On-Farm Corn and Soybean Fertilizer Demonstration Trials

RFR-A1927

Jim Fawcett, extension field agronomist (retired) Andrew Weaver, Northwest Farm, ag specialist Lyle Rossiter, Allee Farm, superintendent Brandon Zwiefel, Northern Farm, ag specialist Jim Rogers, Armstrong Farm, ag specialist Zack Koopman, AEA Farm, ag specialist Shannon Hoyle, Northeast Farm, ag specialist Cody Schneider, Southeast Farm, co-manager Dominic Snyder, Muscatine Island, co-manager

Introduction

All cropping systems require fertilizer inputs to maintain crop yields. However, excess fertilizer, especially nitrogen (N) and phosphorus (P), can increase problems with water quality. Micronutrients are required for all crops. Starter fertilizer has been shown to occasionally increase corn yields. It is important for farmers to use the appropriate rates and methods of fertilizer application to optimize yields and minimize the impact on the environment. The purpose of these trials was to investigate the effect of various fertilizer practices on crop yield.

Materials and Methods

In 2019, nine corn trials and four soybean trials using various methods of fertilizing the crop were conducted (Tables 1 and 2). Most trials were conducted on-farm by farmer cooperators. Some of the trials were conducted on research farms. Strips were arranged in a randomized complete block design with at least three replications per treatment. Strip width and length varied from field-to-field depending on field and equipment size. All strips were machine harvested for grain yield.

In corn Trial 1, a split application of 100 lb/acre N at planting plus 50 lb/acre N at V10 was compared with an application of 150 lb/acre N at planting (Table 3). In Trial 2, an application of 1 qt/acre of Harvest PlusTM at V8 was compared with no Harvest PlusTM. Harvest PlusTM contains N, S, B, Mn, and Zn and is marketed by Stoller. In Trials 3 and 4, 3 gal/acre SOIL Cal® at V7 with N was compared with N alone. SOIL Cal® is 12 percent calcium and is marketed by Soil Services, Inc. In Trial 5, Nutriplant[®] AG at 8 oz/100 lb of seed was compared with no Nutriplant[®] AG. Nutriplant[®] AG is marketed by Amway and contains N, P, K, S, B, Co, Cu, Fe, Mn, Mo, and Zn. In Trial 6, 5 gal/acre of 7-24-6 in furrow was compared with no starter fertilizer. In Trial 7, various rates of N applied before planting and at V4 as urea and ESN were investigated. ESN is a slow release N fertilizer. This trial was conducted on sand with irrigation. In Trials 8 and 9, Pivot Bio ProvenTM was applied in furrow and compared with a control. Pivot Bio ProvenTM is marketed as an N producing microbial product. Trials 4 and 8 were on corn ground and the other trials were on soybean ground (Table 1).

In soybean Trials 1 and 2, BoostTM at 2 gal/acre at V5 to R2 was compared with a control. BoostTM is a molasses-based fertilizer with an analysis of 4-0-3-2S (Table 4). It is marketed by Midwestern BioAg. In Trials 3 and 4, Harvest PlusTM was applied at 1-2 qt/acre at R1-R3 and compared with a control.

Results and Discussion

In corn Trial 1, there was no difference in corn yield between the split application of N and the preplant application (Table 3). In Trial 2, Harvest PlusTM had no effect on corn yield. In Trials 3 and 4, SOIL Cal[®] had no effect on

corn yield. In Trial 5, Nutriplant[®] AG increased corn yield by 7 bushels/acre (P = 0.10). In Trial 6, the 7-24-6 starter fertilizer increased the corn yield by 4 bushels/acre (P = 0.09).

In Trial 7, there was an increase in corn yield with the sidedress application of both urea and ESN up to 80 lb N/acre. All treatments included a preplant application of 120 lb N/acre, so the optimum total rate was 200 lb N/acre. There was no difference in yield at each N rate between urea and ESN, indicating no advantage to the slow release N. Trial 7 was on a sandy soil with irrigation, which would increase N losses making the optimum rate higher than on most Iowa soils. At current corn and N prices, the recommended rate of N would be approximately 125 lb/acre on soybean ground. This is the Maximum Return to Nitrogen rate calculated using the corn nitrogen rate calculator at http://extension.agron.iastate.edu/soilfertility/n

rate.aspx. Weather conditions are important in

determining how corn responds to N rates and application timings, so different results might be seen in other years.

In Trials 8 and 9, Pivot Bio ProvenTM had no effect on corn yield.

In soybean Trials 1 and 2, BoostTM had no effect on soybean yield (Table 4). In Trials 3 and 4, Harvest PlusTM had no effect on soybean yield. Although micronutrients are essential for crop growth, most Iowa soils contain sufficient micronutrients for optimum yields.

NOTE: The results presented are from replicated demonstration trials. Statistics are used to detect differences at a location and should not be interpreted beyond the single location.

				Row		Planting		
Exp.				spacing	Planting	population	Previous	
no.	Trial	County	Variety	(in.)	date	(seeds/ac)	crop	Tillage
190111	1	Sioux	Pioneer PO306AM	30	6/3/19	34,000	Soybean	Disked
190205	2	Buena Vista	Channel CSX52 A18VT2 Pro	15	5/4/19	35,000	Soybean	Mulch till
190607	3	Adair	Pioneer PO919AM	30	4/23/19	34,000	Soybean	No-till
190610	4	Cass	Hoggenmeyer 7774	30	5/4/19	32,000	Corn	Vertical till
190614	5	Pottawattamie	Wyffles W6896RIB	30	4/22/19	34,000	Soybean	No-till
190805	6	Bremer	Wyffles 3488RIB SS	30	5/14/19	34,500	Soybean	No-till
190901	7	Muscatine	Pioneer P1197	30	5/10/19	34,000	Soybean	Soil finisher
190413	8	Hamilton	Dekalb DKC6087 SSRIB	30	4/26/19	33,800	Corn	Conventional
190811	9	Bremer	Pioneer 1197AMXT	30	5/5/19	34,500	Soybean	No-till

Table 1. Variety, row spacing, planting date, planting population, previous crop, and tillage prac	tices in the
2019 fertilizer trials on corn.	

Table 2. Variety, row spacing, planting date, planting population, previous crop, and tillage practices in the 2019 fertilizer trials on soybean.

Exp.		•		Row spacing	Planting	Planting population	Previous	
no.	Trial	County	Variety	(in.)	date	(seeds/ac)	crop	Tillage
190113	1	Sioux	Pioneer P19A14X	30	6/6/19	140,000	Corn	Field cultivate
190114	2	Sioux	Pioneer P19A14X	30	5/14/19	140,000	Corn	No-till
190504	3	Boone	Miller 2653 Liberty Link	30	5/26/19	140,000	Corn	Fall disk ripped, Spring field cultivate
190714	4	Washington	Pioneer P29A85L	30	6/12/19	160,000	Corn	Fall chisel, Spring soil finisher

Exp.			Yield	
no.	Trial	Treatment	(bu/ac) ^a	P-value ^b
190111	1	100 lb/ac N as 32% UAN preplant plus 50 lb/ac N as 32% UAN at		
		V10	195 a	0.42
		150 lb/ac N as 32% UAN preplant	197 a	
190205	2	Harvest Plus at 1 qt/ac at V8	238 a	0.57
		Control	237 а	
190607	3	SOIL Cal at 3 gal/ac with 140 lb/ac N as NH3 at V7	189 a	0.16
		140 lb/ac N as NH3 at V7	198 a	
190610	4	SOIL Cal at 3 gal/ac with 150 lb/ac N as NH3 at V7	188 a	0.29
		150 lb/ac N as NH3 at V7	184 a	
190614	5	Nutriplant AG at 8 oz/100 lb of seed	185 a	0.10
		Control	178 a	
190805	6	7-24-6 at 5 gal/ac in-furrow	235 a	0.09
		No starter	231 a	
190901	7	120 lb/ac N as ESN 4 days before planting plus 40 lb/ac at V4	196 c	< 0.01
		120 lb/ac N as ESN 4 days before planting plus 80 lb/ac at V4	230 b	
		120 lb/ac N as ESN 4 days before planting plus 120 lb/ac at V4	248 ab	
		120 lb/ac N as ESN 4 days before planting	164 d	
		120 lb/ac N as urea 4 days before planting plus 40 lb/ac at V4	202 c	
		120 lb/ac N as urea 4 days before planting plus 80 lb/ac at V4	240 ab	
		120 lb/ac N as urea 4 days before planting plus 120 lb/ac at V4	258 a	
		120 lb/ac N as urea 4 days before planting	163 d	
190413	8	Pivot Bio Proven at 119 oz/ac in-furrow	203 a	0.97
		No starter	203 a	
190811	9	Pivot Bio Proven at 12.8 oz/ac in-furrow	185 a	0.21
		No starter	192 a	

Table 3. Yield from corn fertilizer trials in 2019.

^aValues denoted with the same letter within a trial are not statistically different at the significance level of 0.05. ^bP-value = the calculated probability that the difference in yields can be attributed to the treatments and not other factors. For example, if a trial has a P-value of 0.10, then we are 90 percent confident the yield differences are in response to treatments. For P = 0.05, we would be 95 percent confident.

Table 4. Yield from soybean fertilizer trials in 2019.

Exp.			Yield	
no.	Trial	Treatment	(bu/ac) ^a	P-value ^b
190113	1	Boost at 2 gal/ac at V5 Control	65 a 66 a	0.90
190114	2	Boost at 2 gal/ac at R2 Control	64 a 64 a	0.41
190504	3	Harvest Plus at 1 qt/ac at R1 Control	56 a 59 a	0.30
190714	4	Harvest Plus at 2 qt/ac at R3 Control	61 a 63 a	0.19

^aValues denoted with the same letter within a trial are not statistically different at the significance level of 0.05. ^bP-value = the calculated probability that the difference in yields can be attributed to the treatments and not other factors. For example, if a trial has a P-value of 0.10, then we are 90 percent confident the yield differences are in response to treatments. For P = 0.05, we would be 95 percent confident.