Corn Yield Response to Tillage and Nitrogen Fertilizer Rate

RFR-A1852

John Lundvall, research affiliate John Sawyer, professor Department of Agronomy

Introduction

The research objective of this study was to measure corn yield response to nitrogen (N) rate in two tillage systems, tilled and no-till, in a soybean-corn rotation. Results were summarized across sites and years by analysis of the main effects and interaction of N rate and tillage system on corn yield, and through fitting N rate response equations. The across site-year response equations were used to determine economic optimum N rate (EONR) based on a 0.10 N fertilizer price-to-corn price ratio.

Materials and Methods

The project was conducted in 2017 and 2018 at four Iowa State University research farms: Armstrong Research Farm, Lewis (Marshall silty clay loam); Southeast Research Farm, Crawfordsville (Mahaska silty clay loam); Northeast Research Farm, Nashua (Floyd loam); and the Northwest Research Farm, Sutherland (Primghar silty clay loam). The sites had a multi-year history of no-till management and cereal rye/no cereal rye cover crop treatments.

Production practices, compared in a split plot arrangement, were no-till and spring disk/field cultivate for corn (main plots) and N rates (0, 80, 160, or 240 lb total-N/acre subplots). All N-fertilized plots received starter N at 30 lb N/acre (urea placed 2 in. to the side and 2 in. below the seed at planting), followed by sidedress injected urea-ammonium nitrate solution applied at approximately the V5 or V6 corn growth stage at rates of 50, 130, or 210 lb N/acre.

Soybean was grown with either no-till or fall chisel plow/spring disk-field cultivate tillage to maintain tillage systems. Adapted corn hybrids and soybean varieties were planted in 30-in. row spacing.

The entire study area had been in no-tillage beginning fall 2008. Therefore, the tilled treatment in 2017 was the first year of tillage after multiple years of continuous no-till.

Because of an N fertilizer application error at one site, corn yield results from only seven of eight site-years are included in analysis and discussion.

Results and Discussion

Across the seven site-years included in this analysis, statistically significant responses to both tillage and N rate were observed (Table 1). Corn yield, mean across all N rates, under tilled management averaged 194 bushels/acre and 162 bushels/acre under no-till management.

There was an interaction between tillage system and N rate, meaning the N response was different between the two tillage systems. Of interest is the much lower corn yield under no-till when no N was applied (41 bu/ac lower than the tilled system). The yields were less different at optimal N rates. The calculated EONR was 126 lb N/acre under tilled management and 145 lb N/acre under no-till; predicted corn yield at these N rates were 206 bushels/acre (tilled) and 194 bushels/acre (no-till).

While the EONR for both tillage systems were within the current most profitable ranges for corn following soybean in Iowa (126-152 lb N/acre), there was a lower optimal rate in the tilled system. That could be due to several factors; most likely enhanced N mineralization

with soil mixing in the tilled system, or more fertilizer N required in no-till due to soil organic matter storage. It was surprising the corn yield under no-till at optimal N averaged so much lower than the tilled system.

Across all eight site-years, soybean yield response was significant ($P \le 0.10$) only for tillage system. Yield with no-till averaged 62.7 bushels/acre and under tilled management was 64.2 bushels/acre. There was

no effect of the prior year N rate application to corn. At individual sites, tillage system was significant in five site-years where the tilled system had higher soybean yield four times, and no-till one time.

Acknowledgements

Appreciation is extended to the farm superintendents and their staff for assistance with this study.

Table 1. Effect of tillage and total-N rate on corn yield (across seven site-years at four ISU research and demonstration farms near Sutherland, Nashua, Lewis, and Crawfordsville, 2017-2018).

	Tilled	No-till	Across tillage
Total-N, lb/acre			
	Corn yield (bu/acre)		
0	131	90	110c
80(30+50)	193	169	181b
160 (30 + 130)	203	192	197a
240 (30 + 210)	210	196	203a

There was a significant tillage system by N rate interaction. The across site-year interaction analyzed by N rate response fitting. Across tillage system means followed by different letters are significantly different, $P \le 0.10$.