Emotional Intelligence and Other Variables: What Matters More in the Context of Environmentally Responsible Apparel Consumption?

Amrut Sadachar, Swagata Chakraborty, Auburn University, USA
Srikant Manchiraju, Florida State University, USA

Keywords: emotional intelligence, sustainability, apparel consumption

Background

Consumers are becoming more environmentally conscious (Claudio, 2007; Connell, 2010) and are articulating their interest in ethical consumption (Bray, Johns, & Kilburn, 2011; Kim & Chung, 2011). Moreover, apparel sustainability has gained popularity in recent years (Manchiraju & Sadachar, 2014) and environmentally responsible consumption behavior is on the rise. Therefore, the purpose of this study is to explore the role of critical antecedents in predicting environmentally responsible apparel consumption behavior.

Literature Review and Hypotheses

In this study, based on extant literature (e.g., Chen, Tang, & Tang, 2014; Chowdhury, 2017; Huang, 2002; Richins, 2004), materialism (MAT), emotional intelligence (EI), compulsive buying (CB), and environmental knowledge (EAK) have been conceptualized either as personal values or personality traits. This study employed the Value/Personality-Attitude-Behavior framework (e.g., Perrinjaquet, 2007) to understand the role of aforementioned values/personality traits in the context of environmentally responsible apparel consumption behavior (ACB). Per the proposed framework, personal values and personality traits are noted to influence one’s attitude (EA) and behavior in a specific domain (e.g., sustainable consumption). Consistent with the framework employed, following relationships were explored: (a) consumers’ EI and EAK positively predicts EA and ACB, (b) MAT and CB negatively predicts EA and ACB, and (c) EA positively predicts ACB (see Figure 1).

![Diagram of the Value/Personality-Attitude-Behavior framework](https://example.com/diagram.png)

- H_1: EI positively predicts EA
- H_2: EAK positively predicts EA
- H_3: MAT negatively predicts EA
- H_4: CB negatively predicts EA
- H_5: EA positively predicts ACB

$R^2 = 50.5\%$ for EA, $R^2 = 35.8\%$ for ACB

$\chi^2 = 1008.85$, df = 333, $p = 0$

RMSEA = 0.07, CFI = 0.92, TLI = 0.91, SRMR = 0.06
Methods
An online survey panel consisting of U.S. national sample (age 18 years and above) was used for collecting data. The survey instrument consisted of Likert type existing measurement scales on focal research variables: EAK and ACB (Kim & Damhorst, 1998), EA (Banerjee & McKeage, 1994), EI (Kidwell et al., 2008), MAT (Richins, 2004), and CB (Valence, d’Astous & Fortier, 1988). Demographic data were also collected.

Data Analysis and Results
A total of 436 useable surveys were collected (male 42%) with an average age of 48 years. All research variables demonstrated adequate internal consistency (i.e., Cronbach’s α > .70). Confirmatory factor analysis and structural equation modeling ($\chi^2 = 1008.85$, $df= 333$, CFI = .92, TLI = .91, SRMR = .06, RMSEA = .07), conducted using MPlus 7.0 exhibited acceptable model fit indices. The proposed model explained 50.5% variance in the terminal construct—ACB, which was found to be statistically significant. Also, consumers’ EAK and EA positively predicted ACB significantly, thereby supporting $H4$ and $H5$, respectively; MAT negatively predicted EA significantly, thereby supporting $H6$; however, MAT did not negatively predict ACB, thereby having $H1$ unsupported; EAK predicted EA positively, thereby supporting $H9$. However, the $H2$ and $H7$, hypothesizing positive influence of EI on EA and ACB was not supported. In fact, EI was found to be negatively predicting ACB significantly. Further, the $H8$ and $H3$, hypothesizing negative influence of CB on EA and ACB were not supported.

Conclusion and Implications
The proposed research framework explained substantial portion of the terminal construct (i.e., ACB). However, some findings contradicted the proposed hypotheses. For instance, the relationship between EI and ACB was found to be negative at a statistically significant level. It might result from skepticism toward pro-environment companies where highly EI consumers may perceive pro-environmental messages as green gauging (i.e., emotionally influencing consumers to buy highly priced green products with unwarranted green claims; Ramirez, 2013), thereby not letting those messages to influence them toward ACB. Likewise, it was found that the relationship between CB and EA was positive. This might be due to post-purchase guilt leading to a pro-environmental attitude, hoping to compensate for their impulsive decision by intending to do something good (Antonetti & Maklan, 2014). This could be further supported by the significant negative prediction of EA by MAT. When consumers have knowledge about their impact of apparel consumption on environment, they tend to have both positive EA and ACB, thereby emphasizing on the relationship between innate moral values, with pro-environmental attitude and behaviors (Antonetti & Maklan, 2014; Rezvani, Jansson, & Bengtsson, 2017). However, very limited literature exists, which can explain the counterintuitive findings of the present study. Nevertheless, an alternative explanation exists to explain these anomalous findings. Thus, making this study’s findings unique that are worth investigating further. Like any [research] study, the present study suffers from several drawbacks—nature of study design, specific demographics, and socially desirable responses, among others.
References

