Developing Student Ballooning Research Programs at Minority Institutions

Louisiana Space Consortium
Why student ballooning programs?

- Previous studies of future needs for U.S. national security, aerospace industry and other high technology areas indicate that there is a decline in the number of U.S. citizens training to become scientists and engineers.

- Attracting and retaining students into science, technology, engineering and mathematics (STEM) career is of paramount importance.

- Hands-on training programs, such as building a balloon payload, provide students with examples of and experience with applying classroom “theory” to real-world, practical problem solving.

- The greatest opportunity to expand the technical talent pool lies in participation of women and minorities in the workforce.

- As a result the Louisiana Space Consortium (LaSPACE) developed several different student ballooning programs.
Louisiana student ballooning research programs

- **Louisiana Aerospace Catalyst Experiences for Students (LaACES)**
 - Entry level uses small payloads (~500 g) with sounding balloon “vehicle”
 - This conference has a talk by a LaACES student team (6/23 @ 3:30 pm) and a detailed talk about LaACES itself (6/24 @ 10:00 am)

- **High Altitude Student Platform (HASP)**
 - Carry payloads developed by advanced undergraduate and graduate students to 120,000 feet for up to 20 hours
 - This conference has a talk about HASP as a multiple-payload carrier (6/23 @ 1:30 pm)

- **Physics & Aerospace Catalyst Experiences for Students (PACER)**
 - Focus on establishing LaACES-like programs at minority institutions
 - Bring teams to LSU for 9-week intensive summer workshop then mentor institutions during academic year
 - Funded by NSF and started in 2007
The PACER program objectives

• Attract students from the ranks of minorities and women to science and engineering programs.

• Provide students with a research experience that builds skills, techniques and methodologies applicable throughout their science career.

• Establish a core of expertise at multiple HBCU institutions around which a local sustainable student research experience program can develop.

• Nurture and mentor these institutions as they implement their student research experience.
The PACER basic concept is built upon a LaACES foundation

- LaACES was the first student ballooning program that we developed almost eight years ago.
 - Includes the “Student Ballooning Course” lectures and activities as well as custom electronics kits
- Use a latex sounding balloon as the vehicle to carry student payload to the “edge of space”
 - Up to 12 pounds suspended without FAA waiver
 - Altitude up to ~100,000 feet
- Train students to use knowledge about the project life cycle and project management
- Guide students to “think the problem through”
- Students are exposed to skills not normally available in conventional classrooms.
The first part of the program is to build basic skills

- Proceed through the Student Balloon Course (SBC) lectures and activities
- Develop circuit building skills
- Learn about microprocessor programming
- Understand how to use, interface and calibrate sensors
- Develop knowledge of project management techniques
- Understand the ballooning environment, payload constraints and design
- Become familiar with various science topics appropriate for balloon payloads
The Student Balloon Course units

• The 30 lectures and 30 activities are divided into four major units

1. **Electronics** – Basic knowledge about circuits, sensor interfacing & data acquisition

2. **Programming** – How to control the BASIC Stamp, read & store data, interfacing to devices

3. **Project Management** – How to plan, manage and track the progress of a project

4. **Balloon Payload Design** – Facts and skills relevant to the successful development of a payload

• Plus there are usually some guest science lectures on topics appropriate for investigation by balloon payloads.
Next the students design and build their own balloon payload

- Apply skills learned in the fall to develop a small balloon payload
- Proceed through a project life cycle and apply project management techniques
- Written documents & presentations are required for Preliminary Design Review (PDR), Critical Design Review (CDR) & Flight Readiness Review (FRR)
Differences between LaACES and PACER.

• The primary PACER goal is to establish a student ballooning research program at multiple minority serving institutions
 – Provide an affordable research experience at the institution which could then help attract and retain students in STEM fields of study.

• PACER has a nine-week summer session component.
 – What we do to LaACES students over a full academic year, we do to PACER students in eight (8) weeks!

• The summer session team usually is composed of a faculty mentor plus three students
 – The faculty mentor learns how to teach the material and then has three student assistants to help support the academic year program.

• We follow, mentor and support the institution for three years as the local student ballooning program is slowly established
 – Funding and other support is slowly ramped down as local support is established and ramped up.
PACER is fully funded

• PACER is funded through May 2012 by the National Science Foundation, Physics Division, Education and Interdisciplinary Program

• There is extensive support for the summer session
 – Three instructors to teach electronics, software development and project management
 – Student stipend of $4,000 and a faculty stipend of $12,000
 – Travel between home institution and LSU as well as between LSU and CSBF for flight operations
 – Four bedroom, two bath apartment with laundry facility, kitchen and living room.
 – Teaching materials including the SBC “book”, electronics kits and up to $500 for payload parts.

• Each PACER institution also receives a three year sub-award
 – First year provides $10,500 and SBC kits for 12 students
 – Level of support ramps down during next two years as institution support ramps up
PACER Participants
Grambling State University (2007), Norfolk State University (2008)
Interamerican University of Puerto Rico – Bayamon (2008)
Albany State University (2009), Central State University (2009)
Knoxville College (2010)
The summer session is very intense

- All of the Student Balloon Course material and skill building activities occur during the first three weeks.
- Weeks four through eight then involve payload development
- There is a lot of report writing and presentation development
 - SkeeterSat “Calibration” report, Sensor Interface Report
 - Documents and “defense” presentations for PDR, CDR and FRR reviews.
- There are a variety of “extra-curricula” activities as well
 - Weekly science lecture and tours of local science facilities (e.g. LIGO)
 - Evening ham radio licensing sessions, weekend practical radio experience and amateur radio testing
 - Other weekend activities such as a 4th of July party
- Expect students to be on a regular schedule and to be on time
 - Minimum contact hours are 9 am to 4 pm Monday through Friday
 - Typical that the students work into the night and over weekends to make the deadlines.
Major PACER summer program activities by week

<table>
<thead>
<tr>
<th>Week</th>
<th>Formal Activities</th>
<th>Informal Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction, Begin Electronics, Construct SkeeterSat and BalloonSat, Begin Programming</td>
<td>Science Lecture</td>
</tr>
<tr>
<td>2</td>
<td>Sensor Interfacing, Serial Communications, Testing & Debugging, Power, System Design</td>
<td>Science Lecture, ham Radio Class, St. George Observatory Tour, Bar-B-Q</td>
</tr>
<tr>
<td>3</td>
<td>Mechanical Design, Thermal Issues, Near-Space Environment, Project Management</td>
<td>Science Lecture, Communication across the Curriculum (CxC) Resources, ham Radio Class</td>
</tr>
<tr>
<td>4</td>
<td>Work on payload, Prepare PDR document and Presentation</td>
<td>Science Lecture, Pennington Planetarium Tour, ham Radio Class, Highland Road Park Observatory tour, ham Field Day, LIGO tour</td>
</tr>
<tr>
<td>5</td>
<td>PDR, Work on payload, Prepare CDR document and Presentation</td>
<td>Science Lecture, ham Radio Class, July 4th Party, Free Weekend</td>
</tr>
<tr>
<td>6</td>
<td>CDR, Construct, Calibrate and Test Payload</td>
<td>Science Lecture, ham Radio Class, Mary Bird Perkins Cancer Center Tour (Medical Physics), ham Radio APRS "fox" hunting</td>
</tr>
<tr>
<td>7</td>
<td>Construct, Calibrate and Test Payload</td>
<td>Science Lecture, Lockheed Martin Space Systems Tour, ham Radio License Exam</td>
</tr>
<tr>
<td>8</td>
<td>Complete Payload, Prepare FRR Document and Presentation</td>
<td>Center for Advanced Microstructures & Devices (CAMD) tour, Science Lecture</td>
</tr>
<tr>
<td>9</td>
<td>PACER Flight Operations at the NASA Columbia Scientific Balloon Facility</td>
<td></td>
</tr>
</tbody>
</table>

LSU v061511 Academic High Altitude Conference - 2011 13
Week 9 is for balloon flight operations

• Drive on Sunday about six hours from Baton Rouge to reach Palestine, Texas which is the home of the Columbia Scientific Balloon Facility (CSBF).

• On Monday we arrive at CSBF to prepare all payloads and the sounding balloon vehicle for launch.

• Tuesday is for flight operations
 – We generally arrive at CSBF by 6 am and launch by about 7:30 am
 – Following launch we track the balloon from our chase vehicles throughout the flight, termination and landing
 – Recovery time is dominated by gaining access permission from land owners

• Wednesday is provided for data analysis and talk preparation

• Thursday is for presentation of the science talks and return to Baton Rouge
Balloon Flight Operations
Typical sounding balloon flights
Example PACER Payloads

CSU - DAP

GSU HATPaC

IAU-P.R. MicroTrak

IAU-P.R. Albedo

ASU - SABRE

IAU-P.R. Accel

LSU v061511

Academic High Altitude Conference - 2011
Some of the science that can be done

cosmic rays

acceleration

speed of sound

standard atmosphere

MESS data

temperature

pressure

neutrons
and of course pictures …
(from the GSU HATPaC payload)
The summer session is very successful

• Solicit feedback from participants at the end of the summer session.
 – Rate on scale of 1 (poor) to 5 (excellent) content, clarity, delivery of SBC lectures, activities, reviews and extra-curricular events
 – Overall rating averaged over all participants is about 4.5

• Feedback also includes written comments
 “This is a very ambitious and rewarding program.”
 “Valuable program. Students need more opportunities like this to expand their understanding of what science and being a scientist is all about.”
 “I learned a lot of information that I think will be useful to me in the future.”
 “I learned work ethics and how to work with others.”
 “It was a very intense program and very helpful in many ways.”

• Getting this kind of feedback allow us to conclude that we are close to “getting it right”.
Academic year program

- Following the initial “training” during the summer we maintain contact and support with each institution for about three years
 - The intention is to help institutionalize the student ballooning program
 - Provide a sub-award and SBC electronic kits to help defer some of the start up costs
 - Maintain contact through regular teleconferences, site visits and regular email
- While the summer session is convincingly successful, we have had more mixed results with the academic year program
- All institutions have had problems with recruiting and retaining local students
 - A typical academic year cohort appears to be about 3 to 4 students
 - Student seems to have great difficulty completing the SBC and payload development activities in one year
- May be a bit premature to draw conclusions as only one institution, GSU, has completed the three year mentoring
There are some encouraging signs

• During 2010-2011 Grambling State University completed the full PACER program
 – Retained a 4 student team that developed their own balloon payload which was flown during May 2011
• IUPR (Puerto Rico) has used PACER to expand the aerospace training opportunities available to its students
 – Worked with other groups on the island to launch balloon payloads
 – Has their own funded CubeSat program and has developed payloads for flight on HASP.
• Albany State University developed their own balloon payload and also flew their own balloon vehicle.
 – Flight occurred on April 11, 2011
 – Assisted by LSU personnel
 – First PACER institution to have end-to-end capability for their own balloon program.
Conclusions

• PACER has been implemented at LSU to test a concept for helping to establish student ballooning research programs at multiple minority serving institutions across the country.

• PACER includes a number of key features intended to foster institutionalization of ballooning programs.
 – Intense nine week summer session an institution team in core skills and balloon payload development
 – Each team is composed of a faculty mentor as well as students
 – Maintain contact and support with institution for three years.

• Summer session is proven to be highly successful

• Not clear how well a PACER-like ballooning program can be established at a minority institution
 – Very low numbers of students recruited and completing payloads
 – Several institution have achieved major milestones within the last year.
 – May be premature to evaluate how well PACER can migrate a student ballooning program into a minority institution.
Acknowledgements

• PACER has direct support from the National Science Foundation under grants PHY-0653423 and PHY-0902271

• Various aspects of PACER are supported by other agencies
 – Louisiana Space Consortium that is funded by NASA (NNG05GH22H)
 – Louisiana Board of Regents and Louisiana State University

• The NASA Balloon Program Office and the Columbia Scientific Balloon Facility provide extensive support.
 – Directly support PACER balloon launches
 – Also support the HASP program as described at this conference by T.G. Guzik, 6/23 @ 1:30 pm

• The Student Balloon Course (SBC) used by PACER was development under the LaACES program
 – See talk by M. Stewart, 6/24 @ 10:00 am
 – See talk by A. Spring, 6/23 @ 3:30 pm