High-Altitude
 Balloon
 Atmospheric Database

Presenter: Natalie A. Ramm

Presentation Outline

- Introduction
- Purpose and Use of This Database
- Notes and Future Work
- Conclusion
- Acknowledgements

Introduction

- A Few Uses of High Altitude Balloons
- Satellite Sensor Testing
- Student Experiments
- Importance of Balloon Retrieval
- Guessing Gas Amount
- Helium Shortage*
- Potential Waste of Both Time and Money
- Database Information
- Tolex Balloons from Kaymont Consolidated Industries
- Helium and Hydrogen Tanks Rented from Indiana Oxygen
- Currently a Microsoft Excel Workbook
*"Dwindling Stockpile of Helium Causes Concerns by Brad Palmer from The Washington Post, Published May 12, 2012 , Accessed June 15, 2012 from The Washington Post website.

Purpose

- Provide Useful Atmospheric Properties
- Provide Balloon Properties
- Assist in the Estimation of Maximum Balloon Altitude
- Provide Multiple Charts and Graphs for the use in Analyzing Balloon and Atmospheric Properties

Database: Atmospheric Properties

- Speed of Sound
- Dynamic Viscosity
- Kinematic Viscosity
- Mean Air

Particle Speed

- Mean Collision Frequency
- Mean Free Path
- Mole Volume

2 Allitude		Temp atmo.	Speed of Sound	Dynamic Viscosity	Kinematic Viscosity	Mean Air Particle Speed	Mean Collision frequency	Mean free Path	Mole Volume
3 (km)		(K)	(mis)	(11s m^{2})	(m²)	(ms)	Hz (11s)	(m)	$\mathrm{m}^{\text {2 }}$ kmol
4	0	288.15	340.294	1.7894E-05	1.4607E-05	459.945	$6.9189 E+09$	6.6332E-08	23.64
5	1	281.65	336.435	1.7579E-05	1.5813E-05	453.740	6.2070 E+09	7.3095E-08	26.06
6	2	275.15	332.532	1.7260E-05	1.7147E-05	448.476	$5.5554 E+09$	8.0728E-08	28.78
7	3	268.66	328.584	1.6938E-05	1.8626E-05	443.151	$4.9588 \mathrm{E}+09$	8.9367E-08	31.86
8	4	262.17	324.599	1.6612E-05	2.02755-05	437.763	4.4141E+09	9.9173E-08	35.35
9	5	255.68	320.545	1.6282E-05	2.2110E-05	432.310	$3.9180 E+09$	1.1034E-07	39.33
10	6	249.19	316.452	1.5949E-05	2.4162--05	426.789	3.4671 E+09	1.2310E-07	43.88
11	7	242.70	312.306	1.5612E-05	2.6461E.05	421.198	$3.0584 E+09$	$1.3772 E^{-07}$	49.09
12	8	236.22	308.105	1.5271E-05	2.9044--05	415.533	$2.6888 \mathrm{E}+09$	1.5454E-07	55.09
13	9	229.73	303.848	1.4926E-05	3.1957E-05	409.791	2.3555E+09	1.7397E-07	62.01
14	10	223.25	299.532	1.4577E-05	3.5251E.05	403.970	$2.0558 E+09$	1.9651E-07	70.05
15	11	216.77	295.154	1.4223E-05	3.8988E-05	398.065	1.7871 E+09	2.2274E-07	79.40
16	12	216.65	295.070	1.4216E-05	4.5574E-05	397.952	$1.5277 E+09$	2.6049E-07	92.85
17	13	216.65	295.070	1.4216E-05	5.3325-05	397.952	$1.3056 E+09$	3.049E-07	108.65
18	14	216.65	295.070	1.4216E-05	6.2391E-05	397.952	$1.1159 E+09$	3.5662E-07	127.12
19	15	216.65	295.070	1.4216E-05	7.2995E-05	397.952	$9.5380 \mathrm{E}+08$	4.1723E-07	148.72
20	16	216.65	295.070	1.4216E-05	8.5397E-05	397.952	$8.1528 \mathrm{E}+08$	4.8812E-07	173.99
21	17	216.65	295.070	1.4216E-05	9.99022-05	397.952	6.9691 E+08	5.7102E-07	203.54
22	18	216.65	295.070	1.4216E-05	1.1686E-04	397.952	$5.9576 E+08$	6.6797E-07	238.10
23	19	216.65	295.070	1.4216E-05	1.3670E-04	397.952	$5.0931 \mathrm{E}+08$	7.8135E-07	278.52
24	20	216.65	295.070	1.4216E-05	1.5989E-04	397.952	$4.3543 E+08$	$9.1393 E-07$	325.77
25	21	217.58	295.70	1.4267E-05	1.8843E-04	398.806	$3.7160 E+08$	1.0732E-06	382.55
26	22	218.57	296.377	1.4322E-05	2.2201E-04	399.715	$3.1733 E+08$	1.2596E-06	448.99
27	23	219.57	297.049	1.4376E-05	2.6135E-04	400.622	$2.7119 E+08$	1.4772E-06	526.57
28	24	220.56	297.720	1.4430E-05	3.0743E-04	401.526	2.3194E+08	1.7312E-06	617.08
29	25	221.55	298.389	1.4484E-05	3.6135E-04	402.429	$1.9852 \mathrm{E}+08$	2.0272E-06	722.60
30	26	222.54	299.056	1.4538E-05	4.2439E-04	403.329	1.7004E+08	2.3720E-06	845.51
1415	Useful Data	Ascent calc	Culations (Rec. Fill) A	Ascent Dita Table (Rec	c. Fill) Ascent Chats	(ts Rec. Fill) Ascent Calc.	(non-14	III	

Listed atmospheric properties are from an online atmospheric properties calculator ${ }^{3}$ based on the U.S. Standard Atmosphere $1976{ }^{4}$.

Database: Balloon Properties

- Volume and Diameter
- Coefficient of Drag
- Drag Force
- Free Lift and Lifting Force
- Velocity
- Conductive Heat Transfer
${ }^{-}$See Paper for Nomenclature, Equations, and Derivations used in database

Database: Recommended Fill
 - Ascent Calculations (Rec. Fill) Worksheet

Database: Recommended Fill

- Ascent Data Table (Rec. Fill) Worksheet

4	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	Time (He)	Time (H_{2})	Temp atmo.	Temp atmo.	Temp gas	Temp gas	$\Delta \mathrm{T}(\mathrm{T} \mathrm{T}-\mathrm{Tg})$	Pressure	Pressure	ρ of air	Vb	Dia. of bal.	Surface Area	Cross. Sec. Area	C. S. Area/rad.	Conductive Heat Trans ${ }^{\text {c }}$
2	Sec. (s)	$\mathrm{Sec} .(\mathrm{s})$	(K)	$\left({ }^{\circ} \mathrm{C}\right)$	(K)	(${ }^{\circ} \mathrm{C}$)	(K, ${ }^{\circ} \mathrm{C}$)	(atm)	(Psi)	(kg/m)	(m)	(m)	$\left(\mathrm{m}^{2}\right)$	$\left(\mathrm{m}^{2}\right)$	(m)	(J / s) He
3	0	0	288.15	15.00	286.15	13.00	2.0	1.000	14.696	1.225	1.57	1.44	6.54	1.63	2.27	0.68
4	177	167	281.65	8.50	279.65	6.50	2.0	0.887	13.036	1.112	1.73	1.49	6.97	1.74	2.34	0.70
5	354	333	275.15	2.00	273.15	0.00	2.0	0.785	11.531	1.007	1.91	1.54	7.45	1.86	2.42	0.73
6	530	500	268.66	-4.49	266.66	-6.49	2.0	0.692	10.171	0.909	2.12	1.59	7.97	1.99	2.50	0.75
7	707	667	262.17	-10.98	260.17	-12.98	2.0	0.609	8.944	0.819	2.35	1.65	8.54	2.14	2.59	0.78
8	884	833	255.68	-17.47	253.68	-19.47	2.0	0.533	7.840	0.736	2.61	1.71	9.17	2.29	2.68	0.81
9	1061	1000	249.19	-23.96	246.19	-26.96	3.0	0.466	6.850	0.660	2.90	1.77	9.84	2.46	2.78	1.25
10	1237	1166	242.70	-30.45	238.70	-34.45	4.0	0.406	5.963	0.590	3.23	1.83	10.57	2.64	2.88	1.73
11	1414	1332	236.22	-36.93	231.22	-41.93	5.0	0.352	5.172	0.526	3.61	1.90	11.38	2.84	2.99	2.24
12	1590	1498	229.73	-43.42	223.73	-49.42	6.0	0.304	4.469	0.467	4.04	1.98	12.27	3.07	3.10	2.79
13	1767	1664	223.25	-49.90	216.25	-56.90	7.0	0.262	3.845	0.414	4.54	2.05	13.26	3.32	3.23	3.39
14	1943	1829	216.77	-56.38	208.77	-64.38	8.0	0.224	3.294	0.365	5.12	2.14	14.36	3.59	3.36	4.03
15	2119	1994	216.65	-56.50	207.65	-65.50	9.0	0.191	3.250	0.312	5.96	2.25	15.89	3.97	3.53	4.77
16	2295	2160	216.65	-56.50	206.65	-66.50	10.0	0.164	2.406	0.267	6.94	2.37	17.59	4.40	3.72	5.57
17	2471	2325	216.65	-56.50	205.65	-67.50	11.0	0.140	2.056	0.228	8.08	2.49	19.47	4.87	3.91	6.45
18	2646	2489	216.65	-56.50	204.65	-68.50	12.0	0.120	1.758	0.195	9.40	2.62	21.54	5.39:	4.11	7.40
19	2822	2654	216.65	-56.50	204.65	-68.50	12.0	0.102	1.503	0.166	11.00	2.76	23.92	5.98	4.33	7.80
20	2998	2819	216.65	-56.50	204.65	-68.50	12.0	0.087	1.284	0.142	12.87	2.91	26.56	6.64	4.57	8.22
21	3174	2983	216.65	-56.50	204.65	-68.50	12.0	0.075	1.098	0.122	15.05	3.06	29.48	7.37	4.81	8.66
22	3349	3148	216.65	-56.50	204.65	-68.50	12.0	0.064	0.939	0.104	17.61	3.23	32.73	8.18	5.07	9.13
23	3525	3313	216.65	-56.50	204.65	-68.50	12.0	0.055	0.803	0.089	20.59	3.40	36.33	9.08	5.34	9.62
24	3701	3478	217.58	-55.57	205.58	-67.57	12.0	0.047	0.686	0.076	24.19	3.59	40.45	10.11	5.64	10.15
25	3877	3642	218.57	-54.58	206.57	-66.58	12.0	0.040	0.588	0.065	28.40	3.79	45.01	11.25	5.95	10.70
26	4052	3807	219.57	-53.58	207.57	-65.58	12.0	0.034	0.503	0.055	33.32	3.99	50.07	12.52	6.27	11.29
27	4228	3972	220.56	-52.59	208.56	-64.59	12.0	0.029	0.431	0.047	39.05	4.21	55.66	13.92	6.61	11.90
28	4404	4137	221.55	-51.60	209.55	-63.60	12.0	0.025	0.370	0.040	45.74	4.44	61.85	15.46	6.97	12.55
29	4580	4302	222.54	-50.61	210.54	-62.61	12.0	0.022	0.318	0.034	53.53	4.68	68.69	17.17	7.35	13.22
30	4755	4466	223.54	-49.61	211.54	-61.61	12.0	0.019	0.273	0.029	62.61	4.93	76.25	19.06	7.74	13.93
14	1-M Asc	cent Data Ta	able (Rec. Fill)	Ascent Cha	rts (Rec. Fill)	Ascent	Calc. (non-Rec	c. Fill $/$ As	scent Data Ta	ab (non-Rec	c. Fill)	1	II			-

Database: Recommended Fill

- Ascent Charts (Rec. Fill) Worksheet

Database: Non-Recommended Fill

- Ascent Calc. (non-Rec. Fill)

Worksheet

- Input Number of Tanks of Gas Including Partial Tanks
- Helium Tank Volume: $291 \mathrm{ft}^{3}$
- Hydrogen Tank Volume: 191 ft ${ }^{3}$
- Approximate moles computed from Ideal Gas law

Database: Non-Recommended Fill

- Ascent Data Table (non-Rec. Fill) Worksheet

4	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	
1	Temp atmo.	Temp atmo.	Temp gas	Temp gas	$\Delta \mathrm{T}(\mathrm{Ta}-\mathrm{Tg})$	Pressure	Pressure	Gas Pressure	Gas Pressure	ρ of air	Vb	Vb	Dia. of bal.	Dia. of bal.	Cross Sec. Area	Cross Sec. Area	Con
2	(K)	$\left({ }^{\circ} \mathrm{C}\right.$)	(K)	$\left({ }^{\circ} \mathrm{C}\right)$	($\mathrm{K}^{\circ} \mathrm{C}$)	(atm)	(Psi)	He atm	$\mathrm{H}_{2} \mathrm{~atm}$	(kg/m)	He (m^{3})	$\mathrm{H}_{2}\left(\mathrm{~m}^{3}\right)$	He (m)	$\mathrm{H}_{2}(\mathrm{~m})$	$\mathrm{He}\left(\mathrm{m}^{2}\right)$	$\mathrm{H}_{2}\left(\mathrm{~m}^{2}\right)$	(J/s)
3	288.15	15.00	286.15	13.00	2.0	1.000	14.696	1.000	1.524	1.225	8.64	5.67	2.55	2.21	5.09	3.84	
4	281.65	8.50	279.65	6.50	2.0	0.887	13.036	0.887	1.351	1.112	9.52	6.25	2.63	2.28	5.43	4.10	
5	275.15	2.00	273.15	0.00	2.0	0.785	11.531	0.785	1.195	1.007	10.51	6.90	2.72	2.36	5.80	4.38	
6	268.66	-4.49	266.66	-6.49	2.0	0.692	10.171	0.692	1.054	0.909	11.63	7.63	2.81	2.44	6.21	4.69	
7	262.17	-10.98	260.17	-12.98	2.0	0.609	8.944	0.609	0.927	0.819	12.90	8.47	2.91	2.53	6.65	5.02	
8	255.68	-17.47	253.68	-19.47	2.0	0.533	7.840	0.533	0.813	0.736	14.35	9.42	3.02	2.62	7.14	5.39	
9	249.19	-23.96	246.19	-26.96	3.0	0.466	6.850	0.466	0.710	0.660	15.95	10.47	3.12	2.71	7.66	5.78	
10	242.70	-30.45	238.70	-34.45	4.0	0.406	5.963	0.406	0.618	0.590	17.76	11.66	3.24	2.81	8.23	6.22	
11	236.22	-36.93	231.22	-41.93	5.0	0.352	5.172	0.352	0.536	0.526	19.83	13.02	3.36	2.92	8.86	6.69	
12	229.73	-43.42	223.73	-49.42	6.0	0.304	4.469	0.304	0.463	0.467	22.22	14.58	3.49	3.03	9.55	7.22	
13	223.25	-49.90	216.25	-56.90	7.0	0.262	3.845	0.262	0.398	0.414	24.96	16.38	3.63	3.15	10.33	7.80	
14	216.77	-56.38	208.77	-64.38	8.0	0.224	3.294	0.224	0.341	0.365	28.13	18.46	3.77	3.28	11.18	8.45	
15	216.65	-56.50	207.65	-65.50	9.0	0.191	3.250	0.191	0.292	0.312	32.74	21.49	3.97	3.45	12.37	9.34	
16	216.65	-56.50	206.65	-66.50	10.0	0.164	2.406	0.164	0.249	0.267	38.12	25.02	4.18	3.63	13.69	10.34	
17	216.65	-56.50	205.65	-67.50	11.0	0.140	2.056	0.140	0.213	0.228	44.38	29.13	4.39	3.82	15.16	11.45	
18	216.65	-56.50	204.65	-68.50	12.0	0.120	1.758	0.120	0.182	0.195	51.68	33.92	4.62	4.02	16.77	12.67	
19	216.65	-56.50	204.65	-68.50	12.0	0.102	1.503	0.102	0.156	0.166	60.46	39.68	4.87	4.23	18.62	14.07	
20	216.65	-56.50	204.65	-68.50	12.0	0.087	1.284	0.087	0.133	0.142	70.72	46.42	5.13	4.46	20.68	15.62	
21	216.65	-56.50	204.65	-68.50	12.0	0.075	1.098	0.075	0.114	0.122	82.73	54.30	5.41	4.70	22.95	17.34	
22	216.65	-56.50	204.65	-68.50	12.0	0.064	0.939	0.064	0.097	0.104	96.77	63.52	5.70	4.95	25.48	19.25	
23	216.65	-56.50	204.65	-68.50	12.0	0.055	0.803	0.055	0.083	0.089	113.19	74.30	6.00	5.22	28.29	21.37	
24	217.58	-55.57	205.58	-67.57	12.0	0.047	0.686	0.047	0.071	0.076	132.95	87.27	6.33	5.50	31.49	23.79	
25	218.57	-54.58	206.57	-66.58	12.0	0.040	0.588	0.040	0.061	0.065	156.09	102.45	6.68	5.81	35.05	26.47	
26	219.57	-53.58	207.57	-65.58	12.0	0.034	0.503	0.034	0.052	0.055	183.11	120.19	7.05	6.12	38.98	29.44	
27	270.56	-52 59	20856	-64 59	12 n	0 ก29	- 4.31	$\cap \mathrm{n} 29$	ก04.5		21463	14088	74.3	646	43.34	. 2273	
14.	- M Asc	cent Data Table	(Rec. Fill)	Ascent Ch	Charts (Rec. Fill)	All) Ascen	nt Calc. (non-	Rec. Fill) Asc	cent Data Tab ((non-Rec. Fill)	价 1		111		,		-11

Database: Non-Recommended Fill

- Ascent Charts (non-Rec. Fill) Worksheet

Database: Descent with Small Balloon

- Descent Calculations (SB) Worksheet
- Why a small balloon?
- Balloon size options
- Recommended fill used

Note: Photo credited to reference 4 when the correct reference is 6 .

Database：Descent with Small Balloon

－Descent Data Table（SB）Worksheet

4	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	
1	Pressure	Pressure	Gas Pressure	ρ of air	Vb	Dia．of bal．	pHe in balloon	pH2 in balloon	v	V	Coef．of Drag	Gravity	Free Lift	Free Lift	Lifting Force	Lifting Force	Mag．Drag F
2	（atm）	（Psi）	（atm）	$\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	$\left(\mathrm{m}^{2}\right)$	（m）	（ $\mathrm{kg} / \mathrm{m}^{2}$ ）	$\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	（ He ）（m／s）	$\left(\mathrm{H}_{2}(\mathrm{~m} / \mathrm{s})\right.$	Cd	$\left(\mathrm{m} / \mathrm{s}^{2}\right)$	He（kg）	$\mathrm{H}_{2}(\mathrm{~kg})$	（He）（N）	$\left(\mathrm{H}_{2}\right)(\mathrm{N})$	（He）（N）
3	0.003	0.042	0.003	0.004	13.74	Balloon will burst if used w／rec．fill	0.0006	0.0003	－7．83	－7．79	5.397	9.684	0.047	0.051	0.455	0.493	
4	0.003	0.048	0.003	0.005	11.22	Balloon will burst if used w／rec．fill	0.0007	0.0004	－7．83	－7．80	5.331	9.687	0.044	0.048	0.426	0.464	
5	0.004	0.055	0.004	0.005	10.22	Balloon will burst if used w／rec．fill	0.0008	0.0004	－7．83	－7．80	4.889	9.690	0.047	0.051	0.454	0.493	
6	0.004	0.063	0.004	0.006	8.79	Balloon will burst if used w／rec．fill	0.0009	0.0005	－7．84	－7．81	4.649	9.694	0.047	0.051	0.454	0.492	
7	0.005	0.072	0.005	0.007	7.55	Balloon will burst if used w／rec．fill	0.0011	0.0005	－7．84	－7．81	4.418	9.697	0.047	0.051	0.454	0.492	
8	0.006	0.083	0.006	0.008	6.47	Balloon will burst if used w／rec．fill	0.0012	0.0006	－7．84	－7．82	4.195	9.700	0.047	0.051	0.454	0.492	
9	0.007	0.096	0.007	0.010	5.53	Balloon will burst if used w／rec．fill	0.0014	0.0007	－7．85	－7．82	3.982	9.703	0.047	0.051	0.453	0.492	
10	0.008	0.111	0.008	0.012	4.72	Balloon will burst if used w／rec．fill	0.0017	0.0008	－7．85	－7．83	3.777	9.706	0.047	0.051	0.453	0.492	
11	0.009	0.129	0.010	0.014	4.03	Balloon will burst if used w／rec．fill	0.0020	0.0010	－7．85	－7．83	3.582	9.709	0.047	0.051	0.453	0.492	
12	0.010	0.150	0.011	0.016	3.46	Balloon will burst if used w／rec．fill	0.0023	0.0012	－7．85	－7．83	3.404	9.712	0.047	0.051	0.453	0.492	
13	0.012	0.174	0.013	0.018	2.97	Balloon will burst if used w／rec．fill	0.0027	0.0014	－7．85	－7．83	3.235	9.715	0.047	0.051	0.453	0.492	
14	0.014	0.202	0.015	0.021	2.54	Balloon will burst if used w／rec．fill	0.0031	0.0016	－7．85	－7．84	3.073	9.718	0.047	0.051	0.453	0.492	
15	0.016	0.235	0.018	0.025	2.18	Balloon will burst if used w／rec．fill	0.0037	0.0018	－7．86	－7．84	2.918	9.721	0.047	0.051	0.453	0.492	
16	0.019	0.273	0.021	0.029	1.86	Balloon will burst if used w／rec．fill	0.0043	0.0022	－7．86	－7．84	2.771	9.724	0.047	0.051	0.453	0.492	
17	0.022	0.318	0.024	0.034	1.59	Balloon will burst if used w／rec．fill	0.0050	0.0025	－7．86	－7．84	2.630	9.727	0.047	0.051	0.453	0.492	
18	0.025	0.370	0.029	0.040	1.36	Balloon will burst if used w／rec．fill	0.0059	0.0029	－7．86	－7．84	2.496	9.730	0.047	0.051	0.453	0.492	
19	0.029	0.431	0.034	0.047	1.16	Balloon will burst if used w／rec．fill	0.0069	0.0035	－7．86	－7．84	2.368	9.733	0.047	0.051	0.453	0.492	
20	0.034	0.503	0.039	0.055	0.99	Balloon will burst if used w／rec．fill	0.0080	0.0040	－7．86	－7．85	2.246	9.736	0.047	0.051	0.453	0.492	
21	0.040	0.588	0.046	0.065	0.84	Balloon will burst if used w／rec．fill	0.0094	0.0048	－7．86	－7．85	2.131	9.742	0.047	0.050	0.453	0.492	
22	0.047	0.686	0.054	0.076	0.72	Balloon will burst if used w／rec．fill	0.0111	0.0056	－7．86	－7．85	2.019	9.742	0.047	0.050	0.453	0.492	
23	0.055	0.803	0.064	0.089	0.61	Balloon will burst if used w／rec．fill	0.0130	0.0066	－7．86	－7．85	1.914	9.745	0.047	0.050	0.453	0.492	
24	0.064	0.939	0.074	0.104	0.52	Balloon will burst if used w／rec．fill	0.0152	0.0077	－7．86	－7．85	1.817	9.748	0.047	0.050	0.453	0.492	
25	0.075	1.098	0.087	0.122	0.45	Balloon will burst if used w／rec．fill	0.0178	0.0090	－7．86	－7．85	1.725	9.751	0.047	0.050	0.454	0.492	
26	0.087	1.284	0.102	0.142	0.38	Balloon will burst if used w／rec．fill	0.0208	0.0105	－7．86	－7．85	1.638	9.754	0.047	0.050	0.454	0.492	
27	0.102	1.503	0.119	0.166	0.33	Balloon will burst if used w／rec．fill	0.0244	0.0123	－7．86	－7．85	1.555	9.758	0.047	0.050	0.454	0.492	
28	0.120	1.758	0.139	0.195	0.28	Balloon will burst if used w／rec．fill	0.0285	0.0143	－7．85	－7．85	1.476	9.761	0.047	0.050	0.454	0.493	
29	0.140	2.056	0.162	0.228	0.24	Balloon will burst if used w／rec．fill	0.0332	0.0167	－7．82	－7．82	1.409	9.764	0.047	0.051	0.457	0.495	
30	0.164	2.406	0.189	0.267	0.21	Balloon will burst if used w／rec．fill	0.0386	0.0195	－7．78	－7．78	1.345	9.767	0.047	0.051	0.459	0.498	
14	なカに	Ascent Ch	（non－Rec．	Fil）Des	scent Calcula	ations（SB）Descent Data T	Descent Cha	arts（SB）De	escent（i） 4				｜II				

Database: Descent with Small Balloon

- Descent Charts (SB) Worksheet

Volume of Decent Balloon with Altitude

$R^{2}=0.9965$

Database: Descent with Parachute

- Descent Calculations (Parachute) Worksheet

Database: Descent with Parachute

- Descent Data Table (Parachute) Worksheet

1	A	B	C	D	E	F	G	H	I	J	K	L	M	N
1	Altitude	Altitude	Time	Temp. Atmo.	Temp. Atmo.	Pressure	Pressure	ρ of air	V Down	Coef. of Drag	Gravity	Drag Force w/ $\mathrm{m}_{\text {tot }}$		Troposphere
2	(km)	(ft)	(s)	(K)	$\left({ }^{\circ} \mathrm{C}\right)$	(atm)	(Psi)	(kg/m)	(m / s)	Cd	$\left(\mathrm{m} / \mathrm{s}^{2}\right)$	(N)		temp decrease with altitude increase
3	40	131200	0	250.35	-22.80	0.003	0.042	0.004	64.04	1.50	9.684	20.34		Tropopause
4	39	127920	17	247.58	-25.57	0.003	0.048	0.005	59.52	1.50	9.687	20.34		temp constant with altitude increase
5	38	124640	35	244.82	-28.33	0.004	0.055	0.005	55.28	1.50	9.690	20.35		Upper Stratosphere
6	37	121360	54	242.05	-31.10	0.004	0.063	0.006	51.29	1.50	9.694	20.36		temp increase with altitude increase
7	36	118080	75	239.28	-33.87	0.005	0.072	0.007	47.55	1.50	9.697	20.36		Additional comment
8	35	114800	98	236.51	-36.64	0.006	0.083	0.008	44.04	1.50	9.700	20.37		reletivily un-experimented space
9	34	111520	123	233.74	-39.41	0.007	0.096	0.010	40.75	1.50	9.703	20.38		
10	33	108240	149	230.97	-42.18	0.008	0.111	0.012	37.67	1.50	9.706	20.38		
11	32	104960	178	228.49	-44.66	0.009	0.129	0.014	34.81	1.50	9.709	20.39		
12	31	101680	209	227.50	-45.65	0.010	0.150	0.016	32.26	1.50	9.712	20.39		
13	30	98400	242	226.51	-46.64	0.012	0.174	0.018	29.88	1.50	9.715	20.40		
14	29	95120	279	225.52	-47.63	0.014	0.202	0.021	27.67	1.50	9.718	20.41		
15	28	91840	318	224.53	-48.62	0.016	0.235	0.025	25.61	1.50	9.721	20.41		
16	27	88560	360	223.54	-49.61	0.019	0.273	0.029	23.70	1.50	9.724	20.42		
17	26	85280	405	222.54	-50.61	0.022	0.318	0.034	21.92	1.50	9.727	20.43		
18	25	82000	455	221.55	-51.60	0.025	0.370	0.040	20.27	1.50	9.730	20.43		
19	24	78720	508	220.56	-52.59	0.029	0.431	0.047	18.73	1.50	9.733	20.44		
20	23	75440	566	219.57	-53.58	0.034	0.503	0.055	17.31	1.50	9.736	20.45		
21	22	72160	628	218.57	-54.58	0.040	0.588	0.065	15.99	1.50	9.742	20.46		
22	21	68880	696	217.58	-55.57	0.047	0.686	0.076	14.76	1.50	9.742	20.46		
23	20	65600	770	216.65	-56.50	0.055	0.803	0.089	13.62	1.50	9.745	20.46		
24	19	62320	849	216.65	-56.50	0.064	0.939	0.104	12.59	1.50	9.748	20.47		
25	18	59040	935	216.65	-56.50	0.075	1.098	0.122	11.65	1.50	9.751	20.48		
26	17	55760	1028	216.65	-56.50	0.087	1.284	0.142	10.77	1.50	9.754	20.48		
27	- 16	52480	1128	21ヶ65	-56.50	0102	1502	0166	9.96	150	9758	20.49		
14.	-ハ D	escent Charts	(SB) De	escent Calc. (Para	chute) Descen	nt Data Tab	le (Parachut	te) Desce	ent Charts (P	arachute) E0	214			1

Database: Descent with Parachute

- Descent Charts (Parachute) Worksheet

Additional Notes and Future Work

- Acceleration?
- Coefficient of Drag
- Drag Force, Lifting Force, and Free Lift
- Ideas for Possible Database Additions
- Beta Test
- Website:
- http://cse.taylor.edu/~nramm/High_Altitude_Balloon_Databases/

Conclusions

- More Fill
- Doesn't Give a Higher Altitude
- Faster Ascent Rate
- Ending Thoughts

Acknowledgements

- Dr. Hank Voss
- Professor Jeff Dailey
- This material is based upon work supported by the National Science Foundation under Grant No. 107557.
- Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

