A Low-Cost Attitude Determination System using Multiple Sensors for High-Altitude Balloon Flights

By: Ankit Jain Douglas Isenberg

Presentation Overview

> Background

- Attitude Determination
 - Markley's Singular Value Decomposition (SVD) Solution to Wahba's Problem
 - Sunlight Vector from Solar Cells
 - Acceleration Vector from Accelerometer
- > Experiment
- Experimental Results
 - o Angular Velocity Vector from Rate Gyroscope
 - Angular Velocity Vector from Estimated Attitude
 - o Results & Discussion
- Future Developments
- Acknowledgments

EMBRY-RIDDLE

Aeronautical University

- Attitude the orientation of a body
- > Attitude control used in dynamic systems:
 - 0 Satellites
 - 0 Aircrafts
 - Robotics
- ► Accurate attitude determination:
 - o Low-cost sensors
 - 0 High-altitude balloon payloads

High-Altitude Balloon Systems EMBRY-RIDDLE

➢ Growing interest:

- 0 Scientific and educational experiments at high altitudes:
 - Earth-related observations geological and atmospheric
 - 60,000 to 120,000 ft.
- o Economical alternative to launch services
- Project Loon, by Google [1]:
 - Provide internet to rural and remote areas

Attitude Determination **EMBRY-RIDDLE** Aeronautical University

➢ Direction Cosine Matrix (DCM):

 $\boldsymbol{r}^A = T^A_B \boldsymbol{r}^B$

- ≻ Wahba's problem [2]:
 - o Two-vector attitude determination
 - Sunlight and acceleration vector
 - 0 Markley's SVD solution to Wahba's problem [3]
- ► Low-cost sensors:
 - 0 Solar cells
 - 0 3-axis accelerometer

Wahba's Problem

EMBRY-RIDDLE Aeronautical University

$$\min_{T_B^A} J = \frac{1}{2} \sum_{n=1}^N a_n \| \boldsymbol{r}_n^A - T_B^A \boldsymbol{r}_n^B \|^2$$

where

 $N \ge 2$

Markley's SVD Solution EMBRY-RIDDLE Aeronautical University

$$B = \sum_{n=1}^{N} a_n \boldsymbol{r}_n^A (\boldsymbol{r}_n^B)^T$$

≻ Two-vector attitude determination:

$$B = \left(a_S \boldsymbol{r}_S^A (\boldsymbol{r}_S^B)^T\right) + \left(a_A \boldsymbol{r}_a^A (\boldsymbol{r}_a^B)^T\right)$$

Singular Value Decomposition:

$$U\Sigma V^T = B$$

Markley's SVD Solution **EMBRY-RIDDLE** Aeronautical University

► DCM from SVD solution:

$$T_B^A = U \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & |U||V| \end{bmatrix} V^T$$

Inertial Frame Vectors

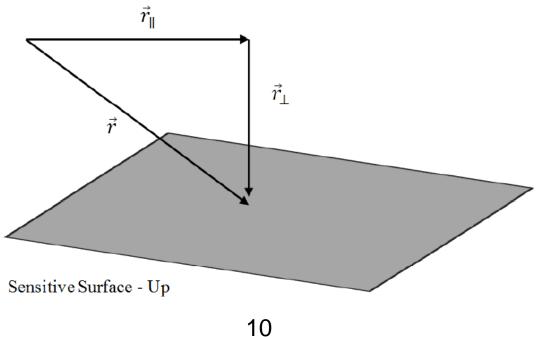
EMBRY-RIDDLE Aeronautical University

► Acceleration vector:

$$r_a^A = \left[egin{array}{c} 0 \\ 0 \\ 1 \end{array}
ight]$$

Sunlight vector:

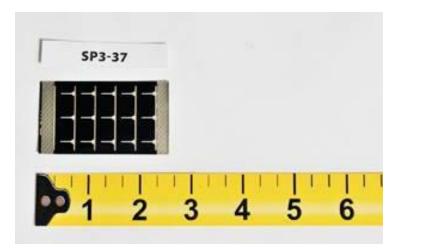
$$\boldsymbol{r}_{S}^{A} = \left[\begin{array}{c} 0.4449 \\ -0.7122 \\ -0.5430 \end{array} \right]$$



Sunlight Vector from Solar Cells Aeronautical University

► Assumptions:

- 0 Flat device
- 0 Only one sensitive side
- 0 Only measures positive component of light information
- 0 Only measures normal component of light information

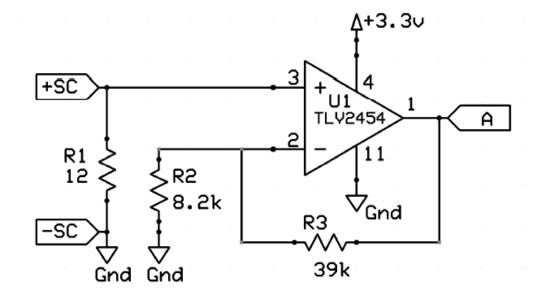


Solar Cells Used

EMBRY-RIDDLE Aeronautical University

[4]

PowerFilm Solar Inc. donated 26 of their SP3-37 solar cells:



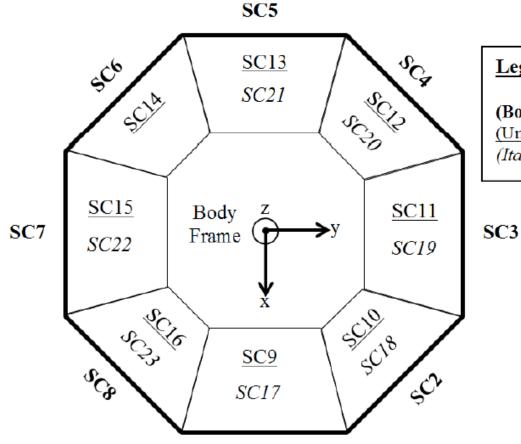
Signal Conditioning

EMBRY-RIDDLE Aeronautical University

TLV2454 rail-to-rail linear operational amplifiers (OPAMPs)

Non-inverting configuration:

Sun Sensor Implementation



Sun Sensor Implementation

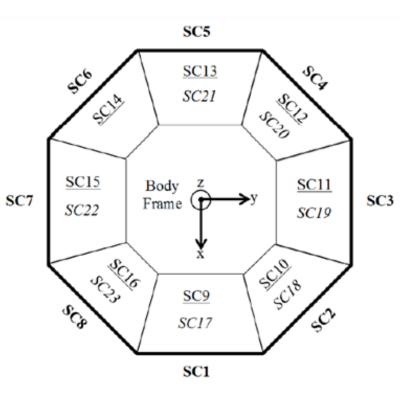
EMBRY-RIDDLE Aeronautical University

SC1

Legend:

(Bold) SC: Middle Layer Solar Cells (Underlined) SC: Top Layer Solar Cells (Italics) SC: Bottom Layer Solar Cells

EMBRY-RIDDLE Aeronautical University


Rotation Matrices

$$Rot_X(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$
$$Rot_Y(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$$
$$Rot_Z(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Middle Layer Analysis EMBRY-RIDDLE Aeronautical University

$$A_{1} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} (I)^{T} \boldsymbol{r}_{S}^{B}$$

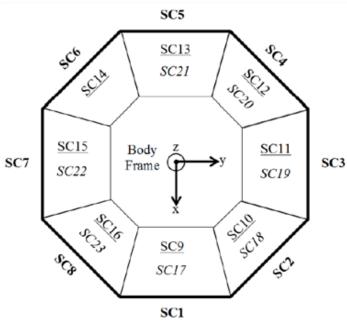
$$A_{2} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} (Rot_{Z}(\pi/4))^{T} \boldsymbol{r}_{S}^{B}$$

$$A_{3} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} (Rot_{Z}(\pi/2))^{T} \boldsymbol{r}_{S}^{B}$$

$$A_{4} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} (Rot_{Z}(3\pi/4))^{T} \boldsymbol{r}_{S}^{B}$$

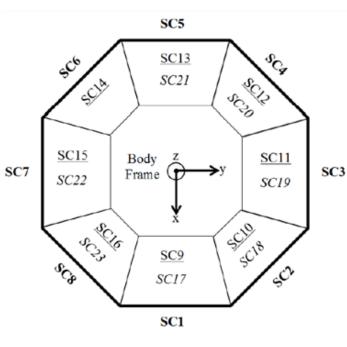
$$A_{5} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} (Rot_{Z}(\pi))^{T} \boldsymbol{r}_{S}^{B}$$

$$A_{6} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} (Rot_{Z}(\pi))^{T} \boldsymbol{r}_{S}^{B}$$


$$A_{7} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} (Rot_{Z}(3\pi/2))^{T} \boldsymbol{r}_{S}^{B}$$

$$A_{8} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} (Rot_{Z}(7\pi/4))^{T} \boldsymbol{r}_{S}^{B}$$

Top Layer Analysis



$A_9 = [1]$	0	$0] (Rot_Y(-\pi/4))^T r_S^B$
$A_{10} = [1$	0	0]($Rot_Z(\pi/4)Rot_Y(-\pi/4))^T r_S^B$
$A_{11} = [1$	0	0] $(Rot_Z(\pi/2)Rot_Y(-\pi/4))^T r_S^B$
$A_{12} = [1$	0	0]($Rot_Z(3\pi/4)Rot_Y(-\pi/4))^T r_S^B$
$A_{13} = [1$	0	$0](Rot_Z(\pi)Rot_Y(-\pi/4))^T r_S^B$
$A_{14} = [1$	0	0] $(Rot_Z(5\pi/4)Rot_Y(-\pi/4))^T r_S^B$
$A_{15} = [1$	0	0]($Rot_Z(3\pi/2)Rot_Y(-\pi/4))^T r_S^B$
$A_{16} = [1$	0	0]($Rot_Z(7\pi/4)Rot_Y(-\pi/4))^T r_S^B$

Bottom Layer Analysis EMBRY-RIDDLE Aeronautical University

$A_{17} = [1]$	0	$0 \](Rot_Y(\pi/4))^T r_S^B$
$A_{18} = [1$	0	$0] (Rot_Z(\pi/4)Rot_Y(\pi/4))^T r_S^B$
$A_{19} = [1$	0	$0] (Rot_Z(\pi/2)Rot_Y(\pi/4))^T r_S^B$
$A_{20} = [1$	0	$0] (Rot_Z(3\pi/4)Rot_Y(\pi/4))^T r_S^B$
$A_{21} = [1$	0	$0](Rot_Z(\pi)Rot_Y(\pi/4))^T \boldsymbol{r}_S^B$
$A_{22} = [1$	0	$0] (Rot_Z(3\pi/2)Rot_Y(\pi/4))^T r_S^B$
$A_{23} = [1$	0	$0 \](Rot_{Z}(7\pi/4)Rot_{Y}(\pi/4))^{T}r_{S}^{B}$

Body Frame Sunlight Vector EMBRY-RIDDLE

 r^B_S

19

г , т		-		-
A_1		1	0	0
A_2		$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	0
A_3		Ō	1	0
A_4		$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	0
A_5		-1	0	0
$\begin{array}{c} A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_5 \\ A_6 \\ A_7 \\ A_8 \\ A_{14} \\ A_{15} \\ A_{16} \\ A_{17} \\ A_{18} \\ A_{19} \\ A_{20} \\ A_{21} \\ A_{22} \\ A_{23} \end{array}$		$ \begin{array}{c} 1 \\ \frac{\sqrt{2}}{2} \\ 0 \\ -\frac{\sqrt{2}}{2} \\ -1 \\ -\frac{\sqrt{2}}{2} \\ 0 \\ \frac{\sqrt{2}}{2} \\ -\frac{1}{2} \\ 0 \\ \frac{\sqrt{2}}{2} \\ -\frac{1}{2} \\ 0 \\ -\frac{1}{2} \\ 0 \\ -\frac{\sqrt{2}}{2} \\ 0 \\ -\frac{1}{2} \\ 0 \\ 0 \\ -\frac{1}{2} \\ 0 \\ 0 \\ -\frac{1}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 0\\ \frac{\sqrt{2}}{2}\\ 1\\ \frac{\sqrt{2}}{2}\\ 0\\ -\frac{\sqrt{2}}{2}\\ -1\\ -\frac{\sqrt{2}}{2}\\ -\frac{1}{2}\\ -\frac{\sqrt{2}}{2}\\ -\frac{1}{2}\\ 0\\ \frac{\sqrt{2}}{2}\\ \frac{1}{2}\\ 0\\ -\frac{\sqrt{2}}{2}\\ -\frac{1}{2}\\ 0\\ -\frac{\sqrt{2}}{2}\\ -\frac{1}{2}\\ 0\end{array}$	0
A_7		0	-1	0
A_8		$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	0
A_{14}	_	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{2}}{2}$
A_{15}	_	0	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
A_{16}		$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{\sqrt{2}}{2}$
A ₁₇		$\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$
A_{18}		$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$
A_{19}		0	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$
A_{20}		$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$
A_{21}		$-\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$
A_{22}		0	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$
$\begin{bmatrix} A_{23} \end{bmatrix}$		$\frac{1}{2}$	$-\frac{1}{2}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $

 A9 through A13 missing due to wiring issues
 If Ai = 0; then, the corresponding equation must be removed

Acceleration Vector from Accelerometer EMBRY-RIDDLE Aeronautical University

Low-cost MEMs accelerometer used

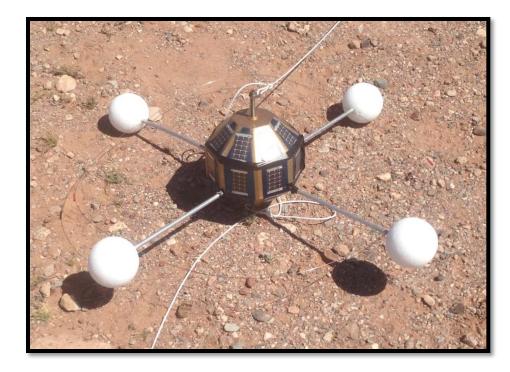
Assuming a linear input/output relationship:

 $\boldsymbol{V}_{a}=\boldsymbol{K}\left(\ddot{\boldsymbol{r}}_{a}^{B}+\boldsymbol{g}^{B}\right)+\boldsymbol{c}$

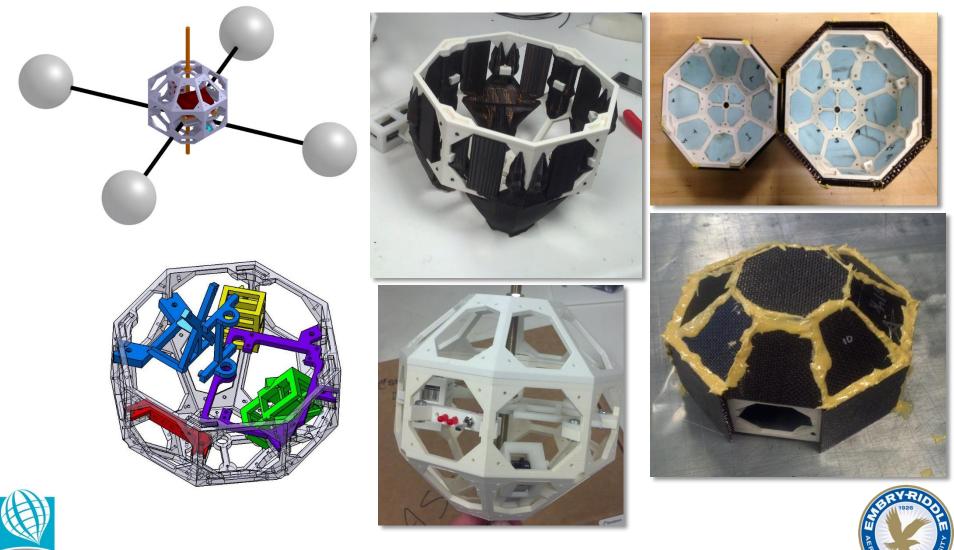
Accelerometer Calibration

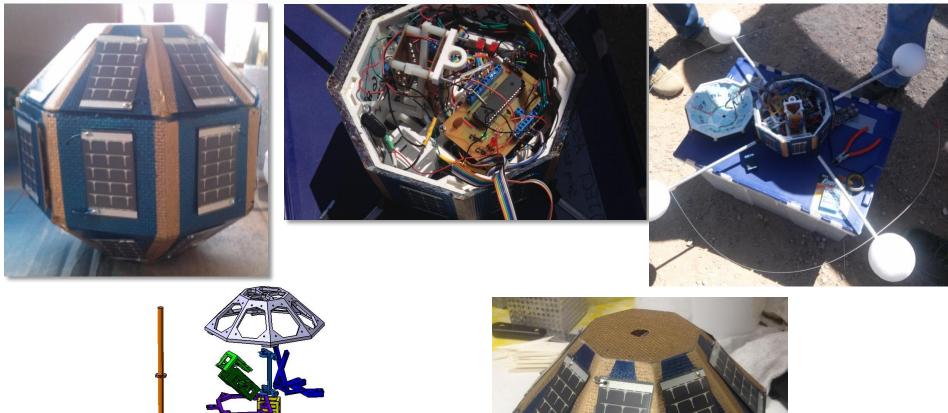
$\left[egin{array}{c} oldsymbol{V}_a^{x_g}-oldsymbol{c}\ oldsymbol{V}_a^{y_g}-oldsymbol{c}\ oldsymbol{V}_a^{z_g}-oldsymbol{c}\end{array} ight]=$	9.81 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 9.81 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 9.81 \\ 0 \end{array}$	$\begin{array}{c} 0\\ 9.81\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 9.81 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 9.81 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 9.81 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 9.81 \\ 0 \\ 0 \end{array}$	0 0 0 0 0 0 0 0	$ \begin{array}{c c} K_{11} \\ K_{12} \\ K_{13} \\ K_{21} \\ K_{22} \\ K_{23} \\ K_{31} \\ K_{32} \end{array} $
	0	0 0	0 0	$\begin{array}{c} 0 \\ 0 \end{array}$	0 0	$\begin{array}{c} 9.81 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 0\\ 9.81 \end{array}$	$ \begin{array}{c c} K_{32} \\ K_{33} \end{array} $

Body Frame Acceleration Vector EMBRY-RIDDLE Aeronautical University


$$\ddot{r}_{a}^{B} = \begin{bmatrix} 0.0234 & 0.0237 & 0 \\ -0.0151 & 0.0154 & 0 \\ -0.0004 & 0 & -0.0160 \end{bmatrix}^{-1} \left(\mathbf{V}_{a} - \begin{bmatrix} 1.4171 \\ 1.6419 \\ 1.8154 \end{bmatrix} \right)$$

Experiment


- ➢ Payload Overview:
 - 0 26-sided structure
 - Bi-directional carbon
 fiber
 - o NOMEX honeycomb
 - o Epoxy
 - Fiberglass
 reinforcement
 - o 2/10" Styrofoam insulation
 - 3D printed internal structure




Payload

- ANSR (Arizona Near Space Research) flight for Arizona Space Grant ASCEND (Aerospace Scholarships to Challenge and Educate New Discovers) Project
- Flight Date: March 29th, 2014
- ≻Burst Altitude: 73,794 ft.

Experimental Results

No reference attitude is available to compare against

- Obtain angular velocity information from computed DCM (i.e., attitude), in the body frame
 - Compare against angular velocity information measured in the body frame during flight using rate gyroscope

EMBRY-RIDDLE

Aeronautical University

Angular Velocity Vector from Rate Gyroscope **EMBRY-RIDDLE** Aeronautical University

Low-cost MEMs rate gyroscope used
 Assuming a linear input/output relationship:

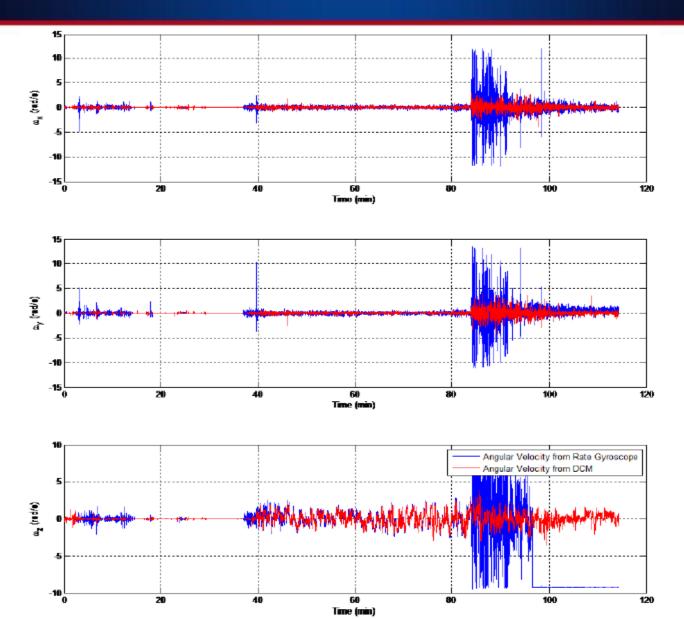
 $V_{\omega} = S \boldsymbol{\omega}^B + \boldsymbol{b}$

Rate Gyroscope Calibration

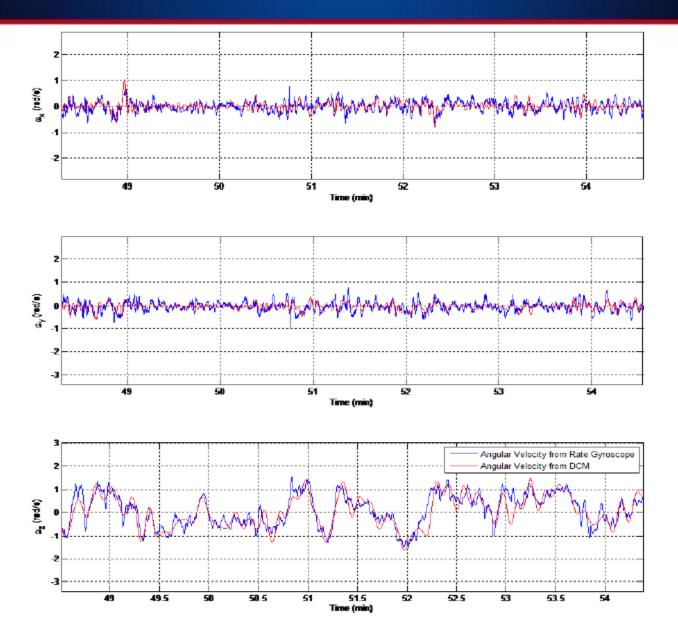
Body Frame Angular VelocityEMBRY-RIDDLEVector from Rate GyroscopeAeronautical University

$$\boldsymbol{\omega}^{B} = \begin{bmatrix} 0.0032 & 0.0026 & -0.1941 \\ -0.1363 & 0.1327 & 0.0025 \\ 0.1399 & 0.1394 & 0.0056 \end{bmatrix}^{-1} \left(\boldsymbol{V}_{\omega} - \begin{bmatrix} 1.4865 \\ 1.4892 \\ 1.4844 \end{bmatrix} \right)$$

Angular Velocity Vector from Estimated Attitude EMBRY-RIDDLE Aeronautical University


$$\dot{T}_B^A = T_B^A \begin{bmatrix} 0 & -\omega_z^B & \omega_y^B \\ \omega_z^B & 0 & -\omega_x^B \\ -\omega_y^B & \omega_x^B & 0 \end{bmatrix}$$

- Central difference method
- ► Ideal low-pass filter:
 - Fourier transform of signal
 - 0 Break frequencies (x, y, and z): 2.3, 2.0, and 0.8 (rad/s)
 - 0 Inverse Fourier transform of result



Future Developments

More than two independent vector measurements

- Two-vector attitude determination:
 - 0 Magnetic field vector
 - Sunlight vector
- Compare against another attitude:
 o Roll, pitch, and yaw using image/video processing

EMBRY-RIDDLE

Aeronautical University

Acknowledgements

- Embry-Riddle Aeronautical University (ERAU) Prescott, AZ - College of Engineering
- Arizona Space Grant Consortium
- ➢ Jack Crabtree and ANSR (Arizona Near Space Research)
- ➢ PowerFilm Solar Inc.
- Spring 2014 ASCEND Payload Build Team:
 - o Benjamin Anderson
 - 0 Dallas Hodge
 - o Austin Leonard
 - 0 Patrick Deskin
 - o Loren Williams
 - 0 John Cybulski
 - o Brigette Cochran

EMBRY-RIDDLE Aeronautical University

≻ Ankit Jain:

- O BS Aerospace Engineering (Astronautics) from ERAU Prescott, AZ
- 0 Email: jaina@my.erau.edu
- o Phone: (678) 986-3996

[1] http://www.google.com/loon/, \Google Loon," 2014.

[2] Wahba, G., \A least squares estimate of satellite attitude," SIAM review, Vol. 7, No. 3, 1965, pp. 409{409.

[3] Markley, F. L., \Attitude determination using vector observations and the singular value decomposition," The Journal of the Astronautical Sciences, Vol. 36, No. 3, 1988, pp. 245{258.

[4] SP3-37 Solar Cells. Digital image. PowerFilm Solar Inc. N.p., n.d. Web.

