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Summary and Implications 

Accuracy of genomic estimated breeding values 

obtained using the standard marker effect model was 

compared with models that account for population structure, 

either by applying a transmission disequilibrium test (TDT) 

approach or by fitting polygenic effects. The TDT approach 

was inferior to the standard model, whereas fitting 

polygenic effects in addition to marker effects increased the 

accuracy of estimated breeding values of the progeny of 

training individuals but also seven generations after training. 

Thus, fitting polygenic effects enhances utilization of 

genomic information both in the short and long-term. 

  

Introduction 

Linkage disequilibrium (LD) between quantitative trait 

loci (QTL) and genetic markers is an important source of 

information in genomic prediction, besides co-segregation 

of QTL and marker alleles and additive-genetic 

relationships captured by genetic markers. Quantitative trait 

loci mapping studies have shown that accounting for 

population structure, either by a transmission disequilibrium 

test (TDT) or by fitting polygenic effects in addition to 

markers, reduces spurious associations and thereby decrease 

the number of false positive QTL. Applying such methods 

to genomic prediction may reduce prediction errors and 

therefore increase accuracy of the resulting genomic 

estimated breeding values (GEBVs). Previous genomic 

selection studies have shown that modeling polygenic 

effects in addition to genetic markers results in higher 

accuracy of GEBVs for progeny of training individuals. 

However, this advantage may not only be due to a better 

utilization of LD information but also result from better 

exploiting relationship information that is not captured by 

genetic markers.  The objective of this study was to compare 

standard genomic prediction methods with approaches that 

account for population structure. 

 

Materials and Methods 

The accuracy of GEBVs from the following four 

models were compared: 1) the standard marker effects 

model, 2) the same model with polygenic effects, 3) a 

genomic TDT (GTDT) model that fits for each marker a 

parent average effect and a mendelian sampling effect, and 

4) the GTDT model with polygenic effects. Stochastic 

simulations were conducted with varying numbers of QTL 

and genetic markers, training data size and extent of LD, 

while simulating an unbalanced population structure with 

influential sires. Accuracies were obtained for both progeny 

of the training generation and for individuals seven 

generations after training.  

 

Results and Discussion 

As expected, accuracies decreased across generations 

due to the decay of genetic relationships captured by genetic 

markers. The decay of accuracy was larger with more QTL 

because there was less accuracy due to LD and, hence, 

accuracy due to the decay of relationships has a larger 

effect. 

Fitting polygenic effects increased accuracies for all 

seven validation generations, for all scenarios, and for both 

the standard and the GTDT models with five QTL but not 

for GTDT models with 50 QTL (Table1).  Accuracies from 

models with polygenic effects tended to be higher in early 

generations after training, because polygenic effects not 

only enhanced the LD signal but also captured the 

remaining relationship information that was not exploited 

by markers, depending on the extent of LD across 

chromosomes and training size. The increase in accuracy in 

the first generation after training obtained by the standard 

model with polygenic effects was higher for the larger 

training size (Table 1), because markers captured less 

relationship information as the number of families in the 

training increased, as shown by Habier et al. (2012). The 

increase in accuracy was also higher for the low LD case, 

because accuracy due to LD was lower such that less 

genetic variation was captured by LD information, leaving 

more room for relationship information to be picked up by 

polygenic effects.  In the last generation, the increase in 

accuracy with polygenic effects was due to a better 

utilization of LD information, which may result from 

removing spurious LD due to population structure and 

thereby decreasing false positives markers effects and 

prediction errors. However, the increase in accuracy of 0.01 

on average was rather small.   

The GTDT models almost always resulted in lower 

accuracy than the standard models and did not better 

account for population structure, as they showed a similar 

increase in accuracy as the standard models with polygenic 

effects for a low number of QTLs. In conclusion, the 

standard markers effects models with polygenic effects 

improved the utilization of LD information when predicting 

genomic breeding values. 
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Table 1. Accuracy of genomic prediction of the standard marker effects model and for genomic TDT models with and 

without polygenic effects in the 1
st
 and 7

th
 generation after training using method BayesB with  of 0.95. The 

simulation scenarios were varied with five and 50 QTL/chromosome, different amounts of LD, training size (2000 

individuals) and marker density (1000 markers). 

 

 

            Models 

 

Scenario 

Standard marker effects model Genomic TDT model 
1
 

Without 

Polygenic effects  

With  

Polygenic effects  

Without 

Polygenic effects  

With  

Polygenic effects 

Generation 
2
  Generation  Generation   Generation 

1 7  1 7  1 7  1 7 

5 QTL 0.73 0.60  0.75 0.61  0.67 0.51  0.69 0.52 

5 QTL, low LD 0.66 0.51  0.71 0.52  0.64 0.42  0.66 0.44 

5 QTL, double training size  0.72 0.62  0.76 0.63  0.70 0.56  0.72 0.58 

50 QTL 0.63 0.43  0.67 0.44  0.60 0.36  0.61 0.36 

50 QTL, double marker density 0.72 0.54  0.74 0.54  0.66 0.45  0.66 0.45 

50 QTL, double training size 0.65 0.46  0.70 0.47  0.66 0.39  0.66 0.40 

 
1
 Transmission Disequilibrium Test   

2
 Generation after training 


