Terminal Velocity of High-Altitude Balloon Payloads: Experiment Versus Theory

Academic High Altitude Conference, June 2011

Paul Seifert, Concordia College Gordon McIntosh, University of Minnesota, Morris

Outline

- Development of terminal velocity model for payload descending under a parachute to compare real-world experimental data against theoretically modeled data.
 - Derive terminal velocity equation
 - Calculate air density from pressure and temp data
 - Compare theory to experiment
- Final goal is to develop basic physics lab activity to do all of the above.

Flight Profile

- Payload is 8-10 pounds (maximum 12 lb.)
- Lofted on large helium-filled balloon
- Flight continues upward until balloon bursts. Up to 100,000+ feet (27,000+ meters)
- Parachute brings payload back to Earth

Atmosphere

Payload passes through distinct layers:

- Troposphere to ~10km
 - Temperature falls
- Tropopause
 - Constant temperature for 200-300 meters
- Stratosphere
 - Temperature rises
- Pressure decreases exponentially

Pressure and Temperature

Forces During Descent

The system reaches *terminal velocity* when drag force and weight are equal.

Forces

Drag modeled using simple Prandtl expression:

$$D = \frac{1}{2} C_d \rho A v^2$$

$$W = mg$$

Terminal Velocity

• Equating drag and weight:

$$\frac{1}{2} C_d \rho A v^2 = mg$$

• Solving for *v*:

$$v_t = \sqrt{\frac{2mg}{C_d\rho A}}$$

Density

• Use gas-specific form of Ideal Gas Law:

$$PV = mR_{gas}T$$

• Solve for *m*/*V*:

$$\frac{m}{V} = \rho = \frac{P}{R_{gas}T}$$

Density

Putting It Together

• Final terminal velocity equation:

$$v_t = \sqrt{\frac{2mgR_{gas}T}{PC_dA}}$$

Parachute Aerodynamics

- Cross-sectional area *A* measured as the total area of fabric.
- Coefficient of drag C_d can be between 0.5 0.9 depending on parachute design
- UMM parachute:
 - Hemispheric design, $A = 2.62 \text{ m}^2$, $C_d = 0.7$
- ConHAB parachute:
 - Cupped parabolic design, $A = C_d = ?$ (Picked 4.1 m² and 0.6)

Reality vs. Theory (UMM)

Fitting Theory to Reality (ConHAB)

Lab Discussion

• Fit between theory and model

- What factors may influence each? Assumptions or simplifications?
- Effects of payload boxes
- Parachute parameters
 - Comparison of different designs
 - Fitting actual data to determine parameters
- Activity can be tailored to any level.

Conclusions

- Parachute aerodynamics is an extremely complicated subject.
- Nice agreement between theoretical and experimental data.
- Future work:
 - More flights
 - More data on different parachute designs

Acknowledgements

- Brent Perreault, Megan Jacobsen, and Darren Schluter
- Minnesota NASA Space Grant Consortium
- University of Minnesota, Morris