

Soybean Variety, Seeding Rate, and Row Spacing Trial

Terry Tuttle—farm superintendent, Northwest Research and Demonstration Farm Mark Licht—assistant professor, Department of Agronomy

Objective

Determine the effects of corn seeding rate and row spacing on corn yields to define best management practices.

Materials and Methods

Crop Year-2021

Soil Type: Galva	Galva, Primghar
Previous Crop	Corn
Variety	AG18XF1, AG24XF1, P23A15X, P27A17X
Planting Date	May 4
Row Spacing	15-in. 20-in. 30 in.
Seeding Rate	90,000; 120,000; and 150,000 seeds/acre
Tillage	Fall chisel plowed: November 4, 2020; Spring soil finisher: April 6
Fertilizer	24-60-80 VRT application: November 13, 2020
Nitrogen	UAN at 200 lb. N/acre: June 2 for all corn plots
Harvest Date	September 29
Experimental Design	Randomized complete block design by corn brand
Replications	Four
Treatments	Cultivar, row spacing, and seeding rate

Table 1. Corn grain yields for hybrid, seeding rate, and row spacing main effects from Bayer, Corteva, and Wyffels hybrids.^a

	Bayer	Cortevea		
	Grain Yield (bushels/acre)			
Variety X ^b	83.3	81.2		
Variety Y	84.4	84.9		
	P = 0.3149	P < 0.0001		
90,000 seeds/ac	85.2	85.1		
120,000 seeds/ac	82.6	82.7		
150,000 seeds/ac	83.8	81.4		
	P = 0.1694	P = 0.0007		
15-in. row	85.0	84.2		
20-in. row	84.3	83.6		
30 in.row	82.4	81.3		
	P = 0.1614	P = 0.0046		

 $^{^{\}rm a}$ P-values within boxes are used to compare yields of the main effects or interaction effects within each box. Yields that are significantly different at P < 0.05 have different letters following the yield values within each box.

yield values within each box.

Bayer hybrids were X = AG24XF1, Y = AG24FX1; Corteva hybrids were X = P23A15X, Y = P27A17X.

Table 2. Corn grain yields for the hybrid ${\bf x}$ row spacing and seeding rate ${\bf x}$ row spacing interaction effects from Bayer, Corteva, and Wyffels hybrids.

	Bayer			Coveta			
	15-in. row	20-in. row	30 in.row	15-in. row	20-in. row	30 in.row	
	Grain yield (bushels/acre)						
Variety X ^b	84.6	83.6	81.8	81.5	82.0	80.0	
Variety Y	85.4	84.9	83.0	87.0	85.3	82.6	
	P = 0.9719			P = 0.2446			
90,000 seeds/ac	86.8	86.3	82.6	86.2	87.0	82.0	
120,000 seeds/ac	83.6	82.7	81.6	83.9	82.2	82.1	
150,000 seeds/ac	84.5	83.8	83.1	82.6	81.8	79.7	
	P = 0.8854			P = 0.3096			

 $^{^{\}mathrm{a}}$ P-values within boxes are used to compare yields of the main effects or interaction effects within each box. Yields that are significantly different at P < 0.05 have different letters following the yield values within each box $^{\mathrm{b}}$ Bayer hybrids were X = AG24XF1, Y = AG24FX1; Corteva hybrids were X = P23A15X, Y = P27A17X.

Key Takeaways

- For both trials, yields were at or above 80 bushels per acre.
- The Bayer Asgrow trial did not have any significant yield differences associated with variety, seeding rate, or row spacing or their interactions.
- In the Corteva Pioneer trial, P27A17X, 90,000 seeds per acre, and 15 20-in. rows were higher yielding. There were no interaction effects associated with variety, seeding rate, or row spacing.

Acknowledgements

This project would not have been possible without the seed donations from Bayer and Corteva.