

On-Farm Demonstration Trial: Crop Protection Studies Corn Rootworm Trait Trial

Mike Witt—on-farm trials coordinator and agronomist, ISU Extension and Outreach
Andrew Weaver—agricultural specialist, Northwest Research and Demonstration Farm
Dordt University, Agriculture Department

Objective

Determine the effects of insecticides and genetic traits on corn rootworm management to define best management practices.

Introduction

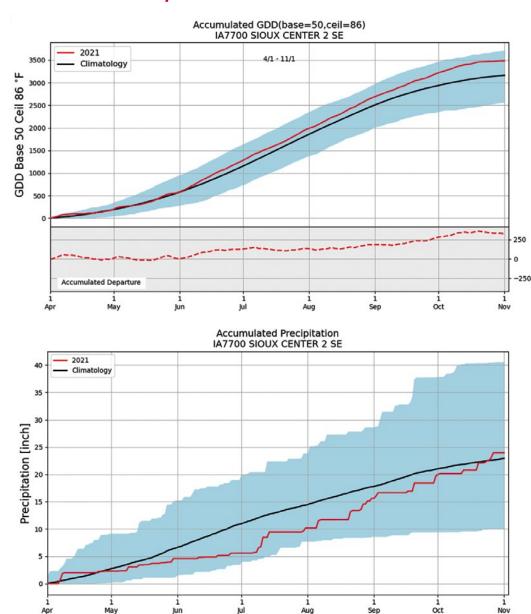
Farmers are faced with many decisions for pest management options as new technologies are introduced. Pests, such as corn rootworm, are persistent and economically important pests in Iowa. Rotating corn with soybean usually reduces corn rootworm pressure, although rotation-resistant populations can occur in limited areas of Iowa. As resistance issues arise with insects and in Iowa, it is important to investigate alternative methods of suppression. The objective of this trial was to investigate what effect corn genetic traits alone have in comparison to traits with an insecticide present in the suppression of corn rootworm damage. Both yield and root ratings were observed. This location is considered to have high corn rootworm pressure.

Materials and Methods

Crop Year-2021

orop rear 2021					
Trial	210110				
Trial County	Sioux				
Soil Type	8B, 31, 91, 91B, 133, 310B, 310B2, 310C2, 428B				
Previous Crop	Soybean				
Tillage	Conventional				
Current Crop	Corn				
Hybrid– Variety Number	DKC 58-34 RIB (Smartstax) DKC 58-35 RIB (VT Double Pro)				
Hybrid–Variety Company	Dekalb				
Row Spacing	30 in.				
Seeding Rate	34,000/ac.				
Planting Date	May 30				
Harvest Date	October 12				
Experimental Type	On-Farm Demo				
Replications	4				
Insecticide Treatment	Counter 6oz./ac.				

Results


Trial Number	Treatment	Yield (bu./ac.)ª	P-value ^b	Root Ratings ^c	P-value ^b
210110	DKC- 58-34 (SmartStax) With Insecticide	221.8 a	<0.01	0.2 a	<0.01
	DKC- 58-34 (SmartStax) No Insecticide	212.8 a		1.6 bc	
	DKC- 58-35 (VT DoublePro) With Insecticide	196.4 b		1.1 b	
	DKC- 58-35 (VT Double Pro) No Insecticide	183.4 c		2.0 c	1166

^aValues denoted with the same letter within a trial are not statistically different at the significance level of 0.10.

^bP-value = the calculated probability that the difference in yields can be attributed to the treatments and no other factors. For example, if a trial has a P-value of 0.10, there is 90% confidence the yield differences are in response to treatments. This is consistent for demonstration trials.

clowa State Node-Injury scale (0–3). Number of full or partial nodes completely

Location Climate Analysis

Key Takeaways

- There was a significant difference between the yields of the two different hybrids.
- There also was a significant yield difference between the DKC 58-35 treatments with and without insecticide, with no insecticide yielding less.
- There was significant difference observed in the corn rootworm root feeding based on the root ratings.
- This high corn rootworm pressure location displayed the difference in feeding damage within each hybrid based on the insecticide treatment. Within each hybrid the treatment with insecticide had significantly less root damage.

NOTE: The results presented are from replicated demonstration trials. Statistics are used to detect differences at a location and should not be interpreted beyond the single location.