School of Engineering and Mines 2011 Engineering Senior Design

Precision Integrated GEOgraphical Navigation
 Near Space Recovery Technology Team

Team Members:

Craig Amundson, Evan Andrist
Mission Objective:
To design a recovery system to accompany scientific payloads on high altitude balloons. System must be capable of guiding payloads to a user designated "safe" landing zone in order to successfully recover payloads intact, and prevent damage to people and property.

Ascent Phase

A helium filled latex balloon lifts the system to approximately 100,000 feet msl at a rate of approximately $1000 \mathrm{ft} / \mathrm{min}$.

Balloon and Parachute Flight Profile

Steerable Flight Steerable flight is accomplished using a ram-air style parachute capable of course and descent rate alterations.

Testing and Analysis

Cut-Away System Nichrome wire is heated to cut 50 pound test braided Daiwa line ($300^{\circ} \mathrm{F}$ M.P.) Testing examined the optimal combination of voltage, current, heating time, and wire thickness.

Rigging and Deployment

Parachute lines are rigged with braided nylon line with 120 N tensile strength. Full analysis and testing of the deployment mechanisms and sequence was completed. Testing showed reinforced lines and a more flexible and less temperature sensitive glue was needed.

Thermal Analysis

Thermal analysis and testing of the bus were conducted to obtain a temperature profile throughout the flight. Significant overheating may occur without radiation shielding.

- ArdupilotMega Autopilot

-Temperature and Pressure Sensors -BMP085 High Accuracy Sensor (+/- 0.03 hPa$)$ - Honeywell S\&C Pressure Sensor Full Range Sensor

