High-Altitude Balloon Atmospheric Database

Natalie A. Ramm ${ }^{1}$ and Hank D. Voss ${ }^{2}$
Taylor University, Upland, IN, 46989

ACADEMIC high-altitude conference

How much gas does it actually take to lift a payload using a latex weather balloon? This question has many answers depending on the mass of your payload, the size and mass of the balloon, and the type of gas being used to lift the balloon. Guessing the amount of fill for the balloon can either waste gas if the balloon doesn't need as much to lift the load or cause negative effects if the balloon is not filled enough, such as hovering in the jet stream pushing a balloon farther than anticipated. Either way, resources are wasted whether it is gas wasted in unnecessary overfilling or time and effort wasted to recover a wayward balloon. Having a database to calculate the necessary fill for a balloon can save time and money. In addition, the data base gives many atmospheric properties with altitude for helping understand balloon data: Standard Atmospheric temperature, pressure, and density profiles, velocity, coefficient of drag, free lift, gravity, lifting force, drag force, speed of sound, thermal conductivity, kinetic temperature, dynamic viscosity, kinematic viscosity, mole volume, mean air particle speed, mean collision frequency, and mean free path.

Nomenclature

$A_{b} \quad=$ Surface area of the balloon $\left(\mathrm{m}^{2}\right)$
$A_{c} \quad=$ Cross sectional area $\left(\mathrm{m}^{2}\right)$
$C_{D} \quad=$ Coefficient of drag
$F_{D} \quad=\quad$ Force due to atmospheric drag
$F_{\text {lift }} \quad=$ Lifting force of the gaseous fill in the balloon $\left(\mathrm{N}, \mathrm{lb}_{\mathrm{f}}\right)$
$F L \quad=$ Free lift (kg)
$g \quad=$ Gravity
$h_{c} \quad=$ Convective heat transfer coefficient
$k \quad=$ Thermal conductivity $\left(\frac{1}{m s K}\right)$
$M_{a} \quad=\quad$ Molar mass of air. ($28.9644 \mathrm{~g} / \mathrm{mol}$)
$M_{g} \quad=$ Molar mass of gas. Helium: $4.0026 \mathrm{~g} / \mathrm{mol}$, Hydrogen gas $\left(\mathrm{H}_{2}\right): 2.0158 \mathrm{~g} / \mathrm{mol}$
$m_{g} \quad=$ Mass of gas (kg). Helium or Hydrogen.
$m_{t o t}=$ Total mass: Includes payload, balloon, and ballast masses (kg)
$n \quad=$ Moles $=$ mass $/$ Molar mass
$P \quad=$ Pressure
$P_{a} \quad=$ Atmospheric pressure. (atm, Psi)
$P_{g} \quad=$ Pressure of gas. (atm, Psi)
$\rho_{a} \quad=$ Mass density of air $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\rho_{g} \quad=$ Mass density of gas $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$Q \quad=$ Heat
$R=$ Gas constant. $8.206 \times 10^{-5} \frac{\mathrm{~m}^{3} \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}}$
$T=$ Temperature
$t \quad=$ Time
$T_{a} \quad=$ Temperature of atmosphere. Kelvin (K) and Celsius (${ }^{\circ} \mathrm{C}$)
$T_{g} \quad=$ Temperature of gas. Kelvin (K) and Celsius (${ }^{\circ} \mathrm{C}$)
$V \quad=$ Volume
$V_{b} \quad=$ Volume of balloon $\left(\mathrm{m}^{3}\right)$
$v_{b} \quad=$ Velocity of balloon $(\mathrm{m} / \mathrm{s})$

[^0]
I. Introduction

HIGH altitude balloons can be used for a variety of purposes. They have the potential to test satellite sensors in the near space environment. Students can harness the unique environment of traveling through the atmosphere as well as near space to perform experiments to broaden their educational experience. High altitude balloons allow people to discover. For these reasons and many others it should be a priority to know as much as possible about where these balloons are going and how to get them there. Many factors contribute to how high a balloon can go. The atmospheric temperature, pressure, air density, size of balloon, amount of fill, payload mass and many other factors contribute to what altitude a balloon can reach. Some surprising conclusions can be drawn from the use of a database like this as well as its use for atmospheric research. Data relationships can be observed through multiple charts such as temperature, pressure, and air density profiles, effects of altitude on the lifting force, rate of velocity, relationship of free life and ascent velocity, altitude versus time flight paths, calculated coefficient of drag for different balloon sizes with altitude, and many others. This database was created in Microsoft Excel. The balloons used in the database calculations are Tolex Sounding and Pilot Balloons purchased from Kaymont Consolidated Industries. The gas tank specifications are based on Helium and Hydrogen tanks rented from Indiana Oxygen Company. The purpose of this paper is to convey the usefulness of this high-altitude balloon atmospheric database as well as to serve as a user guide to its utilization and different properties.

II. Formulas and Assumptions

The drag force equation in Eq. (1) was derived using Newton's Second Law of motion using the assumption that the balloon's acceleration is zero or the balloon is moving at a constant velocity. This is the drag force on the balloon including the balloon, ballast, and payload mass. The volume of the balloon is assumed to be spherical.

$$
\begin{equation*}
F_{D}=\left(-m_{t o t}\right) g+\left(\frac{g V_{b}}{R}\right)\left[\left(\frac{P_{a} M_{a}}{T_{a}}\right)-\left(\frac{P_{g} M_{g}}{T_{g}}\right)\right] \tag{1}
\end{equation*}
$$

The velocity of the balloon, Eq. 3, was derived from another equation for the drag force ${ }^{1}$, Eq. 2. The assumption is made that the cross sectional area of the balloon is a circle.

$$
\begin{gather*}
F_{D}=\frac{1}{2} C_{D} \rho_{a} v_{b} A_{c} \tag{2}\\
v_{b}=\sqrt{\frac{2 F_{d}}{C_{d} \rho_{a} A_{c}}}=\sqrt{\frac{2\left(\left(-m_{t o t}\right) g+\left(\frac{g V_{b}}{R}\right)\left[\left(\frac{P a M_{a}}{T_{a}}\right)-\left(\frac{{ }^{\prime} g^{M} g}{T_{g}}\right)\right]\right)}{C_{D} \rho_{a} \pi\left[\left(\frac{3}{4 \pi}\right) V_{b}\right]^{2 / 3}}} \tag{3}
\end{gather*}
$$

Equation 4 is derived from the drag force equation, Eq. 2.

$$
\begin{equation*}
C_{D}=\frac{2 F_{D}}{\rho_{a} v_{b}^{2} A_{c}} \tag{4}
\end{equation*}
$$

The volume of the balloon, Eq. 5, was derived using the Ideal Gas Law, Eq. 6 .

$$
\begin{align*}
& V_{b}=\frac{n_{g} R T_{g}}{P} \tag{5}\\
& P V=n R T \tag{6}
\end{align*}
$$

Equation 7 shows the conductive heat transfer equation. The assumption that was made in the database was $\mathrm{x}=$ radius. This means that we are looking at the heat transfer at the center of the balloon ${ }^{2}$. The radiated heat transfer and the convective heat transfer of the balloon were not looked at in this database.

$$
\begin{equation*}
H=\frac{\Delta Q}{\Delta t}=k A_{c} \frac{\Delta T}{x} \tag{7}
\end{equation*}
$$

The free lift in this database, Eq. 8, is the free lift that only the balloon provides when filled. This does not account for the added payload and ballast mass

$$
\begin{equation*}
F L=\left(m_{a}-m_{g}\right)=\left(\rho_{a i r} V_{b}-m_{g}\right) \tag{8}
\end{equation*}
$$

The lifting force in Eq. 8 is the lifting force of just the balloon, this does not account for the payload and ballast mass.

$$
\begin{equation*}
F_{l i f t}=\left(m_{a}-m_{g}\right) g=\left(\rho_{a i r} V_{b}-m_{g}\right) g \tag{9}
\end{equation*}
$$

The derivations for the equations above used in this high-altitude balloon atmospheric database can be viewed in the Appendix.

III. High-Altitude Balloon Database Worksheet Descriptions

A. Useful Data

The first worksheet includes useful data from an online atmospheric properties calculator ${ }^{3}$ based on the U.S. Standard Atmosphere 1976^{4}. The data is taken from 0 km to 40 km in 1 km increments with a $0 \mathrm{~m} / \mathrm{s}$ air velocity. This useful data includes the speed of sound, dynamic viscosity, kinematic viscosity, mean air particle speed, mean collision frequency, mean free path, and mole volume.

B. Ascent (Recommended Fill)

The Ascent Calculations (Rec. Fill) worksheet shows all the constants and data used in the calculations of the corresponding data table. Drop down lists are also at the users disposal for the payload mass, balloon mass (size of balloon), and ballast mass. The balloon size options are $200 \mathrm{~g}, 300 \mathrm{~g}, 600 \mathrm{~g}, 1000 \mathrm{~g}, 1500 \mathrm{~g}$, and 3000 g . These will be used to calculate the total mass used in calculations.

Figure 1. Screen shot of the Ascent Calculations Recommended Fill Database Excel worksheet. This is the second worksheet in the database. There are more to the worksheets than can be seen in the figures.

The corresponding data table is in the following worksheet in Figure 2, Ascent Data Table (Rec. Fill), in the database. Included in this data table is the altitude in meters and feet, calculated time for a Helium and Hydrogen fill from the velocities, atmospheric temperature ${ }^{3}$, temperature of gas from an educated estimated temperature difference, atmospheric pressure in atmospheres and pounds per square inch ${ }^{3}$, air density ${ }^{3}$, calculated volume of balloon, calculated balloon surface area, calculated balloon cross sectional area, calculated conductive heat transfer, calculated gas density in balloon, calculated velocity for Hydrogen and Helium, calculated drag coefficient from Kaymont initial volume and velocity datas, calculated free lift, lifting force, and drag force for Hydrogen and Helium.

Figure 2. Data Table for Ascent Calculations Recommended Fill. The differently marked sections represent the troposphere, tropopause, and the stratosphere.

Associated with this data table are the charts on the next sheet in the database, Ascent Charts (Rec. Fill). The charts included on this worksheet are effects of altitude on lifting force, rate of velocity, relationship between free lift and ascent velocity, and flight path for Helium and Hydrogen. Also included is the increase of the drag coefficient with altitude, temperature, pressure and air density profiles, attainable altitude with increasing payload mass for fixed recommended fill per balloon size, and example rate of increase of velocity with decreasing payload mass (0.2 kg balloon).

Figure 3. Charts for Ascent Recommended Fill data.

C. Ascent (Non-Recommended Fill)

For a non-recommended fill, the database user has the option of selecting how many tanks of Helium or Hydrogen to put in the balloon through another drop down list. The amount of gas in moles is calculated and viewable for the number of tanks selected using Eq. 6 . The tank volume being used in this data base is $291 \mathrm{ft}^{3}$ for Helium and $191 \mathrm{ft}^{3}$ for Hydrogen gas. The Ascent Calc. (non-Rec. Fill) has the same layout as Ascent Calc. (Rec. Fill) except for the addition of the section in Figure 4.

Figure 4. Section view of Ascent Calc. (non-Rec. Fill) worksheet. The above figure shows the addition to this worksheet of the drop down list for inputting the number of tanks of gas to be used in a balloon fill.

The Ascent Data Table for the nonrecommended fill section has the same properties that were found in the Ascent Data Table Recommended Fill. Included in this data table, like the previous, is the altitude in meters and feet, calculated time for a Helium and Hydrogen fill from the velocities, atmospheric temperature ${ }^{3}$, temperature of gas from an educated estimated temperature difference, atmospheric pressure in atmospheres and pounds per square inch ${ }^{3}$, air density ${ }^{3}$, calculated volume of balloon, calculated balloon surface area, calculated balloon cross sectional area, calculated conductive heat transfer, calculated gas density in balloon, calculated velocity for Hydrogen and Helium, calculated drag coefficient from Kaymont initial volume and velocity data 5, calculated free lift, lifting force, and drag force for Hydrogen and Helium.

There is one curiosity to mention regarding the drag force for this section using Eq. 1. This section uses Eq. 1 to calculate the drag force, however if you over fill or under fill a balloon there may or may not be a constant velocity. In this case, the drag force would have to be derived again to account for the balloon acceleration. Changing the drag force in this way would also change the velocity, Eq. 3.

An example chart from the Ascent Non- Recommended Fill worksheet in this section can be viewed in Figure 5.

Figure 5. Chart from Ascent Charts (non-Rec. Fill) worksheet. This chart appears to show that the more fill that goes into a balloon does not guarantee a higher altitude. This is because of the volume limit or "bursting volume" of these balloons. From looking at this database section, more fill does cause an increased ascent rate.

D. Descent Recommended Fill using a Small Balloon

Using a small balloon in a parachute helps reduce the chaotic behavior of a payload in its descent after balloon release ${ }^{6}$. This section of the database is similar to that in Part B except for the balloon size options. The balloon size options for the small balloon are $10 \mathrm{~g}, 20 \mathrm{~g}, 30 \mathrm{~g}, 100 \mathrm{~g}, 200 \mathrm{~g}, 300 \mathrm{~g}$, and 600 g . The calculations for this section use the recommended amount of fill for these balloons. However, if this balloon was going to be used in a parachute Fig. 6, the recommended amount of fill would not be used otherwise the balloon will burst before the larger balloon is released. In practice by Jeff Dailey ${ }^{3}$ on Taylor University balloon launches, only a small amount of gas is released in a 100 g balloon. This gas expands allowing the balloon to reduce chaos without bursting before the larger balloon is released. The gas in the balloon contracts during decent until there is enough air for the parachute to open up and take over. Figure 7 shows a chart of the balloons volume with altitude from the Descent Rec. Fill Chart worksheet.

The data table for this section starts at 40 km and ends at 0 km . The

Figure 6. Balloon just after drop. The smaller auxiliary balloon is seen inside the parachute and the large balloon is in the top right corner and has just been released from our system. (4) velocity of the balloon is either positive or negative. The velocity is positive if the lifting force is greater than the drag force. This would be, for example, if you chose a large balloon and had a very small payload.

Figure 7. Small balloon volume with altitude.

4	K	L	M	N		0	P	Q	R	S	T	U	V	W	X	Y प
1	Pressure	pof air	vo	Dia. of bal.		pHe in balloon	OH2 in balloon	v v	v cos	Coet. of Drag	Gravity	Free Lit	Free Lit	Litting Force	Liting force	Mag. Drag Force
2	(Psi)	(kgm ${ }^{\text {r }}$)	(m)	(m)		($\mathrm{kg} / \mathrm{m}^{3}$)	(kgm)	(He)(m/s)	$(\mathrm{H})(\mathrm{m} / \mathrm{s})$	ca	(mis')	He (kg)	$\mathrm{H}_{2}(\mathrm{~kg})$	(He) (V)	$\left(\mathrm{H}_{2}(\mathrm{M})\right.$	(He) (N)
3	0.042	0.004	24.02	Balloon will burst fused w/ rec fill		0.0006	0.0003	-6.89	-6.84	4.543	9.684	0.082	0.089	0794	0.861	4.33
4	0.048	0.005	19.62	Balloon will burstif used w/ rec fill		0.0007	0.0004	-6.89	-6.84	4.487	9.687	0.077	0.084	0.744	0.811	4.34
5	0.055	0.005	1786	Balloon will burst fused w/ rec fill		0.0008	00004	-6.90	-6.85	4.115	9.690	0.082	0.089	0794	0.861	4.34
6	0.063	0.006	15.36	Balloon will burstif used w/ rec fill		0.0009	0.0005	-6.90	-6.85	3.913	9.694	0.082	0.089	0794	0.861	4.34
7	0.072	0.007	13.19	Balloon will burst itused w/rec. fill		0.0011	0.0005	-6.90	-6.85	3.719	9.697	0.082	0.089	0.793	0.860	4.34
8	0.083	0.008	11.30	Balloon will burstifused w/ rec fill		0.0012	0.0006	-6.91	-6.86	3.533	9.700	0.082	0.089	0.793	0.860	4.34
9	0.096	0.010	9.67	Batioon will burstifused w/ rec.fill		0.0014	0.0007	-6.91	-6.86	3.353	9.703	0.082	0.089	0.793	0.860	4.35
10	0.111	0.012	8.26	Balloon will burstif used w/rec. fill		0.0017	0.0008	-6.91	-6.87	3.181	9.706	0.082	0.089	0792	0.859	4.35
11	0.129	0.014	7.05	Balloon will burst fused w/ rec fill		0.0020	0.0010	-6.91	-6.87	3.017	9.709	0.082	0.088	0.792	0.859	4.35
12	0.150	0.016	6.05	Balloon will burstif usedw/fec fill		0.0023	0.0012	-6.91	-6.87	2867	9712	0.082	0.088	0.792	0.859	4.35
13	0.174	0.018	5.18	Balloon will burstif used w/ rec fill		0.0027	0.0014	-6.92	-6.87	2.725	9.715	0.082	0.088	0.792	0.859	4.35
14	0.202	0.021	4.44	Balloon will burstif used wirec fill		0.0031	0.0016	-6.92	-6.87	2.588	9.718	0.081	0.088	0.792	0.859	4.35
15	0.235	0.025	380	Balloon will burstilused w/ rec fill		0.0037	0.0018	6.92	-6.88	2.458	9.721	0.081	0.088	0.792	0.859	4.36
16	0.273	0.029	3.26	Balloon will burst ifused w/ rec fill		0.0043	0.0022	-6.92	-6.88	2.334	9.724	0.081	0.088	0792	0.859	4.36
17	0.318	0.034	278	Balloon will burstif used w/ rec fill		0.0050	0.0025	-6.92	-6.88	2.216	9.727	0.081	0.088	0.792	0.859	4.36
18	0.370	0.040	2.38	Balloon will burstifused w/ rec. fill		0.0059	0.0029	-6.92	-6.88	2.103	9.730	0.081	0.088	0.792	0.859	4.36
19	0.431	0.047	203	Balloon will burst ifused w/ rec fill		0.0069	0.0035	-6.92	-6.88	1.995	9.733	0.081	0.088	0.792	0.859	4.36
20	0.503	0.055	1.73	Balloon will burstifused wirec fill		0.0080	0.0040	-6.92	-6.88	1.893	9.736	0.081	0.088	0.792	0.859	4.36
21	0588	0.065	1.48	Balloon will burst if used wi fec fill		0.0094	0.0048	6.92	-6.89	1.795	9.742	0.081	0.088	0792	0.860	4.37
22	0.686	0.076	126	Balloon will burstifused w/ rec. fill		0.0111	0.0056	-6.92	-6.89	1.702	9.742	0.081	0.088	0792	0.859	4.37
23	0803	0089	1.07	Balloon will burst ifused w/ rec. fill		0.0130	0.0066	-6.92	-689	1.613	9.745	0.081	0.088	0792	0.859	4.37
24	0.939	0.104	0.92	Balloon will burstifused w/ rec fill		0.0152	0.0077	-6.92	-6.89	1.531	9.748	0.081	0.088	0.792	0.860	4.37
25	1.098	0.122	0.78	Balloon will burstifused wi rec fill		0.0178	0.0090	-6.92	-6.89	1.454	9.751	0.081	0.088	0793	0.860	4.37
26	1.284	0.142	0.67	Balloon will burstifused w/ fec fill		0.0208	0.0105	-6.92	-6.89	1.380	9.754	0.081	0.088	0.793	0.860	4.37
27	4+n1502	n 1 Rai scent Chats	${ }_{\text {n } 57}$			n 02041	$\xrightarrow[\text { Rescent Cha }]{\text { R }}$	${ }_{\text {(} 58 \text { (6) }}$. a . Pa	$1{ }^{1210}$	9758	0.081	aner	0792	nsk1	$\stackrel{4.37}{ }{ }^{4}$

Figure 8. Data Table for the Decent of a Small Balloon with Recommended fill.

[^1]
E. Descent Parachute

The Descent Calculations worksheet for the parachute has significantly less information in it because no gas is involved. There are two options for the mass of the parachute, 100 g and 200 g . The parachute diameter used is 72 inches. The velocity for this section is from Eq. 3 but the drag force is now $m_{t o t} g$. This made the assumption that the acceleration is zero; however this does not seem to be the case from Figure 11 from the Decent Charts (Parachute) worksheet. The acceleration would need to be taken into account in the drag equation for a parachute.

Figure 9. Descent Calc. (Parachute) worksheet. This sheet has information on it for the data table calculations but has significantly less than the previous worksheets because there is no use of gas with a parachute.

Like the data table for the small balloon, the parachute data table goes from 40 km to 0 km . There is significantly less in this data table, Fig. 10, than the previous data tables because of absence of gas being used. Included in this data is the altitude in meters and feet, calculated time from the velocity, atmospheric temperature ${ }^{3}$, atmospheric pressure in atmospheres and pounds per square inch ${ }^{3}$, air density ${ }^{3}$, velocity, calculated free lift, lifting force, and drag force.

Figure 10. Descent Data Table (Parachute).

Figure 11. This shows that the velocity is increasing so the acceleration is probably not zero.

F. Real Flight Data

Currently, real flight data is being taken and analyzed at Taylor University. More data needs to be taken to help verify the accuracy and prediction value of this database as well as identify any equation or calculation errors.

IV. Additional Notes and Future Work

While going through the atmospheric balloon database a few items found need to be addressed. An earlier section, III part C, mentioned the possible addition of acceleration to equation 1 and equation 3 for the case of a nonrecommended fill. Whether or not this is necessary is yet to be determined. Analysis of real flight data for an over fill and under fill would be able to determine if acceleration is a factor that needs to be taken into account.
Also, the coefficient of drag, Eq. 4, for each balloon and altitude was determined from the initial balloon cross sectional area form the initial volume ${ }^{5}$ of the balloon the calculated cross sectional area for each altitude, the air density for each altitude, the rate of ascent ${ }^{3}$, and the calculated drag force for that balloon and payload mass ${ }^{5}$. The coefficient of drag analysis for these balloons could be done in greater detail with flight data for more accurate coefficient of drag values.

The free lift and lifting force are currently that of just the balloon not taking the total mass into consideration at the moment. The drag force is the drag force of the balloon or parachute with the total mass. One question is whether it would be more useful to have these forces of just the balloon or have them take into account the inputted payload and ballast masses, or total mass. One future consideration would be to add more detail to this database such as a smaller altitude increment than 1 km , more gas tank size options, more payload mass options, an option for inputting your own temperature, pressure, and air density data and initial conditions. Introducing this database into a webpage or some other means of availability to make it easier to use is another suggestion for the future.

This atmospheric balloon database will be available for beta testing. Any errors, additional comments, changes to equations, or anything to increase the benefit of this database to the high altitude ballooning community would be greatly appreciated.

V. Conclusions

One conclusion that has been drawn from this database that could be further tested was an increase in balloon fill does not guarantee a higher reachable altitude because of a balloon bursting volume but it does give an increased ascent rate, Fig. 5. With this knowledge, a person can perform a faster flight when the need for quick data is important or if one has more time, can plan a flight that reaches a higher altitude but takes a longer amount of time. Accidents can also be avoided. A person unfamiliar with high altitude ballooning might make the assumption that more gas means more altitude, which could end in a much lower reached altitude than needed, wasted materials, and an inevitable re-flight. Conclusions such as this can be useful when planning a high altitude balloon flight.

Knowing where high altitude balloons are going or how to get them there increase the reliability and value in using high-altitude ballooning for testing, research, and education. The purpose of this high altitude balloon database was to create something for everyone in this community to use and make high altitude balloons a more accurate, cost effective, and convenient way to discover.

Appendix

A. Drag Force Derivation

The assumption was made that the balloon acceleration is equal to zero.

Solve for F_{D},

$$
\sum F_{t o t}=F_{l i f t}-F_{g}-F_{D}=m a=0
$$

Insert lifting force from Eq. 9,

$$
F_{d}=F_{l i f t}-F_{g}
$$

Solve for mass using Eq. 6,

$$
F_{D}=\left(m_{a}-m_{g}\right) g-m_{t o t} g
$$

$$
\begin{gathered}
P V=n R T=\frac{m}{M} R T ; n=\frac{m}{M} \\
m=\frac{P V M}{R T}=V \rho
\end{gathered}
$$

Insert above solved equation in for mass of atmosphere and mass of gas,

$$
F_{D}=g\left(\frac{P_{a} V_{b} M_{a}}{R T_{a}}-\frac{P_{g} V_{b} M_{g}}{R T_{g}}\right)-m_{t o t} g
$$

Simplify,

$$
F_{D}=\left(-m_{t o t}\right) g+\left(\frac{g V_{b}}{R}\right)\left[\frac{P_{a} M_{a}}{T_{a}}-\frac{P_{g} M_{g}}{T_{g}}\right]
$$

B. Velocity Derivation

The assumption was made that the balloon has a circular cross sectional area and a spherical volume.

$$
F_{D}=\frac{1}{2} C_{D} \rho_{a} v_{b} A_{c}
$$

Solve for v_{b},

$$
v_{b}=\sqrt{\frac{2 F_{D}}{C_{D} \rho_{a} A_{c}}}
$$

Solve for cross sectional area using volume,

$$
A_{c}=\pi\left[\left(\frac{3}{4 \pi}\right)\left(\frac{4}{3} \pi r^{3}\right)\right]^{2 / 3}=\pi\left[\left(\frac{3}{4 \pi}\right) V_{b}\right]^{2 / 3}=\pi r^{2}
$$

Substitute F_{D} and A_{c} into solved equation for v_{b},

$$
v_{b}=\sqrt{\frac{2\left(g\left(\frac{V_{b} M_{a} P}{R T_{a}}-\frac{V_{b} M_{g} P}{R T_{g}}\right)-m_{t o t} g\right)}{C_{D} \rho_{a} \pi\left[\left(\frac{3}{4 \pi}\right) V_{b}\right]^{2 / 3}}}
$$

C. Volume of Balloon Derivation

$$
P V=n R T
$$

Solve for volume of balloon using temperature of gas and moles of gas.

$$
V_{b}=\frac{n_{g} R T_{g}}{P_{g}}
$$

Acknowledgements

Thank you goes to Dr. Hank Voss for his guidance and willingness to answer questions as well as Professor Jeff Dailey for his many balloon launches, willingness to share flight data, and assistance in data analysis. This material is based upon work supported by the National Science Foundation under Grant No. 107557.

References

${ }^{1}$ Ed. Tom Benson. "The Drag Equation." Glenn Research Center NASA, n.d. Web. 08 June 2012. http://www.grc.nasa.gov/WWW/k-12/airplane/drageq.html [cited 11 June 2012]
${ }^{2}$ Wilson, Jerry D., and Anthony J. Buffa. College Physics, 4th ed. Upper Saddle River, NJ: Prentice Hall, 2000, Chap. 11, Section 4

3"Aerospaceweb.org | Atmospheric Properties Calculator." Aerospaceweb.org | Atmospheric Properties Calculator. Aerospaceweb.org, Aug. 2005. Web. 07 June 2012. http://www.aerospaceweb.org/design/scripts/atmosphere/.
${ }^{4}$ Nasa Technical Reports Server. "U.S. Standard Atmosphere 1976." http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770009539 1977009539.pdf [cited 11 June 2012]
""Weather Forecasting." Kaymontballoons. Kaymont Consolidated Industries, 2011-2012. Web. 08 June 2012. http://kaymontballoons.com/Weather_Forecasting.html [cited 11 June 2012]
${ }^{6}$ Ramm, N., Solyst, B., Fisher, B., Dodge, R., Polina, A., Kuehl, P., "Micro Gravity Balloon Drop: Tether Release," Academic High Altitude Conference, Dickinson Press, Nashville (submitted for publication).

[^2]
[^0]: ${ }^{1}$ Student, Department of Physics and Engineering, 236 W. Reade Ave. and AIAA Professional Member.
 ${ }^{2}$ Professor, Department of Physics and Engineering, 236 W. Reade Ave. and AIAA Professional Member.

[^1]: ${ }^{3}$ Professor, Department of Physics and Engineering, 236 W. Reade Ave.

[^2]: Note for reference 5: Data used in paper and database was accessed 6/9/2011 when website was still www.kaymont.com. More detailed spec sheets were available online for Sounding and Pilot balloons when the website was originally accessed. Now for more detailed spec sheets, they need to be requested from Kaymont Consolidated Industries.

