
PIGEON Precision Integrated GEOgraphical Navigation

A Near Space Recovery Technology Team

Photos courtesy Grisso, deviantart.com

Mechanical Engineering

Students Craig Amundson **UASE** Researcher RC Hobbyist Wyatt Shallbetter **UASE** Researcher Private Pilot Crystal Kelly **DRS** Tactical Systems Internships Former HASP Team Member **Faculty Advisor** Dr. William Semke

Electrical Engineering

Students Evan Andrist **Microprocessor Experience** Crystal Kelly Pericles Tsellos **UASE** Researcher **Faculty** Advisor Dr. Naima Kaabouch

Background and Problem Statement

- Increase recovery rate of high altitude balloon payloads
- Enable near-space research opportunities
- Diminish hazards to people and property

Photos courtesy UND High Altitude Balloon Project

Problem Statement

Design a recovery system that will accompany scientific payloads on high altitude balloons. System must be capable of guiding payloads to a user designated "safe" landing zone in order to successfully recover payloads intact, and prevent damage to people and property.

Non-Steerable Flight -**Balloon and Drogue**

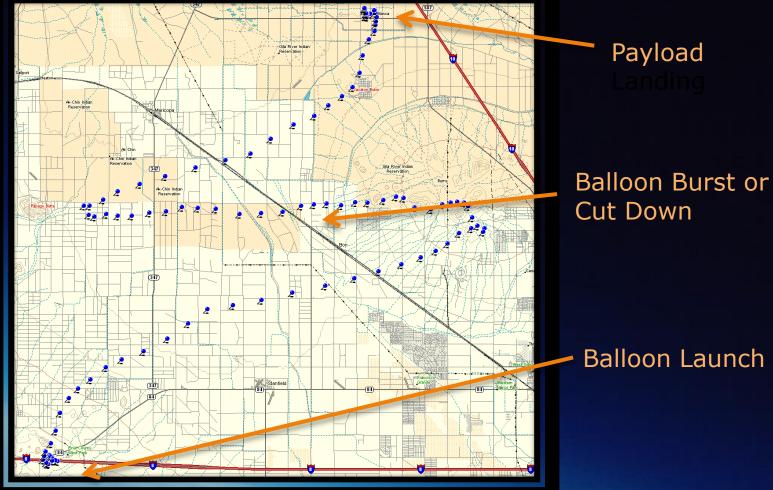


Photo courtesy UND High Altitude Balloon Project

Steerable Flight – Ram Air Chute

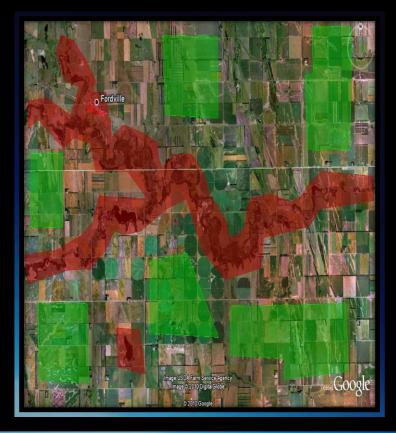
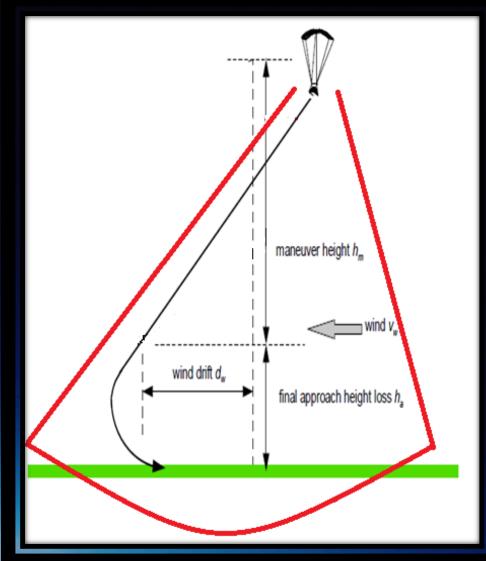
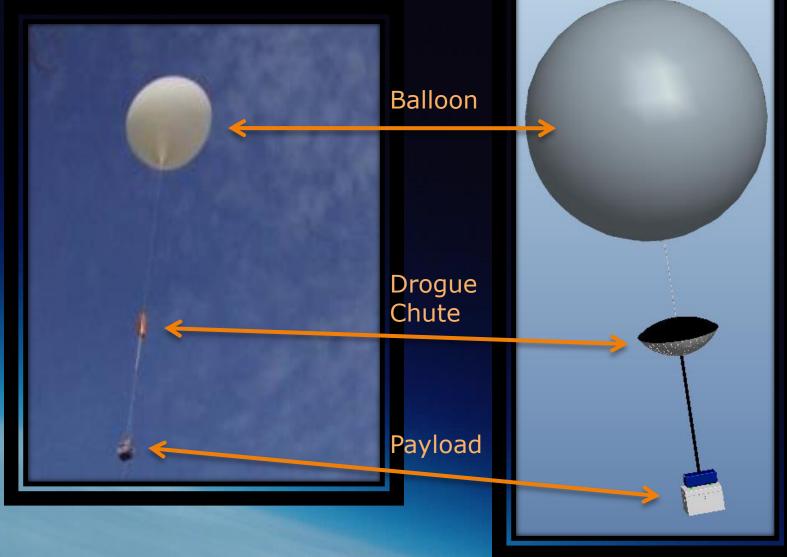



Photo courtesy Google Earth

Photos courtesy Martin-Baker Aircraft Co.

Our Solution

 Lightweight, portable, and versatile autonomous high altitude transport and recovery platform.


Able to carry 3 lb pound payload
Dimensions 7"x9"x12"
Weight 3 lb

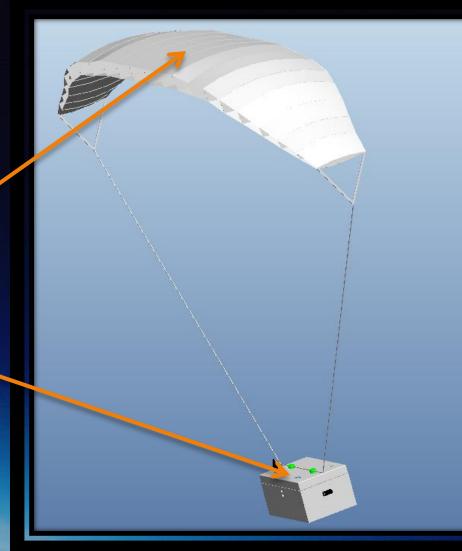
Constraints of Project

- Balloon flights often reach altitudes of 100,000 ft or more
- FAA constraints on weight < 6 lbs
- Simple, guidable systemBudget

Controllable Parachute System -Ascent

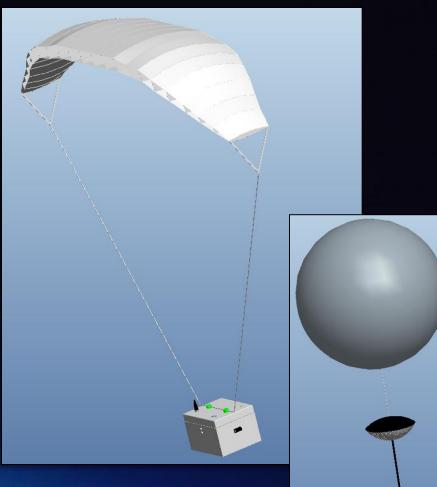
Controllable Parachute System - Descent

Drogue Parachute

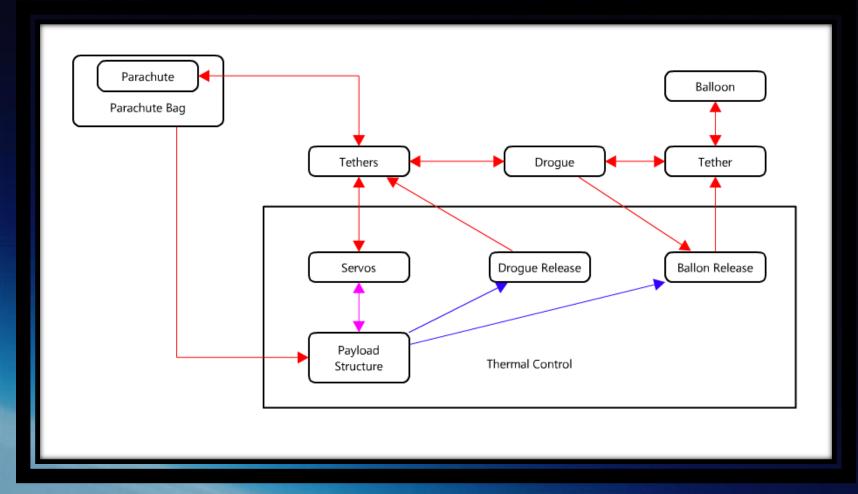

Ram-Air Parachute

Payload Bus

Controllable Parachute System – Steerable Flight

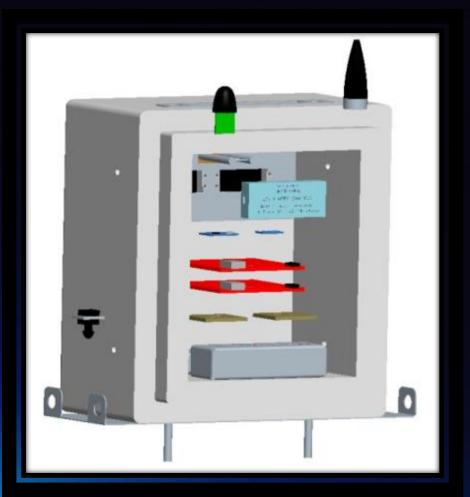

Ram-Air Parachute

Payload Bus



Engineering Approach

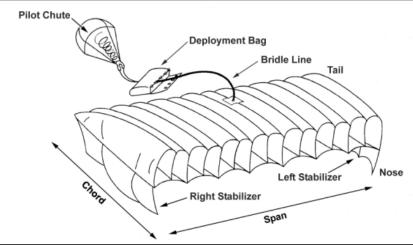
- Ram-air parachute controlled by servos
- On-board microcontroller monitors position, parachute deployment, steers vessel

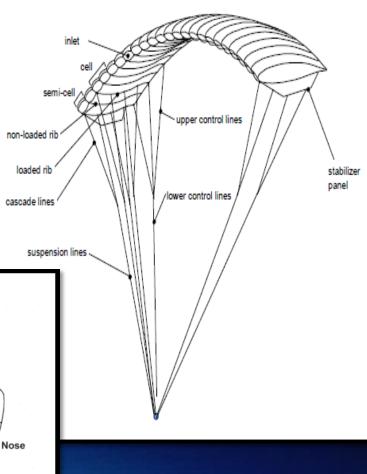


Mechanical Engineering Approach

Payload Bus Design

Material Selection Insulation Foam(2in. Thickness) reinforced with aircraft grade aluminum **Stress/Force Analysis Impact Forces** Servo Imposed Forces **External** Component Mounting




Platform Specifications

 Recovery Housing •Exterior: 11in x 9 in x 7.25in Interior: 8in x 6in x 4.25in Material: Rigid Foam •Two Attachment Points Between Bus System and Scientific Housing •Deployment Bag Rigging Attaches to Recovery System/Scientific Housing Mounting Plate Drogue Attaches to the Ram-Air Ram-Air Chute 2 Attachment Points Through **Overall System**

Ram Air Parachute Components

Steerable parachute with two layers of fabric Airfoil shaped cross-section Cellular design with slots cut between cells Leading edge of parachute is open

Photos courtesy Martin-Baker Aircraft Co.

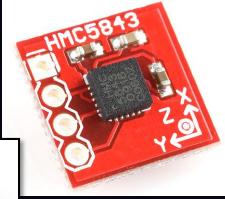
Parachute Specifications

Drogue Parachute: 3 ft Diameter Descent Rate: 27 mph Main Parachute

Photo courtesy Hobbyking.com

Descent Rate: 15 mph Coefficient of Lift: 0.65 Coefficient of Drag: 0.2 Flight Characteristics Turn Rate: currently undefined

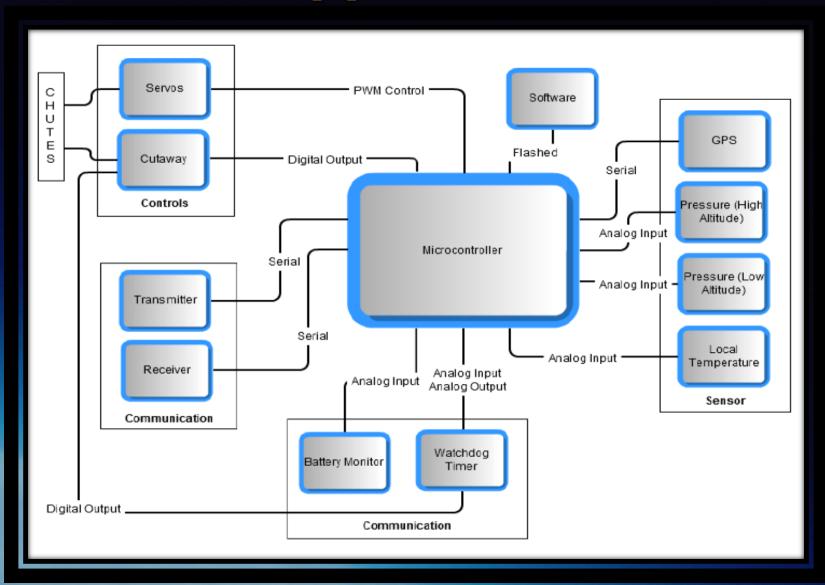
Selection Futaba 9650 Torque 62.5 oz. in. Size 1.4 x 0.6 x 1.1(in.) Weight 0.9(oz.) **Operating Voltage 6.0(Volts)** Price \$60(each from Tower Hobbies) Stress Analysis Servo arm **Mounting Components Current Draw**



Photos courtesy Futaba

Engineering Approach – What's inside?

- Microcontroller
- Sensors
- GPS
- Radio Transceiver
- Servos
- Batteries
- Cutaway Mechanism



Electrical Engineering Approach

Cutaway

Spring Tensioned System
Utilizes 50lb Test Daiwa
Parallel Nichrome Wires
5000 mAh NiCad Battery
Independant
Fail Safe

Photo courtesy UND High Altitude Balloon Project

Prediction Software

Flight
 Prediction
 Balloon Track

Ram-Air
 Prediction
 Ram Track

Photo courtesy Google Earth

Flight Control Software

- Main Routine
 - Accent
 - Drogue Fall
 - Ram-Air Fall
- Cutaway
- Deploy
- Flight Modes and Auto Steering Flight
- Two Dimensional Tracking
- Rate of Decent and Landing
- Power Down
- Autopilot Control
- Manual Control
- Safety/Failsafe/Redundancy

Rapidly Approaching Goal: Proof of Concept

- Overall system operation
- Final system integration
- Prototype finished : March 18
- Expected flight date : April 9

Photos courtesy UND High Altitude Balloon Project

References

Human Science Research Council (HSRC) http://www.hsrc.ac.za/ UND High Altitude Balloon Project JP Aerospace Rocketman Parachutes Hobbyking Digi-Key Human Science Research Council (HSRC) http://www.hsrc.ac.za/

Concept Design – Round Parachute

Deployable Round Parachute Pros

Simple Design Lightweight Cheap and Available Cons No Steering

Photos courtesy UND High Altitude Balloon Project

Concept Design - Glider

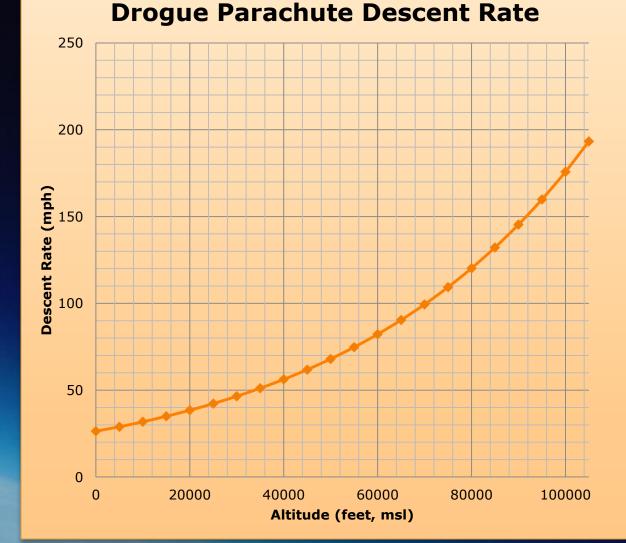
Unmanned Aircraft Pros

Controllable Known Technology Cons Possibly Illegal Airspace Restrictions Potentially Expensive

hotos courtesy Art Vanden Berg

Drogue Parachute

Rocketman Ballistic Parachute Round style parachute Diameter: 3 ft Descent Rate: 12 m/s



Drogue Parachute

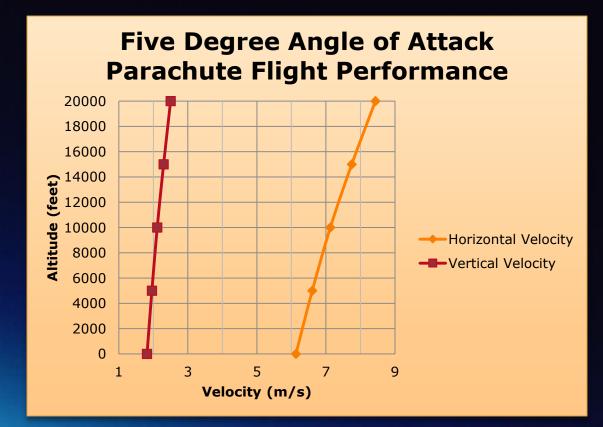
Throw Style Skydiving Chute Round style parachute Diameter: 28"

Descent Rate @Sea Level: 2300 ft/min

Ram Air Parachute Specifications

Hobbyking Parafoil Weight: .190 kg Width: 2.15 m Depth: 0.54 m Fabric: Skytex Cells: 19 Lines: 22

Photo courtesy Hobbyking.com



Ram Air Parachute – Flight Characteristics

Wing Loading: 2.3 kg/m^2 Very low wing loading Low forward velocity Low sink rate Deployment from 20,000 ft 47 minutes to touchdown 13 mile range Deployment from 10,000 ft 27 minutes to touchdown 6.3 mile range

Ram Air Parachute – Flight Characteristics

Angle of Attack: 5 degrees Coefficient of Lift: 0.88 Coefficient of Drag: 0.26 L/D Ratio: 3.8 Velocity: Altitude Dependent

Parachute Testing

Reason for Test See if control of parachute is feasible Procedure Drop from aircraft and obtain flight profile Readjust control line to change angle of attack

Adhesives Testing

Reason for Test Slipping knots on parachute lines Glue Types "Zap A Gap" (cyanoacrylate) E-6000 Quick Grip

Outcome E-6000 withstood the highest force, 281 N

Deployment Testing

Reason for Test

Ensure parachute opens without tangling **Testing Procedure** 30 MPH (Minimum Falling Speed) Prove deployment with minimal force by drogue 60 MPH (Maximum Falling Speed) Prove parachute lines could withstand impact force Outcome No lines broke and parachute was able to deploy at minimum speed

Cut Away Analysis

Ohmic Heat

 $W = WI\Delta t$ $Q = VI\Delta t = I^2 R\Delta t$ $\Delta Q = mC_p \Delta T$

Temperature Coefficient of Resistance

$$R = R_{ref} \left[1 + \alpha \left(T - T_{ref} \right) \right]$$

Cut Away Test

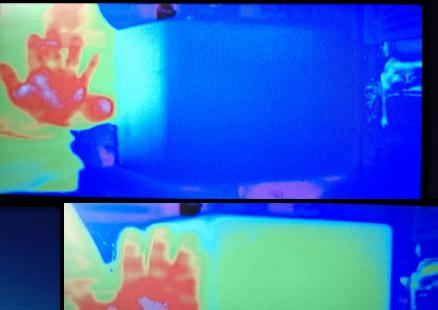
Ceramic Isolators

Power Induced Wire
50lb Break Away
Rope

Suspended Weight

Rope	Time to Break (sec)
Nylon	16.4
Nylon	65.0
Nylon	44.1
Polypropylene	5.6
Polypropylene	4.5
Polypropylene	2.3

Thermal Analysis


Radiation Absorption Heat loss Around 8 Watts per components

Thermal Testing

Reason for Test

Verify Components stay within operating range Component Analysis

Battery +0.98 Watts Micro Controller +2.12 Watts Servos 0.15 Watts Solution Mylar Covering

EE: Hardware Testing

Testing involved

- Breadboarding components
- Testing individual components
- Testing components' interactions
- Populating a PCB
- Sensors
 - Temperature, magnetometer, pressure
- Autopilot/GPS
- Flash memory
- UART
- APRS radio/modem

• Future Testing Plan

- First thermal, vacuum test
 - Repairs if needed
- Second thermal, vacuum test

Component Power Requirements

Component	Voltage (V)	Current Max (A)	Current Idle (A)	Current Average (A)	
CPU	5		0.25	0.25	1.25
GPS	5		0.075	0.075	0.375
Press/Tem					
p1	5		0.003	0.003	0.015
Press/Tem					
p2	5		0.003	0.003	0.015
Compass	5		0.003	0.003	0.015
Radio	5	0.33	0.025	0.1165	0.5825
Servo1	5	0.4	0.03	0.215	1.075
Servo2	5	0.4	0.03	0.215	1.075
RC					
Receiver	5		0.02		0.1

Power Analysis

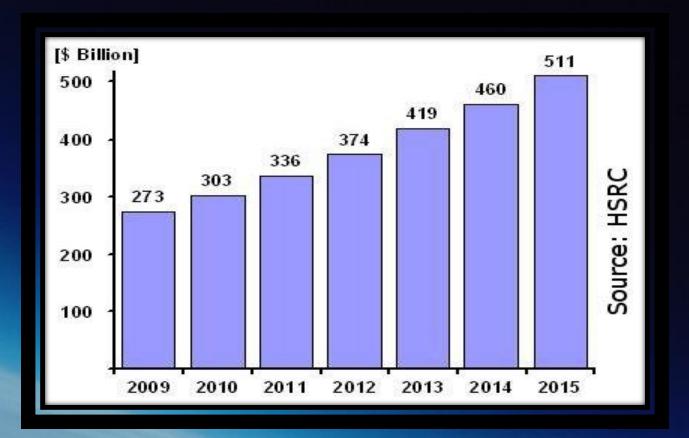
	Ascent	Drogue Fall	Main Fall	Retrieval
Projected Times (min.)	100	30	40	Unknown
Active				
Components:	Radio	Radio	Radio	Radio
	CPU	CPU	CPU	GPS
	GPS	GPS	GPS	CPU
	Press/Temp		Press/Temp	
	1	Press/Temp1	1	Beacon
	Press/Temp		Press/Temp	
	2	Press/Temp2	2	
	Compass	Compass	Compass	
			Servo1	
			Servo2	
			RC Receiver	
Payload mAh		253.378378		
Required	844.59459	4	828.828829	Unknown
Total Known	1026 0010			
mAh	1926.8018			
Selected Battery	7.4 V	5000 mAh		

EE: Software Testing

Testing Involved

- PIC code
- Matlab code
- Ground station
- Payload
- Integration

• Future Testing


- Several Subprograms
- Flow chart for interaction
- Final integration

Budget

Item	Vendor	Quantity	Price
Microprocessor - ArdupilotMega	Sparkfun	1	59.95
GPS Receiver - GS407	Sparkfun	1	89.95
Magnetometer HMC5843	Sparkfun	1	49.95
Transceiver - UHX1	Radio Metrix	2	0.00
Servo (control)	Hobby-Lobby	2	120.00
DC-DC Converter (+5v)	Digi-Key	1	58.00
DC-DC Converter (+3.3v)	Digi-Key	1	100.00
Pressure Sensor (broad range)	Digi-Key	1	30.00
Pressure Sensor (low pressure)	Digi-Key	1	32.00
Ram Air Parachute	Hobbyking	1	25.00
Round Parachute	Rocketman	1	25.00
Foam Structure	Lowes	1	20.00
Aluminum Structure	States Mfg.	1	50.00
Batteries	Thunderpower	3	250.00
Misc Gear	-	1	100.00
		Total	\$1,009.85

Target Market

Target Customers are people who seek easy-to-assemble payload recovery system at a reasonable cost and people who are environmentally friendly and look for eco-friendly or "green" products.

Spring Semester - Timeline

	Lead	Jan		Feb		March		April	
Software Design	РТ/СК	In Progress							
Deployment Bag Design	WS	Comp	lete						
Parachute Testing	WS				In Pro	gress			
Restring Parachute Lines	СК		C	Complete					
Circuit Board Design	EA			Comp	lete				
Payload Design	CA		C	Complete					
Energy Requirements Analysis	EA	Comp	lete						
Servo Selection	CA	Comp	lete						
Thermal Shield Construction	СК							Com	olete
Thermal Analysis	CA	Complete							
Assembly/Integration	WS	Complete							
Deployment Testing	СК		Complete						
Parachute Rigging Testing	CA		Complete						
Payload Testing	WS						In Pro	ogress	
Servo Testing	CA/WS						Complete		
Circuit Board Testing	EA						In Progres	S	
Software Testing	РТ/СК				In Prog	gress			
Energy Requirements Testing	EA	In Progress							
Thermotron Testing	СК			Complete					
Testing Report	СК								25-Apr
Engineering Expo	TEAM								26-Apr
Flight Readiness Review	TEAM								28-Apr
High-Altitude Balloon Flight	TEAM								1-May

Fall Semester

	Lead	Aug	Sept	Oct	Nov	Dec	
Team Completely Formed	СК						
Research Design Possibilities	WS						
Conceptual Design Review	CA			1-Oct			
Preliminary Design Review	СК				1-Nov		
Cut Away Design	СК						
Parachute Design	WS						
Critical Design Review	CA					1-Dec	
Cut Away Testing	СК						
Software Design	РТ/СК						
Preliminary Report	СК						7-Dec