# **IOWA STATE UNIVERSITY**

# **Digital Repository**

Iowa State Research Farm Progress Reports

2013

# Soil Moisture

Joel L. DeJong *Iowa State University*, jldejong@iastate.edu

Paul C. Kassel Iowa State University, kassel@iastate.edu

Follow this and additional works at: <a href="http://lib.dr.iastate.edu/farms\_reports">http://lib.dr.iastate.edu/farms\_reports</a>

Part of the <u>Agricultural Science Commons</u>, <u>Agriculture Commons</u>, and the <u>Agronomy and Crop</u> Sciences Commons

## Recommended Citation

DeJong, Joel L. and Kassel, Paul C., "Soil Moisture" (2013). *Iowa State Research Farm Progress Reports*. 1994. http://lib.dr.iastate.edu/farms\_reports/1994

This report is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State Research Farm Progress Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

# Soil Moisture

#### **Abstract**

Soil moisture is critical for crop production in most years in northwest and west central Iowa. Soil moisture samples were taken at twenty sites in northwest and west central Iowa during the last few days of October 2012. Moisture samples were taken at 1-ft increments down to a 5-ft depth. Samples were weighed, oven dried, and reweighed at the Northwest Research Farm. The moisture percentage was calculated from these data, and then used to calculate the inches of plant available moisture in the soil.

### Keywords

Agronomy

## Disciplines

Agricultural Science | Agriculture | Agronomy and Crop Sciences

# **Soil Moisture**

#### **RFR-A1266**

Joel DeJong, extension field agronomist Paul Kassel, extension field agronomist

#### Introduction

Soil moisture is critical for crop production in most years in northwest and west central Iowa.

#### **Materials and Methods**

Soil moisture samples were taken at twenty sites in northwest and west central Iowa during the last few days of October 2012. Moisture samples were taken at 1-ft increments down to a 5-ft depth. Samples were weighed, oven dried, and reweighed at the Northwest Research Farm. The moisture percentage was calculated from these data, and then used to calculate the inches of plant available moisture in the soil.

### **Results and Discussion**

The amount of subsoil moisture in northwest and west central Iowa, not surprisingly, was well below average this fall. The data from these sites are listed in Table 1. The level of subsoil moisture at the soil moisture sites in 15 northwest and west central Iowa counties ranged from 1.2 in. to 7.0 in. of plant available moisture. The average among the 20 observations in the 15 counties was 4.5 in. The median value was 2.9 in. of plant available moisture. There was less than five in. of plant available moisture in the top five ft of soil in 17 of the 20 observations.

Soil moisture has been a concern since July 2011. Rainfall has been below normal to much below normal since mid-July 2011. Subsoil moisture levels were below normal at most of the locations when subsoil moisture levels were checked during the fall of 2011 and in late April 2012.

However, much of the area produced excellent corn and soybean crops on limited summer rainfall. Corn and soybean crops seemed to produce root systems that went deeper than the expected 5-ft depth. Deeper rooting may have been a result of good planting time conditions and a relatively dry spring that encouraged early season root development. This example is illustrated by the data from the subsoil moisture site near the town of Schaller. This location had 6.2 in. of subsoil moisture on April 23. Rainfall was between 8.1 and 10.5 in. of rainfall from April 23 to September 1. The subsoil moisture and rainfall total is about 15.0 in. for this location. That is well below the 20 to 22 in, of moisture that is considered necessary to grow a normal corn or soybean crop. However, corn and soybean yields in this area were near normal, with corn and soybean yields in the range of 170 bushels/acre and 50 bushels/acre, respectively. This moisture deficit also illustrates the fact. that the corn and soybean crop accessed moisture below the normal 5-ft rooting depth.

The larger concern may be that this will be the third year with extended dry conditions. The conditions going into the 2013 crop year may represent the largest crop production risk in terms of the effects of long-term drought conditions. The subsoil moisture that is below normal 5-ft rooting depth is also likely depleted and therefore would not be available to carry the crop through an extended dry period in the summer. Another concern may be the location of the moisture in the soil profile. Many of the locations show that most of the moisture is in the top 2 or 3 ft of the profile. The soil profile that is 4 and 5 ft in depth shows almost no moisture. The soil profile at the Schaller location, for example, contains no moisture from 2 ft to 5 ft deep in the profile.

Rainfall during November, March, and April also will contribute to subsoil moisture. Typical rainfall for those months is 4.8 to 5.7

in. About 80 percent of that rainfall contributes to subsoil moisture reserves.

Table 1. Soil moisture available to plants.

| Table 1. Soil moisture available to plants. |                           |             |           |                                |
|---------------------------------------------|---------------------------|-------------|-----------|--------------------------------|
| Site                                        | County Fall Average (in.) | County      | 2012 crop | Plant available moisture (in.) |
| Doon                                        | 4.3                       | Lyon        | corn      | 3.0                            |
| Sibley                                      | 5.1                       | Osceola     | corn      | 2.2                            |
| Spirit Lake                                 | 5.7                       | Dickinson   | corn      | 3.9                            |
| Estherville                                 | 5.9                       | Emmet       | soybean   | 1.4                            |
| Ireton                                      | 4.2                       | Sioux       | soybean   | 4.5                            |
| Sanborn                                     | 5.9                       | O'Brien     | corn      | 4.5                            |
| Sutherland                                  | 5.9                       | O'Brien     | corn      | 5.1                            |
| Rossie                                      | 5.7                       | Clay        | corn      | 5.8                            |
| Akron                                       | 4.3                       | Plymouth    | corn      | 1.8                            |
| Le Mars                                     | 4.3                       | Plymouth    | corn      | 2.2                            |
| Hinton                                      | 4.3                       | Plymouth    | soybean   | 2.0                            |
| Cherokee                                    | 5.6                       | Cherokee    | corn      | 7.0                            |
| Marcus                                      | 5.6                       | Cherokee    | corn      | 4.7                            |
| Newell                                      | 6.0                       | Buena Vista | corn      | 4.3                            |
| Rolfe                                       | 6.0                       | Pocahontas  | soybean   | 3.2                            |
| Lawton                                      | 4.6                       | Woodbury    | corn      | 1.6                            |
| Anthon                                      | 4.6                       | Woodbury    | corn      | 2.6                            |
| Battle Creek                                | 6.0                       | Ida         | soybean   | 2.8                            |
| Schaller                                    | 5.9                       | Sac         | corn      | 2.9                            |
| Castana                                     | 4.9                       | Monona      | corn      | 1.2                            |