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Attitude estimation of a ballon-borne platform is considered. Specifically, the effects of
pendulation on an SO(3)-based attitude estimator is investigated. The balloon platform is
modelled as a rigid-body hanging from a three-dimensional pendulum representing a tether.
The SO(3)-based estimator is implemented and the acceleration due to oscillation is included
in the accelerometer measurements. Four simulations are conducted that demonstrate the
effects of oscillation on the estimator. It is shown that the estimation error due to oscillation
can be mitigated by reducing the estimator gain associated with the accelerometer.

I. Introduction

Many balloon-borne robotic systems require an adequate attitude control system for proper operation.
For example, a balloon-borne observatory must orient itself to a high degree of accuracy to properly observe
celestial objects. Attitude control systems rely on an attitude estimate generated by sensors. The attitude
of balloon-borne platforms, or any rigid-body, is uniquely and globally described by rotation matrices, the
set of matrices belonging to the special orthogonal group denoted SO(3). However, rotation matrices are
rarely used directly within estimation algorithms. Typically, attitude estimation is accomplished by utilizing
the extended Kalman filter to estimate a quaternion, a rotation matrix parameterization. This approach is
taken in Refs. 1, 2, and 3 for attitude estimation of balloon-borne platforms. When coupled with low-cost
measurement units however, the extended Kalman filter is difficult to apply robustly.4

Rather than using rotation matrix parametrizations within an extended Kalman filter to estimate atti-
tude, Refs. 4, 5, 6, and 7 consider estimators that evolve directly on SO(3). In particular, Ref. 4 considers
an estimator that provides estimates of the attitude as well as the gyroscope bias from measurements taken
from typical low-cost inertial measurement units. These units contain an accelerometer and magnetometer
for measurements of the gravitational and magnetic field vectors, as well as a gyroscope that provides angular
velocity measurements. Assuming the accelerometer gives an accurate measurement of the gravitational field
vector, the proposed estimator can be used to determine the attitude of a balloon-borne platform. How-
ever, if the platform is subject to pendulation or oscillatory motion the accelerometer may not give accurate
measurements of the gravitational field vector and the estimator could be adversely affected.

The purpose of this paper, and its main contribution, is to investigate the effects of pendulation on an
SO(3)-based nonlinear estimator for an atmospheric balloon-borne platform. To this end, the equations of
motion of the platform are derived using a Lagrangian approach. The platform is considered as a rigid-body,
and the tether connecting the platform to the balloon is modelled as a three dimensional pendulum. The
estimator of Ref. 4 is implemented in simulation along with a simple proportional-derivative control law.

The remainder of this paper is as follows. Notation is discussed in Sec. II. In Sec. III the platform model
is discussed and the kinematics and dynamics of the system are reviewed. The estimator is presented in Sec.
IV and a proportional-derivative control law is implemented. The platform dynamics are simulated in Sec.
V and closing remarks are given in Sec. VI.
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II. Preliminaries

A. Notation

This paper will adopt the notation found in Ref. 8. Briefly, a physical vector can be expressed as a linear
combination of three unit physical vectors that form a basis for physical three-dimensional space. For
example, the physical vector u−→ can be written as

u−→ = a−→1ua,1 + a−→2ua,2 + a−→3ua,3

=
[
a−→1 a−→2 a−→3

]T  ua,1

ua,2

ua,3


= F−→

T
aua,

where F−→a is the vectrix associated with reference frame “a”, denoted Fa, and ua ∈ R3 is a column matrix

containing the components of u−→ resolved in Fa.8,9 The cross product of two physical vectors, u−→× v−→, can
be resolved in Fa as

u−→× v−→ = (F−→
T
aua)× (F−→

T
ava)

= uT
aF−→a × F−→ava

= F−→
T
au×a va,

where (·)× : R3 → so(3) with so(3) = {S ∈ R3×3|ST = −S} such that8

u×a =

 0 −ua,3 ua,2

ua,3 0 −ua,1
−ua,2 ua,1 0

 .
The orientation of one reference frame relative to another can be described by a direction cosine matrix.

For example, consider the physical vector u−→ resolved in two reference frames, Fb and Fa, u−→ = F−→
T
b ub =

F−→
T
aua. The relationship between ua and ub can be found by taking the dot product of F−→b and u−→,

F−→
T
b ub = F−→

T
aua

ub = F−→b · F−→
T
aua

= Cbaua, (1)

where Cba = F−→b · F−→
T
a is the direction cosine matrix describing the orientation of Fb relative to Fa.8 Note

that (1) can also be written as ua = CT
baub = Cabub; CT

ba is often called a rotation matrix. The direction
cosine matrix Cba also maps the components of a physical vector resolved in Fa to Fb. Direction cosine
matrices belong to the special orthogonal group of rigid-body rotations denoted SO(3), that is SO(3) =
{C ∈ R3×3|CTC = 1, set(C) = +1} where 1 is the identity matrix.

III. Platform Model

A dynamic model of a balloon-borne platform is considered in detail in Ref. 10. For completeness the
kinematics and dynamics of this model will be reviewed here. Consider the platform model shown in Fig. 1.
The platform itself is modelled as a rigid-body and is denoted R. To model pendulation R is constrained
to move with a three dimensional pendulum, denoted P. The pendulum is modelled as a rigid body. Body
R may rotate freely. A reference frame Fb is attached to R at its center of mass. Another Frame Fp is
attached to P with its origin coinciding with the origin of an inertial frame, Fa. The pendulum has one end
pinned to the origin of Fa and another pinned to R at point o.
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Figure 1. Platform model.

A. Kinematics

Let ω−→
ba = F−→

T
bω

ba
b and ω−→

pa = F−→
T
pω

pa
p be the angular velocities of Fb and Fp relative to Fa, respectively.

The orientations of Fb and Fp relative to Fa are described by the direction cosine matrices Cba and Cpa,
respectively. The rotational kinematics of R and P are described by Poisson’s equations,8

Ċba + ωba×

b Cba = 0,

and
Ċpa + ωpa×

b Cpa = 0.

In the analysis of the estimator that follows it will be necessary to consider the linear acceleration of R.
To this end, let r−→

ba be the position of Fb relative to Fa. Referring to Fig. 1, r−→
ba = l−→− y−→ where l−→ is the

position of point o relative to Fa and y−→ is the position of point o relative to Fb. The velocity of Fb relative

to Fa is

v−→
ba = r−→

ba· = l−→
◦

+ ω−→
pa × l−→− y−→

′ − ω−→
ba × y−→

= ω−→
pa × l−→− ω−→

ba × y−→,

where (·)·, (·) ◦, and (·)′ are time derivatives with respect to Fa, Fp, and Fb, respectively. The acceleration
of Fb relative to Fa can be found to be

a−→
ba = v−→

ba· = ω−→
pa
◦

× l−→+ ω−→
pa × ω−→

pa × l−→− ω−→
ba′ × y−→− ω−→

ba × ω−→
ba × y−→

= F−→
T
b

(
Cbp(ω̇pa×

p lp + ωpa×

p ωpa×

p lp)− ω̇ba×

b yb − ωba×

b ωba×

b yb
)

= F−→
T
b abab , (2)

where Cbp = CbaCT
pa, and aba

b is the acceleration of Fb relative Fa resolved in Fb.
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B. Dynamics

Using Lagrange’s equation for constrained systems the equations of motion of the platform model are

M(θba,θpa)ν̇ + τnon(ν) = τ d + τ c, (3)

where M(θba,θpa) is the systems mass matrix, ν = [ωbaT

b ωpaT

p ]T, τnon(ν) is a vector of nonlinear effects,

τ d is the disturbance torque, τ c is the control torque, and θba and θpa are Euler angles associated with Cba

and Cpa, respectively. For more details on the derivation of the equations of motion, see Ref. 10.

IV. Estimation and Control

A. Estimation

The estimation algorithm, including gyroscope bias estimation, presented in Ref. 4 and Ref. 5 will now be
used for attitude estimation of the balloon-borne plaftorm. Assume that, along with an angular velocity
measurement, two vector measurements are available. Specifically, the two measurements are the Earth’s
gravitational field vector from an accelerometer and Earth’s magnetic field vector from a magnetometer.
Let g−→ and m−→ be the physical vectors corresponding to the Earth’s gravitational field and magnetic field,

respectively. These vectors are measured in the body frame and the magnetometer measurement is modelled
as

my
b = Cbama + µm,

where my
b is the measured magnetic field vector resolved in the body frame, ma is the true magnetic field

vector resolved in the inertial frame, and µm is zero mean Gaussian noise associated with the magnetometer.
Ignoring the acceleration of Fb relative to Fa for the moment, the accelerometer measurement may be

similarly modelled as
gy
b = Cbaga + µg, (4)

where gyb is the measured measured gravitational field vector resolved in the body frame, ga = [0 0 − g]T is
the true gravitational field vector resolved in the inertial frame, g = 9.81 (m/s2) is the acceleration due to
gravity, and µg is zero mean Gaussian noise associated with the accelerometer. Ordinarily, this accelerometer
model is accurate as the acceleration due to gravity is much larger than ||abab ||2 at low frequencies.5 However,
low frequency oscillations of the balloon-borne platform during flight can cause significant accelerometer
disturbances. In order to investigate this effect this paper will consider the following accelerometer model:

gyb = Cbaga + abab + µg, (5)

where the linear acceleration of Fb relative to Fa has been included in the accelerometer measurement.
Let Cea be the estimate of Cba. The direction cosine matrix Cea describes the orientation of an estimator

frame relative to the inertial frame Fa. Consider the estimator dynamics,4,5

Ċea = −(ωy + σ − b̂)×Cea, (6)

and
˙̂b = −ki

k
σ, (7)

where Cea is the rotation matrix estimate, ωy = ωba
b + b + µ is the measured angular velocity, b is the

gyroscope bias, µ is the gyroscope measurement noise, b̂ is the estimate of b, σ is the innovation, and
0 < ki < ∞ and 0 < k < ∞ are constant gains that must be tuned.4 The innovation must be chosen such
that Cea approaches Cba asymptotically. For this purpose, the innovation σ has the form

σ = −k(kgg×e gy
b + kmm×e my

b ), (8)

where 0 < kg < ∞ and 0 < km < ∞ are constant gains, ge = Ceaga and me = Ceama are the estimates
of ga and ma expressed in the estimator frame, respectively.4 The constant gains kg and km are typically
chosen based on the relative confidence in the accelerometer and magnetometer measurements. For example,
kg > km indicates a higher confidence in the accelerometer compared to the magnetometer measurements.
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The filter described by Refs. 5, 6, and 7 must be discretized before it can be used on hardware. The
discretized form of (6) is

Ck+1
ea = AkCk

ea,

where Ak = exp(ω̂k×) is given by4,11

Ak = 1− ω̂k× sin (|ω̂k|T )

|ω̂k| +
(
ω̂k×

)2 1− cos (|ω̂k|T )

|ω̂k|2 ,

and ω̂ = ωy + σ − b̂. In addition, Eq. (7) is discretized as5

b̂k+1 = b̂k − T ki
k
σ,

where T is the sample time.

B. Control

Consider a simple proportional-derivative controller:

τc = −kpθ̂3 − kd(ωy
3 − b̂3),

where θ̂3 is the estimated yaw angle of the platform extracted from Cea, ωy
3 is the third component of the

measured angular velocity, b̂3 is the third component of the estimated bias, and 0 < kp <∞ and 0 < kd <∞
are the proportional and derivative control gains, respectively.

V. Simulation

The estimation and control algorithm presented in Secs. IV.A and IV.B will now be implemented in sim-
ulation. To compare the effect of oscillation on the estimator four simulations are conducted. The following
parameters are common to all simulations. The initial angular velocity and initial attitude of the platform
is ωba

b (0) = [0 0 0.1]T (rad/s) and Cba(0) = C1(0◦)C2(0◦)C3(20◦), where Ci, i = 1, 2, 3 are principal
rotations about the 1, 2 and 3 axes. The desired attitude of the platform is Cda = C1(θ1)C2(θ2)C3(0◦) where
θ1 and θ2 are arbitrary. The initial pendulum angular velocity and attitude is ωp(0) = [0 0 0]T (rad/s)
and Cpa(0) = C1(−85◦)C2(0◦)C3(0◦), respectively. The control gains are kp = 1.5 (N · m) and kd = 0.5
(N · m · s). During simulation, the plant model is numerically integrated using a fourth-order Runge-
Kutta integrator with a time-step of 0.005 (s). The initial attitude estimate is Cea(0) = 1. The gyroscope
bias is b = 0.05[1 1 1]T (rad/s) and the initial bias estimate is b̂(0) = [0 0 0]T (rad/s). The noise
covariance matrices associated with the accelerometer, magnetometer, and gyroscope measurements are
Rg = diag{σ2

g , σ
2
g , σ

2
g}, Rm = diag{σ2

m, σ
2
m, σ

2
m}, and Rω = diag{σ2

ω, σ
2
ω, σ

2
ω}, where σg = 0.005 (m/s2),

σω = 0.005 (rad/s), and σm = 0.01 (A ·m2). It is assumed that ma = 1/
√

3[1 1 1]T (A ·m2). The estimator
gain k is set to k = 5. In the simulation measurements become available every 0.04 (s). In addition, the
platform is affected by a disturbance torque populated by data taken from an uncontrolled balloon flight.12

For more information on this flight and the implementation of the disturbance see Refs. 10 and 12.
In the first two simulations kg = km = 1, indicating that the accelerometer and magnetometer measure-

ments are weighted equally thereby having the same effect on the estimator. In one simulation (4) is used
as the accelerometer model while in the other (5) is used. To distinguish between the two models in the
following plots (4) will be referred to as model 1 and (5) will be referred to as model 2. The purpose of these
two simulations is to demonstrate the effect of pendulation on the estimator when the accelerometer and
magnetometer measurements are assumed to be of the same confidence level. Figures 2 and 3 demonstrate
the attitude estimate error. In Fig. 2 the trace of Cbe = CbaCT

ea is plotted. Note that Cbe = 1 indicates that
Cea = Cba and the attitude estimate is identically equal to the true attitude. Thus, tr(Cbe) = 3 indicates
that Cea = Cba. In Fig. 3 the yaw error, pitch error, and roll error extracted from Cbe are plotted. The
norm of the bias error ||b− b̂||2 is plotted in Fig. 4. These plots indicate that the introduction of the linear
acceleration of the platform into the accelerometer measurements introduce significant estimation errors.

In the next two simulations, kg = 0.1 and km = 1. This is an effort to mitigate the effects of accelerometer
disturbances due to platform oscillations by reducing the relative confidence of acceleration measurements
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in the estimator. Again, the attitude estimation error for both accelerometer models is presented in Figs. 5
and 6. The bias estimation error is plotted in Fig. 7. Although the estimator takes longer to converge, it is
clear that by reducing the value of kg the effects of oscillation on the estimator are mitigated. The estimator
more closely resembles the case when accelerations due to oscillation are not included in the accelerometer
measurements.
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Figure 2. kg = km = 1; tr(Cbe) versus time.
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Figure 3. kg = km = 1; yaw, pitch, and roll error versus time.
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Figure 4. kg = km = 1; bias estimate error versus time.
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Figure 5. kg = 0.1, km = 1; tr(Cbe) versus time.

VI. Conclusions

In this paper the effects of platform oscillation on a nonlinear SO(3)-based estimator has been inves-
tigated. Accelerometer, magnetometer, and gyroscope measurements are used to construct the estimator
presented in Refs. 4 and 5. A proportional-derivative control law is used to control the yaw angle of the
balloon-borne platform. The acceleration of the balloon-borne platform due to oscillation is included in
the accelerometer measurement and the effects of this acceleration on the estimator was demonstrated in
simulation. It was shown that the effects of oscillation can be mitigated by reducing the estimator gain
associated with the accelerometer. Thus, when oscillations of a balloon-borne platform become significant
it is advantageous to reduce the accelerometer gain. Future work includes the development of an estimator
which incorporates acceleration due to oscillation directly within the estimator formulation.
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Figure 6. kg = 0.1, km = 1; yaw, pitch, and roll error versus time.
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References

1Quine, B. M., Strong, K., Wiacek, A., Wunch, D., Anstey, J. A., and Drummond, J. R., “Scanning the Earth’s limb
from a high-altitude balloon: The development and flight of a new balloon-based pointing system,” Journal of Atmospheric
and Oceanic Technology, Vol. 19, No. 5, 2002, pp. 618–632.

2Pascale, E., Ade, P., Bock, J., Chapin, E., Chung, J., Devlin, M., Dicker, S., Griffin, M., Gundersen, J., Halpern, M.,

8 of 9

American Institute of Aeronautics and Astronautics



et al., “The balloon-borne large aperture submillimeter telescope: BLAST,” The Astrophysical Journal , Vol. 681, No. 1, 2008,
pp. 400.

3Buccilli, T., Folina, A., Medaglia, E., Montefusco, P., Oliva, M., Palmerini, G., and Sestito, A., “A low cost inertial
navigation experiment onboard balloons,” Proc. 19th ESA Symposium on European Rocket and Balloon Programmes and
Related Research, Bad Reichenhall, Germany, June 2009.

4Mahony, R., Hamel, T., and Pflimlin, J.-M., “Complementary filter design on the special orthogonal group SO(3),” IEEE
Conference on Decision and Control , Dec. 2005, pp. 1477 – 1484.

5Hamel, T. and Mahony, R., “Attitude estimation on SO(3) based on direct inertial measurements,” IEEE International
Conference on Robotics and Automation, May 2006, pp. 2170 –2175.

6Mahony, R., Hamel, T., and Pflimlin, J.-M., “Nonlinear complementary filters on the special orthogonal group,” Auto-
matic Control, IEEE Transactions on, Vol. 53, No. 5, 2008, pp. 1203–1218.

7Khosravian, A. and Namvar, M., “Globally exponential estimation of satellite attitude using a single vector measurement
and gyro,” IEEE Conference on Decision and Control , Dec. 2010, pp. 364–369.

8Hughes, P. C., Spacecraft Attitude Dynamics, Dover, Mineola, New York, 2nd ed., 2004.
9de Ruiter, A., Damaren, C., and Forbes, J., Spacecraft Dynamics and Control: An Introduction, Wiley, 2013.

10Zlotnik, D. E. and Forbes, J. R., “Dynamic modeling, estimation, and control for precision pointing of an atmospheric
balloon platform,” Transactions of the Canadian Society for Mechanical Engineering, Vol. 38, No. 2, 2014.

11Murray, R., Li, Z., and Sastry, S., A Mathematical Introduction to Robotic Manipulation, CRC, 1994.
12Tran, N. K., He, X., Zlotnik, D. E., and Forbes, J. R., “Attitude sensing and control of a stratospheric ballon platform,”

AIAA Balloon Systems Conference, Daytona Beach, Florida, March 26-28, 2013 .

9 of 9

American Institute of Aeronautics and Astronautics


	Introduction
	Preliminaries
	Notation

	Platform Model
	Kinematics
	Dynamics

	Estimation and Control
	Estimation
	Control

	Simulation
	Conclusions
	Acknowledgements
	References

