Brick tilings - new insights

Shelomo I. Ben-Abraham
Department of Physics, Ben-Gurion University of the Negev, IL-8410501 Beer Sheba, Israel
shelomo.benabraham@gmail.com

The three-dimensional brick tiling and its color code were introduced at ICQ 13 [1,2] as a generalization of the table tiling and its color code [3]. Here we present their generalizations to arbitrary natural dimension. We also show how to reduce the color code.

In d dimensions, a standard brick (in what follows, simply brick) is a d-dimensional cuboid with edges of $2^{0}=1,2^{1}=2, \ldots, 2^{d-1}$ units. The prototiles of the brick tiling will be called protobricks and denoted by \mathbf{B}_{d}. A protobrick consists of $2^{d(d-1) / 2}$ unit cubes \mathbf{q}_{d}. Thus, for instance, in dimensions $2,3,4$ the number of unit cubes in a protobrick is $2,8,64$, respectively. In d dimensions the protobricks come in d ! orientations labeled by colors. A g times inflated brick will be denoted $\mathbf{B}_{d}(g)$; thus, $\mathbf{B}_{d}(0) \equiv \mathbf{B}_{d}$ is a protobrick.
A maximal and faithful color code (alias labeling) of the unit cubes \mathbf{q}_{d} in $d \mathrm{D}$ needs $d!2^{d(d-1) / 2}$ "colors". That is $2 \times 2=4$ in $2 \mathrm{D}, 6 \times 8=48$ in $3 \mathrm{D}, 24 \times 64=1536$ in 4 D , and so forth. Thus, while in principle possible, it is impracticable in any dimension higher than 3D.
While I can now in principle construct a brick tiling and its color code in any dimension I will focus on the brick tiling in 4D.

A brick tiling in any dimension $d \mathrm{D}$ can be constructed recursively. The inflated brick $\mathbf{B}_{d}(1)$ is partitioned along its longest edge L into its central half C and two peripheral quarters P, as shown in Fig. 1. A cut through C perpendicular to L reproduces the inflated brick $\mathbf{B}_{d-1}(1)$ of $(d-1) \mathrm{D}$. A quarter P in $d \mathrm{D}$ contains 2^{d-2} parallel protobricks \mathbf{B}_{d} with their longest edges perpendicular to L and their second longest edges parallel to L. This works in all dimensions including even 0 D and 1 D .

Figure 1. Two-dimensional isometric projection of four-dimensional brick inflation.

In dimensions 3D and higher the color code can be reduced to one half by making use of the mirror symmetries. However, this necessitates seeding an oriented and labeled protobrick. In 3D, the full code contains 48 labels $(i k)(i=0, \ldots, 5 ; k=0, \ldots, 7)$. The reduction is performed by identifying $k=6$ with 0,7 with 1,4 with 2 and 5 with 3 . In dimensions higher than 3D it would be analogous, but as already said, it would be quite impractical.

1. S. I. Ben-Abraham \& D. Flom, J. Phys.: Conf. Ser. 809 (2017) 012024.
2. D. Flom \& S. I. Ben-Abraham, J. Phys.: Conf. Ser. 809 (2017) 012025.
3. E. A. Robinson Jr., Indag. Mathem. N.S. 10 (1999) 581-599.
