IOWA STATE UNIVERSITY

Digital Repository

Iowa State Research Farm Progress Reports

2012

Nitrogen Fertilization of Corn Grown with a Cover Crop

John E. Sawyer Iowa State University, jsawyer@iastate.edu

Jose L. Pantoja Iowa State University, jpantoja@iastate.edu

Daniel W. Barker Iowa State University, dbarker@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/farms reports

Part of the Agriculture Commons, and the Agronomy and Crop Sciences Commons

Recommended Citation

Sawyer, John E.; Pantoja, Jose L.; and Barker, Daniel W., "Nitrogen Fertilization of Corn Grown with a Cover Crop" (2012). Iowa State Research Farm Progress Reports. 23.

http://lib.dr.iastate.edu/farms_reports/23

This report is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State Research Farm Progress Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

Nitrogen Fertilization of Corn Grown with a Cover Crop

Abstract

Objectives of this project were to study corn nitrogen (N) fertilization requirement and corn-soybean yield response when grown in a rye cover cropping system. Multiple rates of N fertilizer were applied, with measurement of corn yield response to applied N and soybean yield with and without a fall planted winter rye cover crop. The study was conducted at multiple research farms, with the intent for comparison of with and without a cover crop system across varying soil and climatic conditions in Iowa.

Keywords

RFR A11134

Disciplines

Agriculture | Agronomy and Crop Sciences

Nitrogen Fertilization of Corn Grown with a Cover Crop

RFR-A11134

John Sawyer, professor Jose Pantoja, graduate assistant Daniel Barker, assistant scientist Department of Agronomy

Introduction

Objectives of this project were to study corn nitrogen (N) fertilization requirement and corn-soybean yield response when grown in a rye cover cropping system. Multiple rates of N fertilizer were applied, with measurement of corn yield response to applied N and soybean yield with and without a fall planted winter rye cover crop. The study was conducted at multiple research farms, with the intent for comparison of with and without a cover crop system across varying soil and climatic conditions in Iowa

Materials and Methods

The first year was in 2009, with 2011 the third year. Locations are the Ag Engineering/ Agronomy Research Farm, Ames (Webster silty clay loam); Armstrong Research Farm, Lewis (Marshall silty clay loam); Southeast Research Farm, Crawfordsville (Mahaska silty clay loam); and the Northeast Research Farm, Nashua (Floyd loam). In 2011 an additional site was added at the Northwest Research Farm, Sutherland (Primghar silty clay loam). Each location is in a corn-soybean rotation.

The winter rye cover crop ("Wheeler" variety) was no-till drill planted at 1 bushel/acre in the fall of 2010 as soon as possible after soybean and corn harvest (Sept. 30-Oct. 7 after soybean and Sept. 17-Oct. 7 after corn). The rye cover crop growth was controlled with Roundup in the spring (Apr. 20-May 2 before corn and May 5-18 before soybean), with the targeted control at least seven days prior to corn planting and at or within one week of

soybean planting. The corn and soybean crops were no-till planted in 30-in. rows (May 3-12 for corn and May 6-18 for soybean). Rye control and corn-soybean planting occurred as conditions allowed.

Nitrogen fertilizer rates were applied early sidedress as urea-ammonium nitrate (UAN) solution (0, 40, 80, 120, 160, and 200 lb N/acre). The liquid nitrogen fertilizer was coulter-injected on 60-in. spacing. The corn hybrid and soybean variety were early-season adapted for the location. Pest management practices were those typical for the region and rotations. Corn and soybean were harvested with a plot combine and yields corrected to standard moisture

Results and Discussion

Rye growth and aboveground biomass production varied between years and sites due to differences in previous crop and spring conditions. In 2011, the rye biomass production was generally less than previous years. Also, the 2011 rye biomass dry matter production was greater before soybeans compared with the biomass before corn (Table 1).

At each location there was no difference in soybean yield with or without the cover crop (Table 2); average yield 59.0 bushels/acre with and 59.5 bushels/acre without the rye. This has been consistent across years.

Across locations in 2011, corn yield at the maximum N response rate averaged 5 bushels/acre lower when planted in conjunction with the rye cover crop (Table 3). The largest differences in yields were at Crawfordsville and Nashua. In 2010 the average corn yield was 20 bushels/acre lower with the cover crop and in 2009 was

7 bushels/acre lower. The rye cover crop has not resulted in a corn yield increase at any site and year.

Across all sites and years, the response to N rate was similar with or without the rye cover crop (Figure 1). The average yield at the economic optimum N rate was 12 bushels/acre lower with the rye cover crop (183 bu/acre with and 195 bu/acre without), but the difference in economic optimum N rate was only 6 lb N/acre higher with the cover crop (164 vs. 158 lb N/acre).

With these three years of study, there was no effect of the rye cover crop on soybean yield. Also, the three years of data for corn showed no effect on economic optimum N rate, but there was a 6 percent yield reduction.

Acknowledgements

Appreciation is extended to the farm superintendents and their staff for assistance with this project. This project is supported in part by the Iowa Department of Agriculture and Land Stewardship, Division of Soil Conservation, through funds appropriated by the Iowa General Assembly. This research is part of a regional collaborative project supported by the USDA-NIFA, Award No. 2011-68002-30190, "Cropping Systems Coordinated Agricultural Project (CAP): Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems." Project Web site: sustainablecorn.org.

Table 1. Winter rye biomass dry matter before controlling growth with herbicide, spring 2011.

Cover crop	Ames	Crawfordsville	Lewis	Nashua	Sutherland		
	lb/acre						
Before corn	550	1,200	380	245	210		
Before soybean	640	1,510	555	320	210		

Table 2. Soybean grain yield with and without rye cover crop, 2011.

Cover crop	Ames	Crawfordsville	Lewis	Nashua	Sutherland			
	bu/acre							
With cover crop	56.5a	49.4a	66.9a	61.5a	60.6a			
Without cover crop	55.7a	53.8a	66.0a	62.0a	60.1a			

Yields at a location followed by the same letter are not significantly different, $p \le 0.05$.

Table 3. Corn grain yield at the maximum N rate response with and without rye cover crop, 2011.1

Cover crop	Ames	Crawfordsville	Lewis	Nashua	Sutherland		
	bu/acre						
With cover crop	191	179	172	196	208		
Without cover crop	193	190	169	207	209		

¹Yields at the point of maximum N response for each location determined from regression equations.

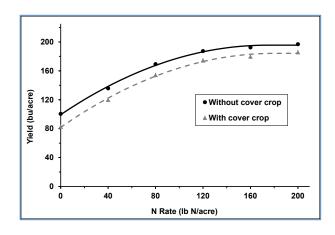


Figure 1. Corn yield response to N rate across Iowa locations with and without rye cover crop, 2009-2011.