National Network of Total Solar Eclipse High Altitude Balloon Flights Edge of Space Eclipse Project

Academic High Altitude Conference June 26th, 2014

Overview

- Background: dancing and physics
- Big picture: perfectly poised
- Project details: ideas

Eclipse Science History

- Chinese 2800 BC
- Kepler 1605
- Helium 1868
- Einstein's theory of general relativity 1919

Eclipse geometry: rarity and types

Eclipse geometry: rarity and types

Eclipse geometry: rarity and types

Total Solar Eclipses: 2001 - 2050

Edge of Space Eclipse

WHY

- Public engagement
 - Incredible learning moment opportunity
 - Millions can view live from anywhere in world
- Workforce development
 - Highly collaborative, mission-like
 - Multidisciplinary
- Science (solar) and Technology (space communications)
- Collaborations and partnerships
 - Inter-agency
 - industry

TIMELINE

- 2014 2015: fundraise, organize, develop common camera payload, advertise and select teams
- December 2015: distribute primary common camera payload kits and assembly instructions
- Summer 2016: virtual/regional workshops to verify each primary payload functionality; testing
- AY 2016 2017: build and test secondary payloads
- Summer 2017: June: dry run, at least one flight for each launch location. August: Eclipse totality starts in Oregon at 1:20 PM Eastern on August 21st, 2017 and ends at 2:50 PM Eastern in South Carolina.
- Fall 2017: Students present at national meeting

COSTS – very rough estimates

- Primary payload with camera, satellite modem/communication device: \$1,500 - \$2,500
- Secondary payload: \$50 \$1,000
- Balloons, helium/hydrogen, basic flight supplies (some times two including dry run): \$1,500 - \$3,000
- 2016 regional/virtual workshop: \$0 \$3,000
- Travel to launch and recovery sites (some x2): \$2,000 \$10,000
- Data download fees: \$500 \$5,000

Total estimate for supplies, travel, and fees: \$6,000 - \$25,000 over two years. WORKING ON SUPPORT!

Planning teams

- Primary payload and kit design
- Launch cites
- Participating teams
- Science

Primary payload (kit)

Send Share

Duration and timing (local)

Flight path predictions

Long duration flights

Live images

Live *video...?*

- Wide bandwidth and large amounts of data required
- How to transmit? Much discussion: analog vs. digital (all or nothing; compression algorithms key)
- 1 or 2 live video with dozens of live images, quickly uploaded video?
- Fun challenge

Science

UVCS Lya ending 01:18 12-Dec-1997

"Due to the difficulty in making reliable and timely four-dimensional observations of atmospheric temperature in the vicinity of the path of the total solar eclipse, direct measurements of temperature changes from the troposphere to the stratosphere during a total solar eclipse still haven't been reported before." Hmm...

Signing up and next steps

- Register this academic year
- In progress: funding for primary payload kits
- Participating teams team will define application process
- High level of partnering with other teams (payloads, launch cites, etc.)
- In progress: seeking partnerships with other federal agencies, industry
- Let me know if want to be part of organizing teams

Fall 2017 National Space Grant Meeting, HI

 Total solar eclipse theme with student presentations of ballooning results Invited talk by a solar physicist who observed the event Tours of telescopes

Don't forget

8-21-2017

Watch for updates as we move forward