# **Evaluation of Foliar Fungicides** on Soybeans in Central Iowa

## RFR-A17102

Daren Mueller, associate professor Yuba Kandel, associate scientist Stith Wiggs, research associate Department of Plant Pathology and Microbiology

### Introduction

Foliar fungicides were assessed on soybeans for foliar disease management and yield response across seven Iowa State University research station locations including the Northwest Farm (Sutherland), Northern Farm (Kanawha), Northeast Farm (Nashua), Central Iowa Farms (Ames), Armstrong Farm (Lewis), McNay Farm (Chariton), and Southeast Farm (Crawfordsville) (Figure 1).

#### **Materials and Methods**

The experimental design at each location was a randomized complete block with four replications. Details on cultivar, planting date, population, pesticide applications, disease assessment date, and harvest date are listed in Table 1. Fungicides (Table 2) were applied with a self-propelled research sprayer at growth stage R3 (beginning pod) at all seven locations, unless otherwise noted. Disease was assessed when soybeans were at the R6 (full seed) growth stage. Septoria brown spot (caused by Septoria glycines) progression was assessed by measuring the height of the highest infected leaf at two sites/plot and dividing this by the canopy height and multiplying by 100. Other foliar diseases were assessed by estimating the percent of leaf area covered by the disease on 10 leaves in the upper canopy. Only diseases greater than 1 percent severity were analyzed and included in this report.

Total seed weight/plot and moisture were measured with a 2009 Almaco SPC20 research plot combine. Seed weight was adjusted to 13 percent moisture and yield was calculated.

### **Results and Discussion**

The 2017 growing season varied greatly for precipitation and temperature across the state. During August, a critical time of soybean disease development, the precipitation varied widely. Northern sites received less precipitation in August than other sites. The temperature was lower than average with many days below 90°F.

There were two fungal diseases with measureable levels of disease at one or more locations—Septoria brown spot and Cercospora leaf blight (caused by *Cercospora kikuchii*). Frogeye leaf spot (caused by *Cercospora sojina*) also was identified at several locations, but at very low levels.

Yields averaged between 53.0–81.9 bushels/acre, depending on location. Yields are shown in Table 3. Yield responses to foliar fungicide application were minimal at all locations. Although variation in yield response to specific fungicide treatments occurred at certain locations, no single fungicide was observed over the seven locations to positively affect yield or disease. The average yield response for all R3 applied fungicides across all locations was 0.3 bushels/acre.

This information is from a single year (2017) and is not meant to be representative of pesticide performance every year. Additional research and analyses are required to fully understand the effect of these fungicides on soybean in Iowa.

### Acknowledgements

This research was partially funded by Iowa Soybean Association checkoff dollars. The

authors would like to thank all the research farm staff for their help during the growing season to successfully conduct these trials.

|                          |          |                 |            | Disease |            |         |
|--------------------------|----------|-----------------|------------|---------|------------|---------|
|                          | Planting |                 | Planted    | Spray   | assessment | Harvest |
| <b>Research location</b> | date     | Cultivar        | population | date    | date       | date    |
| Ames (C)                 | May 30   | Asgrow 2733     | 125,000    | Aug 4   | Sep 9      | Oct 19  |
| Lewis (SW)               | May 15   | Pioneer P25T51R | 140,000    | Jul 24  | Sep 12     | Oct 23  |
| Crawfordsville (SE)      | June 1   | Asgrow 3334     | 165,000    | Aug 8   | Sep 13     | Oct 26  |
| Kanawha (NC)             | May 13   | Pioneer P22T69R | 150,000    | Aug 1   | Sep 16     | Oct 19  |
| Chariton (SC)            | May 30   | Asgrow 3686     | 150,000    | Jul 24  | Sep 12     | Oct 25  |
| Nashua (NE)              | May 29   | Kruger K2X-2052 | 175,000    | Jul 25  | Sep 14     | Oct 9   |
| Sutherland (NW)          | May 30   | Syngenta S24-K2 | 140,000    | Aug 3   | Sep 13     | Oct 20  |

Table 1. Research location, planting date, cultivar, planted population, fungicide application (spray) date, disease assessment date, and harvest date for seven trials throughout Iowa in 2017.

#### Table 2. Fungicides and rates evaluated in the statewide trials in Iowa in 2017.

| Product <sup>a</sup> | Timing | FRAC code | Rate (fl oz/ac) |
|----------------------|--------|-----------|-----------------|
| Untreated control    |        |           |                 |
| Aproach              | R3     | 11        | 6.0             |
| Aproach Prima        | R3     | 3+11      | 8.0             |
| Custodia             | R3     | 3         | 8.6             |
| Fortix               | R3     | 3+11      | 5.0             |
| Preemptor            | R3     | 3+11      | 5.0             |
| Priaxor              | R3     | 11+7      | 4.0             |
| Quadris              | R3     | 11        | 6.0             |
| Quadris Top          | R3     | 3+11      | 8.0             |
| Quilt Excel          | R3     | 3+11      | 10.5            |
| Stratego YLD         | R3     | 3+11      | 4.0             |
| Topguard EQ          | R3     | 3         | 5.0             |
| Trivapro             | R3     | 3+11+7    | 13.7            |
| Zolera FX 3.34 SC    | R3     | 3+11      | 5.0             |

<sup>a</sup>All fungicides applied with nonionic surfactant (Induce at 0.3% v/v) unless otherwise noted.

|                   | Brown spot       |              |               |  |
|-------------------|------------------|--------------|---------------|--|
| Fungicide         | (%) <sup>b</sup> | Moisture (%) | Yield (bu/ac) |  |
| Untreated control | 74.7             | 12.4         | 61.7          |  |
| Aproach           | 68.0             | 12.3         | 72.3          |  |
| Aproach Prima     | 71.5             | 12.6         | 62.5          |  |
| Custodia          | 72.6             | 12.8         | 60.7          |  |
| Fortix            | 70.9             | 12.6         | 59.6          |  |
| Preemptor         | 72.9             | 12.5         | 62.8          |  |
| Priaxor           | 72.4             | 12.6         | 57.2          |  |
| Quadris           | 73.5             | 12.4         | 61.1          |  |
| Quadris Top       | 77.7             | 12.6         | 60.9          |  |
| Quilt Excel       | 72.9             | 12.6         | 60.3          |  |
| Stratego YLD      | 73.9             | 12.3         | 62.5          |  |
| Topguard EQ       | 72.0             | 12.6         | 62.0          |  |
| Trivapro          | 72.7             | 12.4         | 59.7          |  |
| Zolera FX 3.34 SC | 72.4             | 12.6         | 55.1          |  |
| P value           | 0.20             | 0.34         | 0.32          |  |

| Table 3. Treatments of fungicides evaluated for management of foliar disease and yield response at the | ) |
|--------------------------------------------------------------------------------------------------------|---|
| ISU Central Iowa Farms, Ames, IA, in 2017. <sup>a</sup>                                                |   |

 $^{a}$ All fungicides applied with nonionic surfactant (Induce at 0.3% v/v) unless otherwise noted.

<sup>b</sup>Disease progression in the canopy measured by highest leaf with brown spot divided by total canopy height. \*Different (P < 0.1) from untreated control.

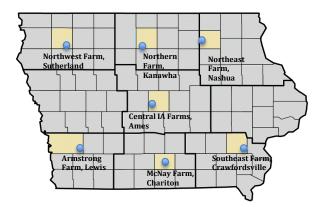



Figure 1. Map of field locations for the 2017 fungicide trials.