180 86.7 2.8E-06 92.5 76.7

d14 FS/PLS-DA 265 88.6 1.3E-07 78.3 92.5

d28 FS/XGBoost 17 81.3 2.2E-06 74.3 86.7

Juiciness d3 FS/XGBoost 84 84.5 2.1E-08 89.1 78.4

d14 FS/XGBoost 26 83.6 1.1E-09 84.6 82.5

d28 FS/XGBoost 61 82.5 1.6E-09 85.0 80.0

1SPT= sensory panel tenderness; SSF= slice shear force; WBS=Warner-Bratzler shear force.
2d3= 3 d; d14= 14 d; d28= 28 d of aging.
3FS= feature selection; GLMNET= Lasso and elastic-net regularized generalized linear models; GR= grading; PCAFS= principal component analysis–

feature selection; PLS-DA= partial least square discriminant analysis; REIMS= rapid evaporative ionization mass spectrometry; RF= random forest;
SVM= support vector machine; SVM Poly= support vector machine with polynomial kernel; XGBoost= extreme gradient boosting.

LL= longissimus lumborum.

Figure 4. Partial least-squares–discriminant analysis (PLS-DA) plot of slice shear force of striploin (longissimus lumborum [LL]) classes corresponding
to (A) 3, (B), 14, and (C) 28 d of aging.

Meat and Muscle Biology 2023, 7(1): 16120, 1–14 Hernandez-Sintharakao et al. Beef quality prediction

American Meat Science Association. 8 www.meatandmusclebiology.com

www.meatandmusclebiology.com


reported 90.8% accuracy of an FS/SVMpolymodel that
differentiated tough from tender samples of LL aged
14 d using SSF= 20.0 kg as a cutoff.

The limitation of REIMS to analyze high molecular
weight compounds could constrain the use of this tech-
nique to predict tenderness with high accuracy. Studies
have shown that a large part of the variability in beef ten-
derness depends on muscle proteins and intramuscular
fat (Platter et al., 2003; Emerson et al., 2013; Picard et al.,
2014; Gagaoua et al., 2018). During the first few days
postmortem, the cross-sectional area of muscle fiber
and sarcomere length are large contributors to beef ten-
derness, whereas background toughness becomes more
relevant after 14 d of aging (Dubost et al., 2013). Those
factors depend on contractile, cytoskeletal, and stromal
proteins found in muscle tissues. Because REIMS

requires that the compounds found in the samples be
vaporized, only compounds with molecular weight
between 1,000 and 1,500 Da reach the mass spectrom-
eter. Therefore, REIMS can analyze chemical com-
pounds, including fatty acids, sugars, phospholipids,
and small peptides, but cannot detect large peptides or
proteins (Ross et al., 2021). REIMS could provide infor-
mation on metabolites identified as possible indicators
of beef tenderness (for example, malic acid, glucose,
glucose, glucose-6-phosphate) and compounds related
to intramuscular fat (King et al., 2019). However,
REIMS will likely not detect intact proteins (e.g., colla-
gen, desmin) that also influence tenderness variability.

Flavor. The results of the flavor models are shown in
Figure 3. Accuracies of the flavor models were higher

Figure 5. Partial least-squares–discriminant analysis (PLS-DA) plot of Warner-Bratzler shear force of striploin (longissimus lumborum [LL]) classes
corresponding to (A) 3, (B), 14, and (C) 28 d of aging.

Figure 6. Partial least-squares–discriminant analysis (PLS-DA) plot of sensory panel tenderness of striploin (longissimus lumborum [LL]) classes
corresponding to (A) 3, (B), 14, and (C) 28 d of aging.
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than the highest-class proportions (P< 0.05) in all
aging periods, but none of them showed an accuracy
higher than 90%. The PCAFS/XGBoost was the best
model to predict flavor classes of d3 with 83.3%.
The FS/XGBoost of d14 had 73.8%, and PCAFS/
SVM poly of d28 had 84.3% accuracy, respectively.
The low performance of the flavor models may be
due to the complexity of the response variable.
Flavor perception results from taste and odor sensa-
tions and can be defined by multiple flavor descriptors
(e.g., browned, sourness, or beef identity). Specific flavor
attributes have been associated with numerous chemical
compounds or groups of compounds. Elaborating a
composite score that condenses 10 flavor attributes
(Figure 1) into 2 classes might oversimplify beef flavor
interpretation. However, clusteringmultiple flavor attrib-
utes represent a more difficult problem in building clas-
sification models based on the chemical fingerprint.
Mathematically, when the number of dimensions (attrib-
utes) increases, the distance between observations
increases, making it more difficult to find nearby obser-
vations in the hyperplanes (Aremu et al., 2020). In addi-
tion, samples in one class could be chemically different
because the classification results from a combination of
chemically unrelated attributes. Because machine-learn-
ing algorithms use similarities in the training dataset to
predict classes of the test data, more data will be required
to cover a broader range of flavor profiles.

Gredell (2018) previously evaluated the ability of
REIMS to predict flavor classes defined with multivari-
ate analysis and reported an accuracy of 73.8% for
binary classification. However, in that study, beef sam-
ples were from different USDA grades, cattle breeds,
and production systems, which could increase

variability in the fingerprint across classes and increase
error in the model. Additionally, Gredell (2018) only
used PLS-DA algorithms to build the model, whereas
in the current study, multiple algorithms were evalu-
ated, and the best one was reported. Verplanken et al.
(2017) evaluated the ability of REIMS to predict pork
flavor. They demonstrated that REIMS could classify
pork carcasses with untainted and tainted boar flavor
with perfect accuracy using an orthogonal PLS-DA
model. Boar taint is an odor occurring in the meat of
noncastrated male pigs and is associated with high lev-
els of skatole and androstenone (Verplanken et al.,
2017). Therefore, identifying boar taint may be less
complex than identifying beef flavor profiles because
boar taint is a specific flavor with a physiological ori-
gin. In contrast, the beef flavor profiles evaluated in the
present study result from a combination of attributes
that could come from different sources of variation.

Juiciness. Accuracies of all juiciness models were
higher than the largest proportion of juiciness classes
(P< 0.05, Figure 3). The FS/XGBoost model predicted
juiciness classes of d3 with 84.5%, d14 with 83.6%, and
d28 with 82.5% accuracy, respectively (Table 5). The
PLS-DA plots corresponding to juiciness classes
(Figure 7) showed an overlap between the 2 classes dur-
ing aging times, which could explain the low perfor-
mance of the 3 juiciness models. In the PLS-DA plot,
the overlap implies similarity in the REIMS data of both
classes. These results are not surprising because juici-
ness classes were defined with a cutoff close to the aver-
age juiciness of all the samples. Samples in different
classes but with similar values of juiciness are probably
more similar than samples in the same class with more

Figure 7. Partial least-squares–discriminant analysis (PLS-DA) plot of juiciness of striploin (longissimus lumborum [LL]) classes corresponding to
(A) 3, (B), 14, and (C) 28 d of aging.
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variation in juiciness values. For example, a sample con-
sidered as juicy with a juiciness value of 55.1 is perhaps
more similar to a sample with a juiciness value of 54.7
classified as dry than a sample with a juiciness value of
63 classified as juicy. Juiciness is influenced by intra-
muscular fat and protein composition of muscle tissues
(Dubost et al., 2013). Therefore, the inability of REIMS
to detect intact proteins could contribute to low predic-
tion accuracy for this attribute.

Another source of error in all models could be the
inconsistency in the cooking temperatures of the sam-
ples used for sensory evaluation. Even following the
same cooking protocol, it is very common to have
minor variations in the cooking temperature because
of uncontrolled variables during the cooking process
(e.g., steak size or location in the oven). The 3 sensory
attributes evaluated are highly dependent on the cook-
ing temperature. Steaks cooked with a higher internal
temperature are less tender and less juicy than steaks
cooked with a lower internal temperature (Cross et al.,
1976; Savell et al., 1999; McKillip et al., 2017). Beef
flavor is produced by chemical reactions catalyzed by
temperature, and cooking temperature plays a major
role in developing beef flavor compounds (Kerth and
Miller, 2015). Consequently, using REIMS on GR
samples does not account for variations in sensory
attributes affected by extrinsic factors during storage,
transportation, and cooking.

Classification models of tenderness, juiciness,
and flavor of tenderloins

The accuracy, sensitivity, and specificity of the
best models for PM are reported in Figure 8 and
Table 6. In all cases, except for the flavor model of
d3 and SPT of d28, the accuracies of LL models were
numerically higher than PM models. Similar to the LL
models, the specificity of SSF andWBS increased, and
sensitivity decreased with aging time because of unbal-
anced data. The number of tender samples increases

Figure 8. Model accuracies of best performance tenderloin (psoas
major [PM]) models for slice shear force (SSF), Warner-Bratzler shear force
(WBS), sensory panel tenderness (SPT), juiciness, and flavor aged 3, 14, and
28 d. *p value<0.05, **p value <0.01.

Table 6. Top prediction accuracies (based on 10-fold cross-validation, percent) for tenderloin (PM) tenderness,
juiciness, and flavor based on REIMS of GR samples

Models1 Aging Period2 Top Model3 Number of Features Maximum Accuracy p Value Sensitivity Specificity

SSF d3 PCAFS/SVM Poly 59 82.1 4.90E-05 88.5 71.9

d14 PCAFS/XGBoost 51 73.4 2.18E-03 68.6 76.6

d28 FS/XGBoost 38 89.0 1.56E-08 75.0 98.0

WBS d3 FS/SVM Poly 205 78.6 1.76E-04 88.0 64.7

d14 FS/RF 4 78.1 1.47E-06 81.4 74.4

d28 FS/SVM Poly 32 81.5 2.47E-04 76.7 84.6

SPT d3 PCAFS/XGBoost 34 83.8 9.78E-05 73.3 88.9

d14 FS/XGBoost 80 81.0 1.46E-08 81.4 80.5

d28 PCAFS/SVM 46 84.3 6.39E-09 78.9 88.9

Flavor d3 PCAFS/XGBoost 29 83.3 7.62E-10 90.7 75.6

d14 FS/XGBoost 4 73.8 1.90E-05 72.1 75.6

d28 PCAFS/SVM Poly 35 84.3 7.42E-03 56.5 95.0

Juiciness d3 FS/XGBoost 30 81.0 3.06E-04 90.6 64.5

d14 PCAFS/SVM Poly 65 79.8 5.30E-07 84.4 74.4

d28 PCAFS/SVM Poly 59 79.5 1.60E-07 80.0 79.1

1SPT= sensory panel tenderness; SSF= slice shear force; WBS=Warner-Bratzler shear force.
2d3= 3 d; d14= 14 d; d28= 28 d of aging.
3FS= feature selection; GR= grading; PCAFS= principal component analysis–feature selection; PLS-DA= partial least square discriminant analysis;

REIMS= rapid evaporative ionization mass spectrometry; RF= random forest; SVM= support vector machine; SVM Poly= support vector machine
with polynomial kernel; XGBoost= extreme gradient boosting.

PM= psoas major.
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with aging, enhancing the ability of the model to pre-
dict the majority class.

Because REIMS was collected on GR samples
from LL muscle, the ability of REIMS to predict sen-
sory attributes of PMmuscle was expected to be lower.
These 2 muscles are metabolically different, with dis-
tinct biochemical properties (Abraham et al., 2017).
Although LL is predominantly glycolytic, PM is pri-
marily oxidative (Kim et al., 2021). LL contains more
muscle fiber type IIX than type I and IIA, whereas PM
comprises more type I fibers than type IIX and IIA
fibers (Kim et al., 2021). Several proteins degrade at
different rates in bothmuscles suggesting that proteoly-
sis mechanisms related to quality attributes are muscle-
dependent (Gagaoua et al., 2018; Kim et al., 2021).
Proteome analysis of LL and PM revealed that sarco-
plasmic proteins, includingmetabolic enzymes, antiox-
idants, and chaperone proteins, differed in both
muscles and during aging (Joseph et al., 2012, Nair
et al., 2019). Previous authors have reported that sen-
sory attributes change differently in both muscles
because of metabolic differences. Tenderness of the
LL improves until 21 d postmortem, whereas in PM,
tenderness only improves until day 7, with no addi-
tional improvement observed with extended aging
(Nair et al., 2019). Therefore, even if REIMS data from
a given set of LL samples are found to classify car-
casses on tenderness with perfect accuracy, it is
expected that, in general, the prediction accuracy for
tenderness in other muscles is lower.

Conclusions

Consumer eating satisfaction of beef depends on
the tenderness, juiciness, and flavor. Therefore, nonde-
structive techniques that allow the prediction of these
attributes in real time can be implemented in the current
grading system and improve the consumer experience,
increasing consumer trust and demand for beef. This
study demonstrated that REIMS could potentially be
used as a real-time, in situ technique to classify beef
carcasses into flavor, juiciness, and tenderness classes
at different aging times. However, the ability of REIMS
to predict meat juiciness and tenderness may have been
limited by its inability to detect intact proteins known to
be related to these attributes. Moreover, working with a
composite score for flavor classes improves the inter-
pretation of this complex attribute but also increases
the model complexity. Developing a predictive model
of beef flavor that encompasses a wide range of sensory
profiles will require a large sample size to cover a wide

range of flavor profiles. In the current study, overlap in
the data and unbalanced class size both affected model
accuracies. Future work will require increasing the
sample size and overcoming the challenge of collecting
samples with greater differentiation in sensory perfor-
mance between classes.
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