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Background and Motivation

Attitude Estimation
The process of estimating the
orientation of a body from available
measurements.

Rate gyros, accelerometers,
magnetometers, sun sensors, etc.

Required for autonomous maneuvers in
many robotic vehicles.

Spacecraft, UAVs, and many
balloon-borne platforms.

Typically accomplished using an
extended Kalman filter (EKF).

Credit: UTIAS and BLAST.
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Background and Motivation

Motivating Example: McHAB
Developing an atmospheric balloon platform to carry a calibrating
microwave source.
An adequate attitude control system that will enable precision
pointing is needed.

Ground based observatory

Balloon platform
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Background and Motivation

Motivating Example: McHAB
Low cost IMU:

Accelerometer.
Magnetometer.
Rate gyro.

Traditional EKF technique is difficult to
apply robustly with poor quality sensors.
Nonlinearities and non-Gaussian noise
leads to poor performance.
Motivated the use of a nonlinear
estimator.

Accelerometer
Low frequency disturbances (e.g.
pendulation) can result in inaccurate
measurements.
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Background and Motivation
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Background and Motivation

Attitude Parameterizations
The rotation matrix uniquely and globally describes the attitude of a
body.

Belong to SO(3), SO(3) = {C ∈ R3×3|CTC = 1, detC = +1}.

Three-set parameterizations (Euler angles, Gibbs parameters, etc.).
Components are independent.
Presence of singularities.

Constrained four-set parameterization (unit quaternion).
No singularities.
Non-unique.
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Background and Motivation

This work is an investigation of the effects of pendulation on a nonlinear
SO(3)-based attitude estimator.

Model balloon-borne platform dynamics.
Model IMU measurements.
Review the nonlinear estimator.
Test the robustness of the estimator in simulation.
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Preliminaries

Rigid-Body Kinematics
Poisson’s equation,

Ċba + ω
ba×
b Cba = 0, Cba ∈ SO(3).

ωba
b ∈ R3 is the angular velocity.

“Cross” operator: (·)× : R3 → so(3), so(3) = {S ∈ R3×3|ST = −S}.
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Dynamic Model

Model Kinematics and Dynamics
The platform is modelled as a rigid body
constrained to a rigid pendulum.

Kinematics

Ċba + ω
ba×
b Cba = 0,

Ċpa + ω
pa×
p Cpa = 0.

Employing Lagrange’s equation for
constrained systems leads to the
following dynamics:

Mν̇ + τnon(ν) = τ
d + τ c,

where ν = [ωbaT

b ωpaT

p ]T.

Fa

R

Fb

Fp

P

o

l−→
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Dynamic Model

Linear Acceleration
Position of Fb relative to Fa,

r−→
ba = l−→− y−→.

Acceleration,

a−→
ba = ω−→

pa
◦

× l−→+ ω−→
pa × ω−→

pa × l−→
−ω−→

ba′ × y−→− ω−→
ba × ω−→

ba × y−→.

Acceleration resolved in Fb,

aba
b = Cbp(ω̇

pa×
p lp + ωpa×

p ωpa×
p lp)

−ω̇ba×
b yb − ωba×

b ωba×
b yb.

Fa

Fb

Fp

o

l−→

y−→

r−→
ba
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Measurement Model

Measurement Model
Rate gyro

ωy = ωba
b + b + µ.

Magnetometer
my

b = Cbama + µ
m.

Accelerometer nominally measures

gy
b = Cbaga + µ

g,

where ga =
[

0 0 −g
]T.

We will consider
gy

b = Cbaga + aba
b + µg.
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SO(3)-Based Estimator

We will implement the estimator proposed by Mahony et al. (2005).

Estimator Dynamics

Ċea = −(ωy − b̂ + σ)×Cea,

˙̂b = −ki

k
σ,

where Cea is the estimate of Cba, b̂ is the estimate of b, and σ is the
innovation. The goal is to drive Cea to Cba.

Innovation
σ = −k

(
kgg×e gy

b + kmm×
e my

b

)
,

where

ge = Ceaga and me = Ceama.

Gains kg and km are chosen based on the relative confidence of the
measurements.
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Control

Proportional-Derivative Control Law

τc = −kpθ̂3 − kd(ω
y
3 − b̂3)

Yaw, θ̂3, is extracted from Cea.
ωy

3 is the third component of the measured angular velocity.

b̂3 is the third component of the estimated bias.
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Control
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Simulation

Simulation Parameters
ωba

b (0) = [0 0 0.1]T (rad/s).
ωpa

p (0) = [0 0 0]T (rad/s).
Cba(0) = C1(0◦)C2(0◦)C3(20◦).
Cpa(0) = C1(−85◦)C2(0◦)C3(0◦).
Disturbances are populated by flight data.

Estimator Parameters
k = 5.
First simulation: kg = km = 1.
Second simulation: kg = 0.1 and km = 1.
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Simulation

kg = km = 1
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Simulation

kg = km = 1
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Simulation

kg = km = 1
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Simulation

kg = 0.1 and km = 1

0 10 20 30
2.85

2.9

2.95

3

time (s)

tr
(C

b
e
)

 

 
model 1
model 2

Cbe = CbaCT
ea.

Zlotnik & Forbes, Michigan Effect of Pendulation on an Attitude Estimator June 27, 2014 19/23



Simulation

kg = 0.1 and km = 1
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Simulation

kg = 0.1 and km = 1
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Closing Remarks

The effects of pendulation on a nonlinear SO(3)-based estimator has
been investigated.
A dynamic model of the balloon-borne platform was derived.
Acceleration of the platform was included in the accelerometer
measurement.
Effects of oscillation can be mitigated by reducing the estimator gain
associated with the accelerometer.

Not ideal as magnetometer measurements can be unreliable.

Future work includes the development of an estimator that directly
takes acceleration due to oscillation into account.
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Questions

Questions?

dzlotnik@umich.edu
forbesrj@umich.edu

Presentation created using LATEX and Beamer.
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