

# On-Farm Demonstration Trial: Crop Production Studies Soybean Date of Planting Trials

Mike Witt—on-farm trials coordinator and agronomist, ISU Extension and Outreach
Andrew Weaver—agricultural specialist, Northwest Research and Demonstration Farm
Brandon Zwiefel—agricultural specialist, Northern Research and Demonstration Farm
Ken Pecinovsky—farm superintendent, Northeast Research and Demonstration Farm
Zachary Koopman—agricultural specialist, Agricultural Engineering/Agronomy Research Farm
Craig Riesberg—agricultural specialist, Western Research and Demonstration Farm
Ryan Farmer—agricultural specialist, Armstrong Memorial Research and Demonstration Farm
Gary Thompson—agricultural specialist, McNay Memorial Research and Demonstration Farm
Chad Hesseltine—agricultural specialist, Southeast Research and Demonstration Farms
lowa Soybean Association

## **Objective**

Determine the effects of soybean maturity and planting date on yields to define best management practices.

#### Introduction

Timely soybean planting and choosing soybean varieties of the appropriate relative maturity is important to optimize soybean yields. As soybean genetics improve, farmers are attempting to plant soybean at earlier timing and using different maturity groups for their areas. Soybean management systems that include a foliar fungicide can improve soybean yields if foliar diseases are present. The objective of these trials was to investigate the effect of planting date, soybean variety maturity, and fungicide use on soybean yield.

| Trial                | 210001             | 210104             | 210301                     | 210414               | 210505               | 210601                     | 210604                     | 210701                      | 210801                     |
|----------------------|--------------------|--------------------|----------------------------|----------------------|----------------------|----------------------------|----------------------------|-----------------------------|----------------------------|
| Trial County         | Lucas              | O'Brien            | Monona                     | Hancock              | Boone                | Pottawattamie              | Adair                      | Washington                  | Chickasaw                  |
| Soil Type            | Haig,<br>Grundy    | 310B, 91           | Monona,<br>Ida             | Canisteo,<br>Webster | Nicollet,<br>Clarion | Marshall                   | Macksburg                  | Mahaska                     | Kenyon,<br>Floyd,<br>Clyde |
| Previous<br>Crop     | Corn               | Corn               | Corn/<br>Rye CC            | Corn                 | Corn                 | Corn                       | Corn                       | Corn                        | Corn                       |
| Tillage              | Conventional       | Conventional       | No-Till                    | Conventional         | Conventional         | No-Till                    | No-Till                    | No-Till                     | No-Till                    |
| Current Crop         | Soybean            | Soybean            | Soybean                    | Soybean              | Soybean              | Soybean                    | Soybean                    | Soybean                     | Soybean                    |
| Hybrid-<br>Number    | P31A22X<br>P37A27X | P23A15X<br>P28A42X | TP18E9<br>TP25E8<br>TP33E8 | 20N04E<br>26N06E     | P20T64E<br>P26T23E   | CZ2501 GTLL<br>CZ3131 GTLL | CZ2706 GTLL<br>CZ3099 GTLL | Osage 2025E<br>Arthur 2230E | P18A98X<br>P25A04X         |
| Hybrid—<br>Company   | Pioneer<br>Corteva | Pioneer<br>Corteva | Titan Pro                  | NuTech               | Pioneer<br>Corteva   | Credenz                    | Credenz                    | Mershman                    | Pioneer                    |
| Row<br>Spacing       | 30 in.             | 30 in.             | 30 in.                     | 30 in.               | 30 in.               | 30 in.                     | 30 in.                     | 30 in.                      | 30 in.                     |
| Seeding<br>Rate      | 140,000/ac.        | 140,000/ac.        | 140,000/ac.                | 140,000/ac.          | 140,000/ac.          | 140,000/ac                 | 140,000/ac.                | 140,000/ac.                 | 182,000/<br>ac.            |
| Planting<br>Date     | April 21<br>June 1 | April 22<br>May 2  | May 6<br>May 19            |                      | May 6<br>May 25      | April 26<br>May 12         | April 29<br>May 13         | April 26<br>May 12          | April 13<br>May 13         |
| Harvest<br>Date      | October 18         | November 1         | October 12                 | September 28         | September 29         | October 8                  | September 30               | October 13                  | October 18                 |
| Experimental<br>Type | On-Farm<br>Demo    |                    | On-Farm<br>Demo            |                      | On-Farm<br>Demo      | On-Farm<br>Demo            | On-Farm<br>Demo            | On-Farm<br>Demo             | On-Farm<br>Demo            |
| Replications         | 4                  | 3                  | 4                          | 3                    | 4                    | 3                          | 3                          | 4                           | 4                          |

### **Results**

| Trial<br>Number | Variety      | Planting Date | Maturity | Fungicide | Yield (bu./ac.)ª |         |
|-----------------|--------------|---------------|----------|-----------|------------------|---------|
| 210001          | P31A22X      | 4/21/2021     | 3.1      | No        | 75 b             | < 0.01  |
|                 | P31A22X      | 6/1/2021      | 3.1      | No        | 63 c             |         |
|                 | P37A27X      | 4/21/2021     | 3.7      | No        | 82 a             |         |
|                 | P37A27X      | 6/1/2021      | 3.7      | No        | 65 c             |         |
|                 | P31A22X      | 4/21/2021     | 3.1      | Yes       | 87 ab            | 0.01    |
|                 | P31A22X      | 6/1/2021      | 3.1      | Yes       | 71 c             |         |
|                 | P37A27X      | 4/21/2021     | 3.7      | Yes       | 95 a             |         |
|                 | P37A27X      | 6/1/2021      | 3.7      | Yes       | 78 bc            |         |
| 210104          | P23A15X      | 4/22/2021     | 2.3      | Yes       | 73 a             | 0.49    |
|                 | P23A15X      | 5/2/2021      | 2.3      | Yes       | 73 a             |         |
|                 | P28A42X      | 4/22/2021     | 2.8      | Yes       | 75 a             |         |
|                 | P28A42X      | 5/2/2021      | 2.8      | Yes       | 75 a             |         |
| 210301          | TP18E9       | 5/6/2021      | 1.8      | No        | 65 d             | < 0.01  |
|                 | TP18E9       | 5/19/2021     | 1.8      | No        | 68 cd            |         |
|                 | TP25E8       | 5/6/2021      | 2.5      | No        | 74 ab            |         |
|                 | TP25E8       | 5/19/2021     | 2.5      | No        | 73 bc            |         |
|                 | TP33E8       | 5/6/2021      | 3.3      | No        | 79 a             |         |
|                 | TP33E8       | 5/19/2021     | 3.3      | No        | 75 ab            |         |
| 210414          | 20N04E       | 4/23/2021     | 2.0      | No        | 66 b             | < 0.01  |
|                 | 20N04E       | 5/11/2021     | 2.0      | No        | 66 b             |         |
|                 | 26N06E       | 4/23/2021     | 2.6      | No        | 77 a             |         |
|                 | 26N06E       | 5/11/2021     | 2.6      | No        | 79 a             |         |
| 210414          | 20N04E       | 4/23/2021     | 2.0      | Yes       | 66 b             | < 0.01  |
|                 | 20N04E       | 5/11/2021     | 2.0      | Yes       | 70 b             |         |
|                 | 26N06E       | 4/23/2021     | 2.6      | Yes       | 84 a             |         |
|                 | 26N06E       | 5/11/2021     | 2.6      | Yes       | 84 a             |         |
| 210505          | P20T64E      | 5/6/2021      | 1.9      | No        | 60 b             | < 0.01  |
|                 | P20T64E      | 5/25/2021     | 1.9      | No        | 66 b             |         |
|                 | P26T23E      | 5/6/2021      | 2.6      | No        | 82 a             |         |
|                 | P26T23E      | 5/25/2021     | 2.6      | No        | 80 a             |         |
|                 | CZ2501 GTLL  | 4/26/2021     | 2.5      | Yes       | 83 b             | < 0.01  |
| 210601          | CZ2501 GTLL  | 5/12/2021     | 2.5      | Yes       | 85 b             |         |
|                 | CZ3131 GTLL  | 4/26/2021     | 3.1      | Yes       | 108 a            |         |
|                 | CZ3131 GTLL  | 5/12/2021     | 3.1      | Yes       | 100 a            |         |
| 210604          | CZ2709 GTLL  | 4/29/2021     | 2.7      | Yes       | 59 b             | 0.02    |
|                 | CZ2709 GTLL  | 5/13/2021     | 2.7      | Yes       | 61 b             |         |
|                 | CZ3099 GTLL  | 4/29/2021     | 3.1      | Yes       | 77 a             |         |
|                 | CZ3099 GTLL  | 5/13/2021     | 3.1      | Yes       | 64 ab            |         |
|                 | Osage 2025E  | 4/26/2021     | 2.5      | No        | 73 a             | 0.31    |
| 210701          | Osage 2025E  | 5/12/2021     | 2.5      | No        | 70 a             |         |
|                 | Arthur 2230E | 4/26/2021     | 3.0      | No        | 74 a             |         |
|                 | Arthur 2230E | 5/12/2021     | 3.0      | No        | 71 a             |         |
|                 | Osage 2025E  | 4/26/2021     | 2.5      | Yes       | 72 a             | 0.60    |
|                 | Osage 2025E  | 5/12/2021     | 2.5      | Yes       | 69 a             |         |
|                 | Arthur 2230E | 4/26/2021     | 3.0      | Yes       | 70 a             |         |
| 210801          | Arthur 2230E | 5/12/2021     | 3.0      | Yes       | 67 a             |         |
|                 | P18A98X      | 4/13/2021     | 1.8      | No        | 58 a             | 0.84    |
|                 | P18A98X      | 5/13/2021     | 1.8      | No        | 59 a             |         |
|                 | P25A04X      | 4/13/2021     | 2.5      | No        | 62 a             |         |
|                 | P25A04X      | 5/13/2021     | 2.5      | No        | 60 a             |         |
|                 | P18A98X      | 4/13/2021     | 1.8      | Yes       | 56 a             | 0.17    |
|                 | P18A98X      | 5/13/2021     | 1.8      | Yes       | 57 a             |         |
|                 | P25A04X      | 4/13/2021     | 2.5      | Yes       | 61 a             | $\perp$ |
|                 | P25A04X      | 5/13/2021     | 2.5      | Yes       | 58 a             |         |

 $^{\rm a}$ Values denoted with the same letter within a trial are not statistically different at the significance level of 0.10

## **Key Takeaways**

- Trial 210001 displayed statistically significant differences based on planting date with the early planting date yielding higher.
- Four trials (210414, 210505, 210601, 210604) all displayed significant differences between the varieties tested, but not with planting dates.
- Three trials (210104, 210701, 210801) had no significant differences between treatments.
- Overall conclusion for best management practices of maturity and planting date is not possible.
- NOTE: The results presented are from replicated demonstration trials. Statistics are used to detect differences at a location and should not be interpreted beyond the single location.

bP-value = the calculated probability that the difference in yields can be attributed to the treatments and no other factors. For example, if a trial has a P-value of 0.10, there is 90% confidence the yield differences are in response to treatments. This is consistent for demonstration trials.