Quasicrystal Tilings in 3-Dimensions and their Empires

Dugan Hammock, dugan@quantumgravityresearch.org Fang Fang, fang@quantumgravityresearch.org Klee Irwin, klee@quantumgravityresearch.org

April 10, 2018

Abstract

The cut-and-project method for computing quasicrystals is a robust algorithm which provides a mathematical framework for more detailed analysis of the tilings they generate. The method is characterized by a lattice $\Lambda \subset \mathbb{E}^N$ and its projections onto an affine subspace $\pi : \Lambda \to \mathbb{E}_{\parallel} \simeq \mathbb{R}^n$. The cut-window $\mathcal{W} \subset \mathbb{E}_{\perp}$ inside the orthogonal complement of \mathbb{E}_{\parallel} provides a filter for determining which points are incorporated into a particular tiling, $\mathcal{T} \subset \mathbb{E}_{\parallel}$: a point λ_{\parallel} is included in \mathcal{T} if and only if λ_{\perp} falls within the cut-window \mathcal{W} . The cut-window contains regions corresponding to individual tiles, a particular tile is attached to a point λ_{\parallel} if and only if λ_{\perp} falls within that tile's corresponding region inside \mathcal{W} . Taking the intersections of overlapping regions decomposes the cut-window into sectors which correspond to individual vertex configurations. Computing the relative volumes of these regions gives analytical values for the vertex frequencies. We also present an algorithm for defining a region in the cut-window which corresponds to the forced tiles, local configuration, and the empire given an arbitrary set of initial tiles. We focus on tilings of \mathbb{R}^3 and present constructions and analysis for the Ammann tiling (projection of $\Lambda = \mathbb{Z}^6 \to \mathbb{R}^3$) as well as a quasicrystal with 36 vertex types ($\Lambda = D_6 \to \mathbb{R}^3$) as studied extensively by Kramer.

Figure 1: Various sectors in the cut-window corresponding to three different vertex types in a quasicrystal defined by a cut-and-projection of the D_6 lattice onto \mathbb{R}^3 .