

Repurposing an Iridium Network Satellite Modem into a Two-Way Balloon Tracking and Communication System

Scott Miller

Montana State University

MSGC BOREALIS

MSGC BOREALIS

Outline of this talk

- Previous tracking system and challenges
- Intro to satellite modem
- Configuration of support systems
- Final tracking system overview
- Additional modem capabilities
- Outcomes of the project

Previous flight system

- Amateur radio based, APRS system (2 radios)
- DTMF decoding for in-flight control
- SPOT satellite beacon
- Burst flights or cut down flight termination
- Reporting of launch location and altitude to FAA

Previous tracking system – Amateur radio

Previous tracking system – SPOT beacon

Typical Montana recovery geography

ick's Fen

Rick the Landowner

Landing Spot Branch and a water

Less typical recovery geography

Challenges for previous system

- Amateur radio
 - Loss of reporting during the final moments of flight
 - Less detailed reporting of location to the FAA
 - DTMF decoding sometimes unreliable
 - Heavy / large system
- SPOT beacon
 - Only works up to an altitude of 20,000 ft
 - Must have a clear view of the sky for reporting

Outline of this talk

- Previous tracking system and challenges
- Intro to satellite modem
- Configuration of support systems
- Final tracking system overview
- Additional modem capabilities
- Outcomes of the project

Why a satellite modem?

- Need for an online reporting website
 - Online APRS tracking issues
 - Easy access to data
 - Reporting to the FAA
- Used by scientific ballooning organizations such as Columbia Scientific
- All-in-one GPS and two-way communications

NAL 9602-LP satellite modem

NAL 9602-LP satellite modem

NAL Research Corp. Model: 9602-LP 6

112

Soct

Capabilities

- Short Burst Data (SBD) packets – 340 bytes per message sent - 270 bytes per message received Power usage 200 mA average transmit current - 45 mA average receive current -3.6 - 5.3 or 6.0 - 32.0 input voltage range Environmental
 - Operating temperature range -40° to 185° F

Fauinment	•	Service			
ltom Cost		ltem	Cost		
пет	COSL	Turn on service	\$700		
NAL 9602-LP	\$600		¢,000		
Dual hand antenna	6300	ivionthly fee	\$13 \$0.04		
		First 30 bytes			
Cables	Ş150	> 20 by to c			
			JOTOTZ A DALE		

Average flight ~\$25

What needs to be set up?

- Our take: website with location data
 Report location and altitude data
- Main server
 - IP registered with Iridium
 - Receive data and run code
- Physical considerations
 - Mounting, antenna placement
 - Power supply

Outline of this talk

- Previous tracking system and challenges
- Intro to satellite modem
- Configuration of support systems
- Final tracking system overview
- Additional modem capabilities
- Outcomes of the project

System set up

- Our vision was to plot location reports on Google Maps as they are received, and have this easily accessible over the internet.
- Required several items on server:
 - NAL service
 - Webserver
 - Database
 - Data interpretation code

Webserver and database

- Can be done many ways, we chose an all-inone solution: XAMPP
- X Windows, Mac, or Linux
- A Apache webserver
- M MySQL database
- P PHP server-side code
- P Perl, unused

Next – homework!

Receiving data

Receiving data

<tvpe>NAL GPS Report 5</type> </meta> <nalGpsReport5> <time>2013-07-31T15:10:49.5Z</time> <lat>46.3612667</lat> <lng>-109.0443833</lng> <alt>21820</alt> <gndVel>18.36</gndVel> <course>294.10</course> 2varVal > 1 592/varVal >XML code

Outline of this talk

- Previous tracking system and challenges
- Intro to satellite modem
- Configuration of support systems
- Final tracking system overview
- Additional modem capabilities
- Outcomes of the project

Missoula

Borealis Balloon Tracking

Tracking Previous Flights About Contact

Previous Flight Data

Flight Date: 2013-07-23

Time-UTC	Date	Latitude	Longitude	Alt-m	Alt-ft	V_Vel-m/s	V_Vel-ft/s
17:31:45	2013-7-23	46.1652167	-109.1096333	1,234	4,050	-0	-2
17:31:16	2013-7-23	46.1652333	-109.1096500	1,237	4,059	0	0
17:30:3	2013-7-23	46.1652333	-109.1096500	1,233	4,047	0	I
17:29:34	2013-7-23	46.1652333	-109.1096500	1,234	4,047	-0	-I
17:29:3	2013-7-23	46.1652333	-109.1096500	1,235	4,050	0	I
17:28:31	2013-7-23	46.1652167	-109.1096833	1,232	4,042	-0	-I
17:28:4	2013-7-23	46.1652333	-109.1096667	1,236	4,055	-0	-0
17:27:32	2013-7-23	46.1652333	-109.1096667	1,234	4,049	0	0
100 Contra 100 Contra	and the second second second	the second s		Contraction of the	Contraction of the second	10000	

Tracking Previous Flights

About Contact

Previous Flight Data

Flight Date	Link to Data	Test Actual
2014-06-20	Click Here	A
2014-06-19	Click Here	Т
2014-06-18	Click Here	Т
2014-06-12	Click Here	А
2014-06-11	Click Here	Т
2014-06-05	Click Here	Т
2014-04-19	Click Here	A
2014-04-18	Click Here	Т
2014-04-17	Click Here	Т
2014-04-10	Click Here	Т
2014-04-09	Click Here	Т
2014-03-27	Click Here	Т
2014-03-19	Click Here	Т
2014-02-26	Click Here	Т
2014-02-06	Click Here	Т
2013-09-29	Click Here	А
2013-09-27	Click Here	Т
2013-08-07	Click Here	Т
2013-07-31	Click Here	A
2013-07-30	Click Here	Т
2013-07-29	Click Here	Т
1017 07 16	Clisk Uara	т

Final website design:

Outline of this talk

- Previous tracking system and challenges
- Intro to satellite modem
- Configuration of support systems
- Final tracking system overview
- Additional modem capabilities
- Outcomes of the project

Control of experiments in-flight

Transmitting non-location based data

Outline of this talk

- Previous tracking system and challenges
- Intro to satellite modem
- Configuration of support systems
- Final tracking system overview
- Additional modem capabilities
- Outcomes of the project

Outcomes of project

- We have received positive feedback from the FAA on our website
- The satellite modem has successfully flown on 9 flights
- We have used the system to operate a helium vent and flight termination system on 4 flights
- NAL 9602 is very durable and can transmit and receive data when the antenna is pointed towards the ground

What still needs to be done?

- Integration of airspace maps
- Automatic descent profile plotting and forecasting
- Real-time graphs / data presented alongside GPS information
- Automatic launch/burst/landing markers
- Automatic sending of SBD packets / secure web interface

Thank You for your time!

A special thank you to:

- MSGC / BOREALIS / MSU
- Berk Knighton and Randy Larimer
- My Presidential Emerging Scholars sponsor
- The wonderful team of future engineers I was able to work with
- Jeremy Gay MSU Physics IT

Lessons learned

- uBlox GPS chipset (inside modem) "altitude mode"
- EMI from GoPro cameras
- Little example code / tech heavy datasheets

Challenges along the way:

Challenges along the way:

Challenges along the way:

