IOWA STATE UNIVERSITY Digital Repository

Iowa State Research Farm Progress Reports

2002

Pasture Enhancement of Warm-season Grass Pastures Using a Complex Mixture of Legumes

I. S. Braden *Iowa State University*

Kenneth J. Moore *Iowa State University*, kjmoore@iastate.edu

R. L. Hintz Iowa State University

M. H. Wiedenhoeft *Iowa State University*

E. Charles Brummer *Iowa State University*

See next page for additional authors

Follow this and additional works at: http://lib.dr.iastate.edu/farms_reports Part of the <u>Agricultural Science Commons</u>, <u>Agriculture Commons</u>, <u>Agronomy and Crop</u> <u>Sciences Commons</u>, and the <u>Animal Sciences Commons</u>

Recommended Citation

Braden, I. S.; Moore, Kenneth J.; Hintz, R. L.; Wiedenhoeft, M. H.; Brummer, E. Charles; and Hoffman, M. Peter, "Pasture Enhancement of Warm-season Grass Pastures Using a Complex Mixture of Legumes" (2002). *Iowa State Research Farm Progress Reports*. 1693.

http://lib.dr.iastate.edu/farms_reports/1693

This report is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State Research Farm Progress Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

Pasture Enhancement of Warm-season Grass Pastures Using a Complex Mixture of Legumes

Abstract

The main goal of pasture management is to balance forage supply with livestock requirements. By establishing warm-season grasses in conjunction with cool-season pastures, the overall efficiency of forage growth is improved for livestock production. Legume establishment in these pastures can enhance the overall efficiency of the pastures because the addition of legumes to the warm-season grass mixtures can help to improve forage quality and reduce the amount of nitrogen fertilizer that is needed.

Keywords

Agronomy, Animal Science

Disciplines

Agricultural Science | Agriculture | Agronomy and Crop Sciences | Animal Sciences

Authors

I. S. Braden, Kenneth J. Moore, R. L. Hintz, M. H. Wiedenhoeft, E. Charles Brummer, and M. Peter Hoffman

Pasture Enhancement of Warm-season Grass Pastures Using a Complex Mixture of Legumes

I.S. Braden, graduate assistant K.J. Moore, professor R.L. Hintz, assistant scientist M.H. Wiedenhoeft, associate professor E.C. Brummer, associate professor Department of Agronomy

> M.P. Hoffman, professor Department of Animal Science

Introduction

The main goal of pasture management is to balance forage supply with livestock requirements. By establishing warm-season grasses in conjunction with cool-season pastures, the overall efficiency of forage growth is improved for livestock production. Legume establishment in these pastures can enhance the overall efficiency of the pastures because the addition of legumes to the warm-season grass mixtures can help to improve forage quality and reduce the amount of nitrogen fertilizer that is needed.

Materials and Methods

A mixture of 15 legumes (Table 1) was interseeded into existing switchgrass (*Panicum virgatum* L., cv. Cave-in-Rock) and big bluestem (*Andropogon gerardii*, Vitman, cv. Rountree) pastures in late summer of 1998. The legumes chosen represent species with varying life cycles and growth habits (Table 1). Grazing was delayed until summer of 1999 to allow the legumes to develop a seed bank.

The experimental design is a split plot, with half of each pasture consisting of legumes and the other half left in grass. Animals were placed on the pastures mid-June and removed mid-August for 1999, 2000, and 2001. Cattle weights were determined before and after each grazing season. Pasture samples were collected from paddocks to determine the quantity of available forage. Legume composition was identified using the Gillen and Smith dry-weight rank method to sample 100 random points per pasture.

Preliminary Results and Discussion Legume composition was estimated for the 2001 season. Of the pastures containing legumes (Figure 1), a relatively high percent legume was recorded, which indicates persistence of legumes in the grass/legume pastures. Preliminary data for mean cattle gains are shown in Table 2. For 1999 and 2000, big bluestem/legume pastures showed the highest gain. For the most part, there was not a substantial difference between the treatments for the first two years. Gains in 2001 were higher for the switchgrass and switchgrass/legume pastures. Overall gains were lower than in the other years. The grass/legume mixtures were expected to show the highest gains. However, some of the pastures did have significant volunteer legumes and cool-season grasses present. This may explain the difference in gains over the past three years, but more detailed analysis is required. Due to an encroachment of cool-season grass in warm-season pastures, cool-season grass samples will be analyzed to help understand the variation in cattle gains for warm-season grass pastures. In general, cattle gains over the summer months provide evidence of the improved pasture productivity.

This data should be considered preliminary. Additional research is being conducted on species composition, forage quality, and spatial relationships (among legume recruitment/persistence, soil properties, and landscape position), which may explain observed animal performance.

Common name	Binomial	Life cycle	Cultivar
alfalfa	Medicago sativa L.	perennial	Alfagraze
alfalfa	Medicago sativa L.	perennial	Travois
berseem clover	Trifolium alexandrium L.	annual	Big Bee
birdsfoot trefoil	Lotus corniculatus L.	perennial	Norcen
cicer milkvetch	Astragalus cicer L.	perennial	Windsor
crimson clover	Trifolium incarnatum L.	annual	variety not stated
crownvetch	Coronilla varia L.	perennial	Emerald
hairy vetch	Vicia villosa Roth	annual	variety not stated
kura clover	Trifolium ambigum Bieb	perennial	Rhizo
red clover	Trifolium pratense L.	perennial	Mammoth
red clover	Trifolium pratense L.	perennial	Redland III
sweetclover	Melilotus officinalis (L.) Pall	biennial	Madrid
sweetclover	Melilotus alba Medic	biennial	variety not stated
white clover	Trifolium repens L.	perennial	Ladino
white clover	Trifolium repens L.	perennial	White Dutch

Table 1. Names of legumes interseeded into warm-season pastures.

Table 2. Means of cattle gains on various pasture treatments.

Year	Treatment	Total gain	Average daily gain
		(lb)	(lb/day)
1999	Big bluestem	57.50	1.47
	Big bluestem/Legume	60.00	1.54
	Switchgrass	54.29	1.39
	Switchgrass/Legume	51.25	1.31
2000	Big bluestem	90.63	1.68
	Big bluestem/Legume	96.88	1.79
	Switchgrass	89.38	1.66
	Switchgrass/Legume	95.00	1.76
2001	Big bluestem	38.13	0.61
	Big bluestem/Legume	35.63	0.57
	Switchgrass	55.63	0.88
	Switchgrass/Legume	52.50	0.83

Figure 1. Spatial distribution of mean % legume composition.