IOWA STATE UNIVERSITY Digital Repository

Iowa State Research Farm Progress Reports

2011

Evaluation of Transgenic Corn and Non-bt Corn with and without Soil Insecticides for Control of Corn Rootworm

Aaron J. Gassmann Iowa State University, aaronjg@iastate.edu

Patrick J. Weber *Iowa State University*, pjweber@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/farms_reports Part of the <u>Agricultural Science Commons</u>, <u>Agriculture Commons</u>, and the <u>Entomology</u> <u>Commons</u>

Recommended Citation

Gassmann, Aaron J. and Weber, Patrick J., "Evaluation of Transgenic Corn and Non-bt Corn with and without Soil Insecticides for Control of Corn Rootworm" (2011). *Iowa State Research Farm Progress Reports*. 283. http://lib.dr.iastate.edu/farms_reports/283

This report is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State Research Farm Progress Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

Evaluation of Transgenic Corn and Non-bt Corn with and without Soil Insecticides for Control of Corn Rootworm

Abstract

The purpose of this study was to evaluate the effectiveness of transgenic corn and soil insecticides, either alone or in combination, for the control of corn rootworm.

Keywords RFR A1079, Entomology

Disciplines

Agricultural Science | Agriculture | Entomology

Evaluation of Transgenic Corn and Non-bt Corn with and without Soil Insecticides for Control of Corn Rootworm

RFR-A1079

Aaron Gassmann, assistant professor Patrick Weber, agricultural specialist Department of Entomology

Introduction

The purpose of this study was to evaluate the effectiveness of transgenic corn and soil insecticides, either alone or in combination, for the control of corn rootworm.

Materials and Methods

The corn was planted in an area that had been planted the previous year with "trap crop." The seed planted for the trap crop was a mixed maturity blend with a greater proportion of late-maturing varieties. This trap crop constitutes a favorable environment for adult females late in the season when other fields are maturing and results in a high abundance of rootworm larvae the following year. The experimental design for this study was a randomized complete block design with four replications. Treatments were two rows wide, and 75 ft in length. This study was planted on April 22 at a population of 35,600 seeds/acre. Seeds were pre-bagged and planted with a four-row John Deere Max EmergeTM 7100 integral planter that had 30-in. row spacing. Granular insecticide formulations were applied with modified SmartBox metering units mounted on the planter. The SmartChoice-SB 5G, Counter-SB 20G, and Aztec 4.67G insecticide treatments were applied with modified SmartBoxTM metering units. These products were applied as ounces per 1,000 row ft. The commercial SmartBoxTM were removed from their largebase containers and sandwiched between a flat metal plate on the bottom and a custom-made, threaded plastic cap on the top. An inverted

1,000 ml bottle, screwed into the top cap provided a secure and sealed container for insecticide. A short plastic tube attached to the dispenser opening of the metering unit could be connected to either the planter's T-band or furrow tubes.

Results and Discussion

Node injury was significantly higher and percent product consistency significantly lower, for the three isoline treatments (checks) than all other treatments (Table 1). Some differences in stand counts were noted among treatments (Table 2). There was lodging observed within this study (Table 3), although root injury on the untreated checks exceeded 1.25 nodes (Table 1). Yields tended to be greater among treatments with rootworm protection compared with the untreated checks (Table 4). However, no differences in yield were noted among the treatments with rootworm protection (Table 4).

Acknowledgements

We would like to thank Dow AgroSciences, and AMVAC for providing the funding for this study. Seed was provided by Monsanto and Dow AgroSciences. We would also like to thank Kevin Van Dee and his staff for their work in this study.

Additional Information

The 2010 Insecticide and Plant-Incorporated Protectants field evaluation report will be available on-line at <u>www.ent.iastate.edu</u> under latest news soon.

_				Node-	Product
Treatment ²	Form.	Rate ³	Placement ⁴	injury ^{5,6,7}	consistency ^{8,9}
My-HXT2 + SmartChoice-SB	5G	0.18	Furrow	0.01a	100a
My-GENSS				0.02a	100a
My-HXT2 + Aztec-SB	4.67G	0.14	Furrow	0.02a	100a
My-HXT2 + Counter-SB	20G	0.90	Furrow	0.02a	95a
YGVT3				0.03a	100a
YGVT3 + Aztec	2.1G	0.14	Furrow	0.03a	100a
YGVT3 + Aztec	2.1G	0.14	T-Band	0.05a	100a
My-HXT1				0.05a	100a
My-HXT2				0.06a	95a
DeKalb-Iso				0.90 b	15 b
My-Iso				1.34 c	0 c
My-Conv				1.36 c	0 c

Table 1. Average root-injury and percent product consistency for evaluation of insecticide treat	ments
and plant-incorporated protectants. Yield study: Crawfordsville, IA 2010 ¹ .	

¹Planted April 22, 2010; evaluated July 30, 2010.

²My-GENSS = Mycogen Smartstax (Mycogen 2T784); My-HXT1 = Mycogen brand Herculex XTRA (Mycogen 2T289); My-Conv = Mycogen brand Conventional (Mycogen 2T777); YGVT3 = YieldGard VT Triple (DKC61-

69); DeKalb-Iso = DeKalb brand RR Isoline (DKC 61-72); My-HXT2 = Mycogen brand Herculex XTRA

(Mycogen 2T789); My-Iso = Mycogen brand RR Isoline (Mycogen 2T783).

³Insecticide listed as ounces a.i. per 1,000 row-ft.

⁴Furrow and T-band = insecticide applied at planting time; SB = SmartBox application at planting time.

⁵Chemical and check means based on 20 observations (5 roots/2 rows × 4 replications).

⁶Iowa State Node-Injury scale (0-3). Number of full or partial nodes completely eaten.

⁷Means sharing a common letter do not differ significantly according to Ryan's Q Test ($P \le 0.05$).

⁸Product consistency = Percentage of times nodal injury was 0.25 ($\frac{1}{4}$ node eaten) or less.

⁹No significant differences between means (ANOVA, $P \le 0.05$).

Table 2. Average stand counts for evaluation of insecticide treatments and plant incorporated protectants. Yield study: Crawfordsville, IA 2010¹.

Treatment ²	Form.	Rate ³	Placement ⁴	Stand count ^{5,6}
My-HXT2 + Aztec-SB	4.67G	0.14	Furrow	31.25a
My-Iso				31.25a
YGVT3 + Aztec	2.1G	0.14	Furrow	29.50ab
DeKalb-Iso				28.50abc
My-HXT1				27.50abc
My-HXT2				27.00 bc
My-HXT2 + SmartChoice-SB	5G	0.18	Furrow	27.00 bc
YGVT3				26.75 bc
My-HXT2 + Counter-SB	20G	0.90	Furrow	26.50 bc
YGVT3 + Aztec	2.1G	0.14	T-Band	26.25 bc
My-GENSS				25.00 bc
My-Conv				25.00 с

¹Planted April 22, 2010; evaluated June 7 and September 30, 2010.

²My-GENSS = Mycogen Smartstax (Mycogen 2T784); My-HXT1 = Mycogen brand Herculex XTRA (Mycogen 2T289); My-Conv = Mycogen brand Conventional (Mycogen 2T777); YGVT3 = YieldGard VT Triple (DKC61-69); DeKalb-Iso = DeKalb brand RR Isoline (DKC 61-72); My-HXT2 = Mycogen brand Herculex XTRA

(Mycogen 2T789); My-Iso = Mycogen brand RR Isoline (Mycogen 2T783).

³Insecticide listed as ounces a.i. per 1,000 row-ft.

⁴Furrow and T-band = insecticide applied at planting time; SB = SmartBox application at planting time.

⁵Means based on eight observations (2-row trt \times 17.5 row-ft/treatment \times 4 replications \times 2 evaluations).

⁶Means sharing a common letter do not differ significantly according to Ryan's Q Test ($P \le 0.05$).

Treatment ²	Form.	Rate ³	Placement ⁴	% Lodging ^{5,6}
My-GENSS				0
My-HXT1				0
My-Conv				0
My-Iso				0
My-HXT2				0
My-HXT2 + Aztec-SB	4.67G	0.14	Furrow	0
My-HXT2 + Counter-SB	20G	0.90	Furrow	0
My-HXT2 + SmartChoice-SB	5G	0.18	Furrow	0
DeKalb-Iso				0
YGVT3				0
YGVT3 + Aztec	2.1G	0.14	Furrow	0
YGVT3 + Aztec	2.1G	0.14	T-Band	0

Table 3. Average lodging for evaluation of insecticide treatments and plant-incorporated protectant	ts.
Yield study: Crawfordsville, IA 2010 ¹ .	

¹Planted April 22, 2010; evaluated September 30, 2010.

²My-GENSS = Mycogen Smartstax (Mycogen 2T784); My-HXT1 = Mycogen brand Herculex XTRA (Mycogen 2T289); My-Conv = Mycogen brand Conventional (Mycogen 2T777); YGVT3 = YieldGard VT Triple (DKC61-

69); DeKalb-Iso = DeKalb brand RR Isoline (DKC 61-72); My-HXT2 = Mycogen brand Herculex XTRA

(Mycogen 2T789); My-Iso = Mycogen brand RR Isoline (Mycogen 2T783).

³Insecticide listed as ounces a.i. per 1,000 row-ft.

⁴Furrow and T-band = insecticide applied at planting time; SB = SmartBox application at planting time.

⁵Means based on eight observations (2-row trt × 17.5 row-ft/treatment × 4 replications).

⁶No significant differences between means (ANOVA, $P \le 0.05$).

Table 4. Average yield for evaluation of in	secticide treatments and	plant-incorporated	protectants.
Yield study: Crawfordsville, IA 2010 ¹ .			

Treatment ²	Form.	Rate ³	Placement ⁴	Bushels/acre ^{5,6,7}
My-HXT2 + Aztec-SB	4.67G	0.14	Furrow	140a
My-HXT2 + SmartChoice-SB	5G	0.18	Furrow	131ab
My-GENSS				122ab
My-HXT2				120ab
YGVT3				119abc
$YGVT3 + Aztec^{8}$	2.1G	0.14	Furrow	114abc
My-HXT1				113abc
My-HXT2 + Counter-SB	20G	0.90	Furrow	113abc
YGVT3 + Aztec	2.1G	0.14	T-Band	112abc
My-Iso				112abc
My-Conv				105 bc
DeKalb-Iso				91 c

¹Planted April 22, 2010; machine harvested October 8, 2010.

²My-GENSS = Mycogen Smartstax (Mycogen 2T784); My-HXT1 = Mycogen brand Herculex XTRA (Mycogen 2T289); My-Conv = Mycogen brand Conventional (Mycogen 2T777); YGVT3 = YieldGard VT Triple (DKC61-

69); DeKalb-Iso = DeKalb brand RR Isoline (DKC 61-72); My-HXT2 = Mycogen brand Herculex XTRA

(Mycogen 2T789); My-Iso = Mycogen brand RR Isoline (Mycogen 2T783).

³Insecticide listed as ounces a.i. per 1,000 row-ft.

⁴Furrow and T-band = insecticide applied at planting time; SB = SmartBox application at planting time.

⁵Means based on four observations (2-row trt × 69 row-ft/treatment × 4 replications)

⁶Means sharing a common letter do not differ significantly according to Ryan's Q Test ($P \le 0.05$).

⁷Yields converted to 15.5 percent moisture.

⁸Means based on three observations (2-row trt \times 69 row-ft/treatment \times 3 replications).