## **Red Bull Stratos**



Mission to the Edge of Space



## U2 Spy Plane



## Project High Dive



#### Project Excelsior – Joe Kittinger



The plan was to use a balloon to reach the stratosphere and then the test subject would jump from the balloon and delay opening his main parachute until 18,000 feet. The challenge was to find a technique that could be used by pilots who were not trained skydivers.

#### The Jump – 102,800 feet - August 16, 1960



#### **Project Excelsior**



## The Russians

#### • The Volga program

- **Pyotr Dolgov** and **Eugene Andreev**. 83,523 ft (25,460 m).

While Andreev jumped and reached the ground safely. Dolgov died due to a leak in his suit.



#### Nick Piantanida 1963



#### Nick Piantanida 1963



#### Nick Piantanida



## Team Red Bull Stratos

- By the end of the program almost 300 individuals were on site to support the mission.
  - Balloon launch team
  - Technical support
  - Communications
  - Television and internet production
  - Recovery and medical support
  - Logistics

## Red Bull Stratos - Goals

- Test new designs in pressure suit technology
- Break Col Kittinger's records
- Break the sound barrier without aid of an aircraft
- Prove the feasibility of a survivability of a high altitude escape

#### **Stratos Core Team**







#### The Launch Team – ATA Aerospace



#### Launch Director – Ed Coca



#### Red Bull Stratos Meteorologist



# **Red Bull Stratos Meteorologist**

#### • Experience

 Private meteorologist, hot air balloon pilot, forecasting experience in stratospheric flights for the USAF balloon program and long distance gas balloon races and record attempts.

#### Duties

- Weather planning, forecast Launch weather
  - Go, no go decision
  - Balloon layout direction
  - Sky conditions, clouds, precipitation
- Forecast weather aloft and at jump point/landing
  - Trajectory forecasts for balloon/Felix, descent trajectory forecasts for capsule and recovery
    - Camera and communication placement
    - Airspace clearance (FAA, Military)
    - Obstacle/population avoidance
    - Media

## Red Bull Stratos Weather Tools

- Models
  - GFS, GEM, EC, NAM, RUC

#### Radiosonde

- Albuquerque, NM and El Paso, TX 00z and 12z sounding data (both approximately 240 km away from launch site).
- For MBF3 we had our own radiosonde equipment

#### • On site

- Roswell, NM airport automated station
- Weather station at mission control
- Tethered aerostat

#### **Tethered Aerostat**



#### Average Surface Winds at 6 a.m. – Roswell, NM



Day of Year (2000-2009)



#### **Trajectory forecast**



#### Circular Error Probable – Reefed Parachute MF3



#### Media, Cameras, Communications









COL. JOE KITTINGER

ART THOMPSON CHNICAL PROJECT DIRECTOR

#### **Bad News**



#### Roswell, NM



#### The Stratospheric Balloon



#### Dynamic Launch



#### Stratospheric Balloon









# Test Flight Program

- Red Bull Stratos was designed to be run as a flight test program
  - 2 unmanned flights to test systems
  - 3 manned flights, each flight flying higher than previous flight

#### Unmanned Flight #1 – December 2011

- Roswell, NM
- Flight to 90,000 feet
- Pod drop
  - same weight as Felix
  - test parachute and GPS systems
- Dummy capsule
  - Test camera systems
  - G-force crush pads



## **Capsule Recovery**



#### **Reefed Parachute**



#### Unmanned Flight #1 – December 2011





#### UMF #2 January 2012



#### Unmanned Flight #2 – January 2011

- Flight to 110,000 feet
- Test on all systems after lessons learned from UMF #1.
- Challenging weather conditions, frost covered capsule and balloon



#### Manned Flight #1 – March 2012

- Flight to over 71,000 feet
- Above Armstrong line
- Balloon failure on first attempt





# Manned Flight #2 July 2012

- Very challenging mission
- East to west stratospheric winds
- White Sands Missile Range downwind
- GPS jamming
- Rugged terrain in landing area





#### **Damaged Capsule**



## **Damaged Capsule**



## Manned Flight #2 July 2012



#### Manned Flight #3 – Big Balloon

- Helium 160,000 cf (about 300,000 party balloons)
- 29.8 million cubic feet of volume/843842 cubic meters
- Length of un-inflated balloon before launch: 592.41 feet /181 meters
- Takeoff height from the top of balloon to bottom of capsule: about 800 feet/250 meters
- Size of balloon at 128,000 feet/39000 meters

   Height 335 feet/102 meters / Diameter: 424
   feet/129 meters

#### Manned Flight #3 – Weather Challenges

- Winds had to be no more than 2km/hr from the ground to 250 meters above ground level (top of balloon upon release)
- Very few clouds
- Wind direction had to be aligned very closely to expected wind direction
- Wind direction different on ground different than wind direction at 250 meters
- Trajectory had to keep balloon and capsule in communication/video range, avoid airspace obstacles, etc.

#### **Roswell Airport Runway**





#### Aborted Launch - October 9, 2012



## October 14, 2012

• On October 14, 1947, Charles E. "Chuck" Yeager became the first person to fly faster than the speed of sound in his Bell X-1









#### **Balloon Recovery**





#### Summary:

- 1. Tethered aerostat key to success in launching 29.47 mcf manned balloon.
- 2. Strict adherence to model data discouraged
- Meteorological conditions on both October 9<sup>th</sup> (aborted attempt) and successful launch on October 14<sup>th</sup> favored a very narrow "window" of opportunity of about 15 minutes or less for deep light winds.
- 4. Combination of preparation, practice and timely decision making resulted in the success of an extremely difficult endeavor.
- Reefed parachute approach was critical in recovery and safety operations. Red Bull Stratos program will set new standard in stratospheric lighter than air flights and payload recovery.

#### **Red Bull Stratos Documentary**

http://stratos.rdioexclusives.com/landing