Evaluation of Mixing Wet Distillers' Grains with Ground Hay in a Bunker and Covering Modified Distillers' Grains to Extend Storage Life – A Demonstration Project

A.S. Leaflet R2411

Daryl R. Strohbehn, professor of animal science; Daniel D. Loy, professor of animal science; H. Joe Sellers, area extension livestock specialist; Kevin Mayer and Dennis Maxwell, ag specialists

Summary

Low cost storage methods for MDGS and WDGS proved to be effective with total storage shrink amounting to 9.28% and 9.83%, respectively. Covering piles of MDG with plastic was the lowest cost technique per ton, however, it is important to remember that this methodology will not work for WDGS due to its high moisture content. On a very positive note, the WDGS when mixed with 20% tub ground hay on as moisture basis proved to be an effective way to store this product while utilizing and enhancing some very low quality forage. These two methods of storage proved to be much lower in cost than bagging with a packing machine and equally as effective in preventing storage shrink.

The MDGS was utilized successfully in supplementing both lactating fall calving cows and pregnant spring calves. MDGS when taken from their piles was mixed with 15% tub ground hay and then fed along a fence line to reduce contamination due to foot traffic and fecal droppings.

Introduction

The ethanol industry is rapidly expanding. As much as 40% of the energy cost is associated with drying of the feed co-products. Distillers' grains are excellent sources of nutrients for the diets of beef cattle, but have a short shelf life. To expand the use of wet distillers feeds to more producers, longer term, low-cost storage methods are required. Studies done in 2006-07 showed that bagging these products was an effective management practice, but was higher than acceptable in cost to some producers. Additionally, availability of bagging equipment is limited, thus encouraging other storage methodologies be investigated.

Materials and Methods

Two different storage methodologies were selected for demonstration and evaluation at the McNay Research Farm, Chariton, Iowa. The first was a large round bale bunker type of storage methodology with a farmer-friendly mixture of wet distillers grain with solubles (WDGS) and ground hay and the second storage methodology was covered ground piles of modified distillers grain with solubles (MDGS). Delivery of 102.25 tons of WDGS in four

walking bed semi loads (Picture 1) took place on September 26 and 27, 2007 and three walking bed semi loads of MDGS were delivered (Picture 2) on October 9, 2007.

Mixed WDGS and Hay in a Bunker

The storage procedure for this product was an 80:20 mix on an as fed basis using 102.25 tons of WDGS and 26.8 tons of ground hay mixed via a loader tractor and packed into a large round bale bunker system. A base of packed limestone was under the bunker which was constructed using 20 6' large round bales (Picture 3). These large round bales were covered with 4 mm plastic to assist in excluding air from getting into the packed mixture, thus aiding in the prevention of spoilage.

Prior to arrival of the first load of WDGS all of the hay was ground. To assist in getting the correct combination of 80% WDGS and 20% ground hay the custom tub grinder was asked to create 4 piles of hay approximating 12,500 lbs which when incorporated with a 25 ton load of WDGS would arrive at the 80:20 ratio of WDGS to ground hay. Before the first WDGS load arrived a layer of hav was spread in the bunker. After unloading the WDGS, additional ground hay was incorporated via the loader tractor. Mixing of the WDGS and ground hay was done by working the products back and forth with the front wheel assist loader tractor; the spinning of the wheels and the loader bucket accomplished the mixing process. Typically it took between 1 and 1.5 hours per load of WDGS for the mixing and packing of the product into the bunker (Picture 4). The amount of time required to mix and pack a load of WDGS and hay improved with operator experience. After the four loads of WDGS were mixed and packed into the bunker the end product was covered with 6 mm plastic and then weighted down with ground limestone (Pictures 5 and

Table 1 contains the average analysis of the WDGS and ground hay prior to mixing and then the average for the mixed WDGS/Hay product after it was stored in the bunker. An important aspect to note from the analysis is that the percent calcium was escalated from the two raw ingredients to the mixed product after storage. This was likely due to the ground limestone which served to hold down the plastic covering.

Piled Modified Distillers Grains with Solubles

The second source of distillers' grains was Modified Distillers Grains with Solubles (MDGS) which was stored in piles. Three loads ranging in size from 48,300 to 52,420

lbs had delivery temperatures ranging from 113 to 134 degrees F.

Storage of the MDGS was on the ground with approximately 1" to 2" of packed crushed limestone and then covered with 4mm black plastic. As shown in picture 9 each load of MDGS was piled into a pyramid with a loader tractor prior to covering with plastic. Each pyramid was covered with plastic and then ground limestone was carefully poured onto the plastic and the weight of that created a semi-tight seal with the ground, thus preventing air from entering the plastic dome (Picture 10). During the storage period no problems were incurred with rodents or other animals tearing into the plastic, however, producers have reported this as a potential problem.

Analysis of random samples at MDGS delivery showed the loads averaged 51.1% dry matter, 26.0% crude protein and 91.8% TDN (Table 3).

Results

Extreme ice/snow conditions and electrical power outages at the McNay Research Farm delayed the initiation of cattle feeding trials, thus the opening of the bunker occurred on January 3, 2008 or 98 days after mixing and packing into the bunker (Pictures 7 and 8). The last feeding day was June 3, 2008 which was 250 days after mixing and packing. On average this mixed product remained stable throughout the feeding period. Periodical analysis from late January through late April averaged 55.17% moisture and protein remained at 22.09% compared to 22.46% at the time of placement into the bunker.

A total of 129.05 tons of mixed product were stored in the large bale bunker (Table 2). On an as moisture basis the product mix was 79.2% WDGS and 20.8% tub ground hay which on a dry matter basis makes it 59.4% WDGS and 40.6% hay. Complete feeding records were maintained and total feed taken from the bunker and offered was accumulated during the feed out. Any feed determined to be spoiled or not fit for cattle consumption was piled as discard and weighed. As shown in table 2 the total shrink and unaccounted for disappearance was 9.83% on an as fed basis and when calculated, 9.95% on a dry matter basis.

Again because of extreme ice and snow conditions at the McNay Research Farm there was a delay in the start of feeding the MDGS as a supplement in both lactating fall calving cows and pregnant spring calving cows.

Throughout the winter and spring; ice, snow and then muddy conditions impacted feeding conditions. Despite this, the first covered ground pile of MDGS was opened on January 2, 2008, 85 days after delivery and storage (Picture 11 and 12). It was fed to lactating fall calving cows (Picture 13), pregnant spring calving bred heifers and mature spring calving cows. Two loads or piles of the MDGS were fed from early January through mid February, but then extreme muddy field conditions prevented the use of the remaining third load until early May. Visual observations showed that it stored very well in the plastic covered piles; virtually no

spoilage occurred and there was no discard. As picture 14 shows even the load uncovered on May 7 had excellent quality. In two places under the plastic there were 2 to 4 inches of surface spoilage and some small surface spots of green mold development which size ranged from 1 to 3 inches in diameter. No discard was experienced in the last load which had been under plastic cover for 211 days. The MDGS was mixed in an as fed ratio of 85% MDGS and 15% ground hay and then offered as a supplement to cows either being grazed on cornstalks or being limit fed large round bales of hay. Palatability of this mix was excellent and the cows readily consumed it without hesitation.

As cattle were fed out of the MDGS piles all feedings were weighed and recorded, thus allowing for the calculation of storage shrinkage. As table 4 indicates shrinkage of the MDGS in each load had a narrow range of 7.2 to 11.3% with an average loss of 9.28% for the 75.32 tons delivered to the farm.

Compilation of Storage Costs

Any time feed is stored, costs are incurred; distillers' grains are no exception to this rule. Table 5 shows the accumulated costs on a cash-versus non-cash cost basis. Estimated purchase cost delivered to the McNay Research Farm for the WDGS was \$60 per ton, while MDGS because it is drier was higher at \$90 per ton. Items included in evaluating total cost of the stored product include hay additions, tub grinding, storage site preparation, plastic coverings, labor to store the products, and tractor costs including fuel. Farm labor and tractor cost was considered to be non-cash costs. MDGS appears to be much higher from a total cost standpoint, but if one puts the two products on a 100% dry matter basis MDGS costs \$208.39 per ton and WDGS + Hay costs \$203.01 per ton. Keep in mind the MDGS is higher in protein and energy content, thus on a nutrient basis it is slightly lower cost.

An important consideration to keep in mind is the added cost to store these products is quite different. Piling the MDGS on the packed limestone and covering with plastic only cost \$4.06 per ton, while putting the WDGS + Hay mix into the bunker cost \$16.53 per ton. Additionally, the amount of labor necessary to accomplish these two different practices is considerable. However, it needs to be remembered there is no way one can store WDGS using this covered pile technique, therefore, it is necessary to make dry forage additions, thus allowing it to be stored for extended periods of time. The other advantage of the mixed WDGS with forages is that it enhances the nutritional value of poor quality forages and makes a palatable extender for this wet byproduct. But this added cost does reinforce the idea that WDGS needs to be purchased at a discount due to the added cost of transporting the extra moisture plus the added costs of storing in this correct manner.

Acknowledgements

The authors wish to express their gratitude to the Iowa Energy Council for funding this project and the farm staff at the McNay Research Farm for their diligence in total project management.

Table 1. Analysis of wet distillers' grains and ground hay used at ISU McNay Farm prior to and at placement into bunker (100% dry matter basis).

<u>Item</u>	Wet Distillers' Grain*	Ground Hay	Mixed Product into Bunker
Dry Matter	33.49%	87.33%	45.21%
Moisture	66.51%	12.67%	54.79%
Crude protein	28.49%	9.27%	22.46%
ADF	13.49%	42.78%	30.40%
NDF	21.02%	64.10%	40.20%
Fat	11.31%		7.56%
Ash	6.19%		
Calcium	.04%	.49%	1.94%
Phosphorus	.88%	.22%	.57%
Magnesium	.33%	.21%	.27%
Potassium	1.10%	1.57%	1.40%
Sulfur	.71%	.20%	.50%
TDN	87.67%**	55.57%***	na
NEm	98.57 Mcal/cwt**	52.74 Mcal/cwt**	** na
NEg	67.75 Mcal/cwt**	27.29 Mcal/cwt**	* na
NEl	92.17 Mcal/cwt**	56.50 Mcal/cwt**	** na

^{*}average of 4 samples going into storage

na = not available

Table 2. Summary of mixing	and bunker stora	age of WDGS with t	ub ground hay.
			Dry Matter
	As is Basis	% of Total	<u>Basis</u>
Purchased Wet DG	204,500	79.2%	68,487
Custom tub ground hay	53,592	20.8%	46,802
Total	258,092		115,289
	<u>Bunke</u>	r Stored Mixed Produ	ıct Fed
148 day Heifer trial	175,326	67.93%	79,265
Spring calving cows	57,400	22.24%	25,951
Total fed	232,726	90.17%	105,216
	<u>%</u>	WDGS/Hay Mix Shr	<u>ink</u>
Discarded spoiled mix	10,400	4.03%	4,702
Unaccounted for shrink	14,966	5.80%	6,766
Total Shrink	25,366	9.83%	11,468

^{**}determined by OARDC

^{***}determined by ADF

Table 3. Analysis of modified distillers' grains used at ISU McNay Farm (100% dry matter basis).

<u>Item</u>	Modified Distillers' Grain*	
Dry Matter	51.13%	
Moisture	48.87%	
Crude protein	26.04%	
ADF	8.60%	
NDF	21.68%	
Fat	14.87%	
Ash	6.18%	
Calcium	.04%	
Phosphorus	1.08%	
Magnesium	.40%	
Potassium	1.40%	
Sulfur	.85%	
Manganese	21 ppm	
Zinc	76 ppm	
Copper	6 ppm	
Iron	115 ppm	
Sodium	.34%	
Chloride	.20%	
TDN	91.82%**	
NEm	104.06 Mcal/cwt**	
NEg	72.35 Mcal/cwt**	
NEI	96.80 Mcal/cwt**	
•	<u>-</u>	·

^{*}average of 3 samples going into storage

Table 4. Summary of storing and feeding modified distillers' grains with solubles.

	-	
	<u>lb.</u>	
MDGS into plastic covered piles, total purchased	150,640	
Load 1 purchase	48,300	
Load 2 purchase	49,920	
Load 3 purchase	52,420	
Amount fed from plastic covered piles, total fed	136,658	
Fed from Load 1	43,717	
Fed from Load 2	44,295	
Fed from Load 3	48,646	
Total % Shrink	9.28%	
% shrink: Load 1	9.49%	
% shrink: Load 2	11.27%	
% shrink: Load 3	7.20%	

^{**}determined by OARDC

Table 5. Analysis of cost for bunker and plastic covered piles of distillers' grains with and without shrink accounting.

	Modified DGS		Wet DC	S + Hay	
_	Per Ton	Total	Per Ton	Total	
Purchased Distillers' Grains		150,640		204,500	
Hay Additions				<u>53,592</u>	
Total		150,640		258,092	
Cash Costs					
Delivered Cost Distillers' Grains	\$90.00	\$6,778.80	\$60.00	\$6,135.00	
Hay – Poor quality @\$30/bale			\$6.23	\$803.88	
Tub grind poor quality hay			\$2.48	\$320.00	
Labor for storage site preparation	.027 hrs	2 hrs	.031 hrs	4 hrs	
MDGS-2 hrs					
WDGS-4 hrs.					
Labor for tub grinding hay			.031 hrs	4 hrs	
Labor to cover storage site	.020 hrs	1.5 hrs	.039 hrs	5 hrs	
Labor to pack bunker			.054 hrs	7 hours	
Large hay bales for bunker sides-20			\$4.65	\$600	
bales poor quality					
Ground limestone	\$.93	\$70.00	\$1.39	\$180.00	
WDGS-18 tons					
MDGS-7 tons					
Amount and cost of plastic	\$1.86	\$140.00	\$1.30	\$168.00	
MDGS-1 roll of 50'x100'					
WDGS-1 roll of 50'x100' and					
2 rolls of 10'x50'	DO 10	427 00	44.0	Φ0.51.00	
Cost of fuel: $1 \text{ or } 2 - 85 \text{ hp tractors}$	\$0.48	\$35.90	\$1.95	\$251.33	
(.044 gal/hp/hr** & \$3.20/gal	402 - 4	*= 0= 1 = 0		40.450.54	
Total Cash Cost	\$92.76	\$7,024.50	\$78.00	\$8,458.21	
Total cash cost accounting for shrink	\$102.25	\$7,743.06	\$86.50	\$9,380.29	
Non-Cash Costs	*	A =	<i>*</i>	** **********************************	
Cost farm crew labor (\$15/hr)	\$.70	\$52.50	\$2.32	\$300.00	
Cost of 2-85 hp tractors	\$.60	\$45.00	\$2.44	\$315.00	
Total non-cash cost	\$1.30	\$97.50	\$4.76	\$615.00	
Total non-cash cost accounting for	\$4.30	\$107.47	\$5.28	\$682.05	
shrink	ψ1.50	ΨΙΟΛ.ΙΛ	Ψ3.20	\$30 2 .03	
Total all costs	\$94.06	\$7,122.00	\$82.76	\$9,073.21	
Total all costs accounting for shrink	\$106.55	\$7,850.53	\$91.78	\$10,162.34	

^{**}ISU Ag & Biosystems Engineering fuel estimate

Picture 1. Delivery of wet distillers' grains.

Picture 2. Delivery of modified distillers grains.

Picture 3. Large round bale bunker with plastic lining on limestone.

Picture 4. Mixing WDGS and ground hay in bunker.

Picture 5. WDGS + Hay packed in bunker prior to covering.

Picture 6. Plastic covered WDGS + Hay bunker.

Picture 7. Wet DG-Hay mix 1/11/08.

Picture 9. Piling MDGS prior to covering.

Picture 10. Sealing down plastic with ground limestone.

Picture 11. Opening MDGS pile 1/2/08.

Picture 12. MDGS pile 1/11/08 after 9 days feeding.

Picture 13. Lactating cows fed MDGS-hay mix ration.

Picture 14. Last MDGS load opened May 7, 2008.