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We uplink commands to high-altitude balloon missions using DTMF encoding on ham 

radio frequencies, interpreted by an Arduino microcontroller with a DTMF decoder shield. 

The commands are then circulated between multiple payloads using an XBee radio network. 

We echo uplink transmissions back to the ground, as confirmation of receipt, and downlink 

other housekeeping data using a StratoSAT ZigBee module monitoring Arduino output pins. 

We have also developed a radio-controllable vent mechanism that attaches directly to the 

neck of a weather balloon to vent helium in flight, in an attempt to prolong time spent at 

altitude. This last project, controlled from the ground through the DTMF uplink and XBee 

network (with on-board autonomous back-up capabilities as well) has been problematic, but 

we will report on progress and results to date. 

I. Introduction 

S a step beyond “basic ballooning” in which autonomous systems log sensor data and images on-board, and 

radios send gps information to the ground for tracking, we have been developing radio systems with which we 

can send commands to balloon payloads while in flight (AKA “uplink”), transmit arbitrary sensor data and/or 

housekeeping data (such as echos of uplink commands, to confirm receipt) to the ground (AKA “downlink”), and 

pass messages between payloads (AKA “network”). 

One particular payload that will benefit from these additional capabilities is our “Float” payload which can vent 

helium from the balloon and/or cut-down payloads from the balloon to terminate a flight. We would ultimately like 

to be able to control those functions from the ground, making decisions based on real-time tracking data, with 

autonomous algorithms serving as the back-up rather than the primary decision-makers. 

Numerous U of MN students have worked on various aspects of this general project over the past several years 

involving multiple flights, both on MN-Space-Grant-sponsored summer-time ballooning teams and also members of 

one technical elective class for upper division students. The author list includes students who made some of the most 

useful contributions to various parts of this project to date. 

II. DTMF Uplink 

We selected DTMF (dual-tone multi-frequency) for encoding uplink commands, to be transmitted on ham radio 

frequencies. DTMF tones are familiar to us all – they are the tones you hear when using a touch-tone phone. Figure 

1 shows a DTMF decoder shield for an Arduino microcontroller.
1
 The audio output from a Yaesu VX-3 hand-held 

ham radio was plugged into the DTMF shield, which in turn was mated to an Arduino Uno or Mega. The shield 

decodes the DTMF signals it receives with an MT8870 DTMF receiver chip, displays them on its on-board 7-

segment display, and passes them along to the Arduino. The Arduino also had a SD-card shield, to log information 
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such as DTMF tones received. A three-digit coding scheme was invented (see Appendix A) with codes appropriately 

separated (see Downlink section) to provide functionality for the Float payload (see Float section). 

 

 
Figure 1. A DTMF decoder-only shield. DTMF tones fed in through the audio jack (upper right) are 

displayed on the 7-segment display and available to the Arduino microcontroller (below the shield). Our 

implementation also used a SD-card shield to log incoming DTMF commands plus an XBee radio shield to 

relay commands on the XBee network. Photo from Ref. 1. 

III. SAT ZigBee Module Downlink 

In addition to uplink, we wanted to establish a downlink radio connection (a) to echo uplink commands, as 

evidence that they were received properly, and (b) to send down status updates from on-board hardware, such as 

whether the vent was open or closed. Such a downlink channel could also be used to send experiment data to the 

ground in real time. We would have liked to implement downlink using DTMF as well, with the Arduino keying the 

handheld ham radio for transmissions, but our DTMF shield only does DTMF decoding, not tone generation (i.e. not 

DTMF encoding). 

Hence we elected to implement downlink using ZigBee radio modules with the StratoSAT system we already 

owned. Since an Arduino cannot generate true analog output, we used pulse-width modulation (PWM) on Arduino 

digital pins and used a low-pass filter to approximate analog values between 0 and 5 volts which were then 

monitored by analog inputs on a ZigBee module and relayed to the ground through the StratoSAT command pod 

900 MHz radio. This worked fairly well, though settling time issues and low resolution required us to keep 

legitimate 3-digit DTMF codes relatively far apart numerically so they could still be correctly distinguished upon 

echo through the downlink channels. 

Each ZigBee module as two banks of 5 analog inputs and we flew one ZigBee in the DTMF payload and one in 

the Float payload, allowing us to monitor up to 10 analog voltages in each payload (though we never used that 

many). One ZigBee channel was used to echo 3-digit DTMF tones, converted into 0 to 5 volt analog values, to 

ensure they were received and interpreted properly. Other ZigBee channels were used to monitor the mechanical 

status of the vent itself with push-button switches (fully open, closed, intermediate), the status of the two nichrome 

cut-downs (ready, fired), the mechanical status of payload separation from the balloon, as evidenced by pull-pins 

(still attached, separated), and to report the cumulative open time for the vent. For more details about downlink 

channels, see Appendix A. 

IV. XBee Network 

We established a wireless radio network using XBee radios mounted on shields so that Arduino 

microcontrollers in different payloads can communicate with one another. This allows uplink commands sent by 

DTMF to be received by the DTMF payload then relayed on to their true destination – the Float payload, for 

example. It also allows payloads without ZigBee modules for StratoSAT downlink to send housekeeping data over 
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the XBee network to another payload that can downlink it. There are many on-line and print references
2
 describing 

how to set up and program XBee networks with Arduino microcontrollers. 

V. Float: Vent/Cut-down Payload 

There are numerous challenges associated with venting helium (or hydrogen) from a balloon with the goal of 

achieving “float” (i.e. neutral buoyancy). The venting mechanism must reside in the neck of the balloon and provide 

a gas-tight seal when closed, but as much flow capacity as possible when open, so as to be as responsive as possible. 

Our design was for Kaymont 1200-gram and 1500-gram balloons with their relatively-narrow necks, at least 

compared to Howee balloons. The mechanism needs to be controllable, presumably using an actuator typically 

controlled by a microcontroller (using a timer, sensor input, and/or radio input). If one vents enough helium to 

achieve float, the mission no longer is automatically self-terminating so a termination device must also be included. 

In our case we used a nichrome burner “cut-down” to sever the line(s) between the balloon and the stack. However 

one of the hardest things to recover is the vent mechanism itself, since that is lodged in the neck of the balloon but, 

by definition, if you cut away from the balloon you don’t get the neck back. (Other termination mechanisms are 

conceivable, such as trying to pop the balloon, dropping ballast to regain an adequate ascent rate to reach altitude 

and burst, or just venting enough helium to come down (albeit most slowly than by parachute), but these were not 

attempted.) Weight is another challenge, not only overall weight but also the fact that the vent mechanism is, by 

definition, located above the parachute in the stack and it might interfere with the parachute if it falls on it. 

Several vent-mechanism-release schemes were designed, built, then tether-tested or flight-tested. We ultimately 

settled on inserting a piece of thin-wall pvc into the neck of the balloon then topping the vent mechanism with 

another tube which slid inside the tube in the balloon neck, using o-rings for the gas seal. The cut-down mechanism 

then had to sever string(s) being used to hold the inner tube inside the outer tube (which itself was inside the balloon 

neck). One design we tried was based on rigging – a stiff (curved) pin punctured through both tubes, holding them 

together. A string ran from the pin to the payloads below so when the cut-down dropped the payloads below they 

would fall several feet then yank out the pin, allowing the vent-mechanism to drop out of the balloon neck as well. 

The problem with this solution was that rotation of the stack with respect to the balloon tightened the string 

prematurely and ultimately pulled out the pin early during the ascent, venting the balloon and gently bringing the 

stack back to the ground with the balloon unpopped and partially deflated. 

Figures 2 and 3 below show a more-recent incarnation of the Float payload, which attaches directly to the neck 

of the balloon but once released falls on tether lines to the bottom of the stack, so as not to remain above the 

parachute during the descent. The tube extending from the top of the Float payload goes inside (Fig. 2) or outside 

(Fig. 3) the tube in the neck of the balloon (which itself is not recovered). A custom 3-D printed frame forms the 

core of the mechanism. An Arduino controls a servo to open and close a cover at the base of the tube, venting 

helium into the false-bottom of the payload and then out into the atmosphere. The Arduino was controlled through 

the DTMF/XBee radio link but could also act autonomously if contact with the ground was lost. Ground testing 

revealed that several pounds of excess lift could be vented in under 5 minutes, consistent with our inadvertent 

experiences with low-altitude venting of balloons. However on our last test flight this vent was left open for over 15 

minutes at altitude with no perceptible change in ascent velocity, suggesting that venting efficiency may depend 

strongly on ambient pressure (and possibly meaning that our vent mechanism solution is totally on the wrong track). 

The full list of legitimate commands the DTMF can understand, most of which are relayed on to the Float 

payload, appears in Appendix A. Notice that some commands are contingent on sensor data such as “822: fire the 

cut-down only if the pull-pin has not been pulled (i.e. separation has not occurred)” whereas others are more direct 

like “888: fire cut-down no matter what (i.e. regardless of the pin status).” The Float payload has many autonomous 

features as well, including “fail-safe” timers which fire the cut-downs to terminate the mission if too much time has 

elapsed. These timers are to avoid the possibility of losing radio contact with the stack after it has reached a float 

condition so that it is no longer possible to command a termination from the ground. The Float code also has target 

float altitudes and target ascent rates in an “autopilot” routine with which the stack can attempt to achieve on its own 

float condition if not commanded from the ground. The autopilot can be enabled and disabled, and all its parameters 

can be modified in flight through the DTMF uplink, as conditions evolve. 

Early versions of the Float code also included self-termination routines if no contact commands were received 

from the ground at least once every 30 minutes, though this proved to be problematic on one flight when the 

Arduinos were started before flight but then we had a launch delay and forgot to send commands so the Arduino 

initiated termination routines even before leaving the ground! As the title says, that is an example of “How NOT to 

vent a balloon!” 
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Figure 2. (a) CAD of vent mechanism within a payload shell, controlled by an Arduino (in blue, lower 

right). (b) The actual vent payload, with a downlink ZigBee radio module (blue, lower right), and a serious 

battery pack (on the left) to power the nichrome burner cut-downs. (c) Ground testing of the Float payload 

attached to the neck of a tethered balloon indoors. 

 

  
Figure 3. CAD model of the current 3-D printed Float core (a) in the “open” position (servo is on the 

lower left), balloon neck tubing is on the upper right, and (b) in the “closed” position. This version required 

the balloon neck tubing to extend well outside the balloon neck tube so it could be inserted into the frame and 

supported both on the inside and on the outside, for added strength. This change was made after breaking off 

the neck of the vent mechanism, which is particularly thin at the o-ring grooves, on two different occasions. 

VI. Future Directions 

We are currently rebuilding our DTMF payload using a different shield from Dossant
2
 which has both DTMF 

decoding and encoding capabilities, so that we can do downlink by DTMF rather than using the parallel StratoSAT 

ZigBee radio module system (which was always overkill). The original DTMF payload seemed to hang up upon 

occasion, so our new DTMF payload is also equipped with an Arduino Nano which monitors the main Arduino and 

attempts to reset it if it stops operating. We call this our DTMF/Shepherd configuration. It has flown just once so far, 

successfully, so next we will add data-logging and XBee functionality to it so that it can be used to relay commands 

to other payloads such as the Float payload. We also plan to increase the autonomy of the Float payload so that if 

either the DTMF link or the XBee relay go down it can still function independently. 

We remain puzzled by one recent flight experience in which a balloon continued directly to burst despite the 

vent being open for a long time, so we need to reconsider our assumptions about venting, consult with other 

balloonists with more experience venting balloons, and possibly do flight tests in which we vent periodically over 

the entire ascent to characterize venting efficiency as a function of altitude (i.e. as a function of ambient pressure). 

Another option might be to try to measure the flow rate through the vent directly at various altitudes. If venting this 
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way becomes intolerably inefficient at altitude we may need to come up with another hardware solution or else 

change our operating procedure dramatically, possibly starting to vent at much lower altitudes and/or using a second 

“excess-lift-only” balloon which can be cut away at altitude, reducing the amount of venting that needs to be done to 

achieve float. We are also in a good position to incorporate a ballasting mechanism which, coupled with a venting 

mechanism, would allow us to modify our excess lift either up or down at altitude. 

VII. Conclusion 

Although we are behind some other ballooning groups on implementing robust uplink, downlink, and venting 

capabilities, we are learning lots by trying to do these things ourselves rather than simply purchasing off-the-shelf 

solutions. We believe we have all the main pieces to a solution in place, although our vent mechanism, plus the 

control DTMF payload, are relatively heavy which limits the weight of experiments they might assist in getting 

extended time at float. Despite lots of work, this remains an interesting problem for us and will continue to occupy 

our attention for the foreseeable future. 

Appendix 

An excerpt (all comments, not executable code) from the current version of code used in the Float payload 

which includes a list of commands that can be passed along from the DTMF payload through the XBee network, 

illustrating the flexibility of the system. This also describes what data is on downlink channels from the DTMF 

payload and from the Float payload. 

 

/* 

DTMF Software v7b 

Written by Seth Frick 

8/21/2013 

Last modified 

10/3/2013 

 

For DTMF system hardware configuration 5: 

  -Arduino Mega 2560 

  -Wireless SD shield with XBee module modified for Arduino Mega 

  -Adafruit data logging shield with SD card, RTC, and u-blox MAX 6 GPS breakout board from HAB Supplies in 

prototyping area (switched to Adafruit Ultimate GPS breakout 6/17/13) 

  -DTMF decoder shield 

   

Unlike previous versions of the DTMF system, this version is designed to take binary-coded decimal values as input 

from the DTMF decoder shield. The BCD output nibble should be connected to pins 30-33, with pin 30 being LSB 

and 33 being MSB. 

 

Upgrades new to version 6: 

  -Zigbee downlink values logged directly for easier cross reference post-flight 

  -Temperature sensor added near GPS module (logged every 5 seconds) 

  -Battery voltage logged to SD card every 5 seconds 

  -Second Zigbee downlink channel used to indicate which digit of the three-digit code was received most recently 

(hundreds place, tens place, or ones place) 

  -DTMF code entry timeout feature added - if more than ten seconds passes between entry of successive digits, the 

DTMF code value is reset to zero and an additional tone or tones sent will initiate the beginning of a new code 

  -GPS timestamps, number of satellites, latitude, and longitude are all logged 

  -Logged altitudes are now in meters and ascent rates in m/s 

  -Two ascent rates used - 5 sec average and 1 min average. 1 minute average used in evaluating fail-safe conditions; 

both rates logged. 

  -GPS enable pin used to turn off GPS during setup(). Fixed issues with hanging code due to early GPS lock. 

    

Upgrades new to version 7: 

  -Internal temperature is downlinked on third Zigbee channel. Format is 10 x temp in Celsius. 
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  -Float and cut-down "autopilot" routines are now set by default. In version 7a, the autopilot will open the float 

valve at a specified altitude, keep it open until a target ascent rate is achieved, stay at "float" for a specified amount 

of time, and then fire the cut-down. A cut-down altitude is also specified which will cause the flight to be terminated 

even if a float has not yet been achieved. Venting start altitude, target ascent rate, time at float, and cut-down 

altitude are all user-configurable in flight by sending the appropriate commands. In version 7b, the autopilot does 

not attempt to achieve a float, but instead runs a nominal testing routine of the float mechanism to produce data 

which will highlight the affect the float has on the ascent rate at various altitudes. At various altitude intervals, the 

float valve will be opened for a specified amount of time, and the cut-down will be autonomously fired at a specified 

altitude. The altitude interval, float valve open time, and cut-down altitude are all user-configurable in flight by 

sending appropriate commands. Autopilot can be disabled in preprocessor defines.  

  -Three additional Zigbee downlink channels added. The six downlink channels are used for the following: 

        1. Last DTMF code received 

        2. DTMF digits received (indicates partial codes) and code entry timeout monitor 

        3. Payload internal temperature (10 x temp in Celsius) 

         4. Altitude at which autopilot venting will begin (altitude in feet / 100) OR Altitude interval for float testing 

(altitude in feet / 100) 

         5. Targeted ascent rate for autopilot venting (feet per minute) OR Float valve open duration during each float 

test (seconds) 

         6. Altitude at which autopilot will fire cut-downs (altitude in feet / 100) 

  -External indicator LEDs added. One LED blinks every time through the loop, the other is solid on when in 

interrupt.  

  -Siren will automatically turn on above 10,000 feet on the way up if it is not already on. 

  -Autopilot functions (in both versions) can be disengaged and reengaged on command. When autopilot is 

disengaged, autopilot configuration parameters will still be accessible and can be changed by sending the 

appropriate commands. These values will be downlinked as usual. However, any action involving the float 

mechanism or cut-down burners will not be initiated by the autopilot while it is disengaged. Fail-safes will continue 

to operate. 

    

DTMF command codes for Version 7: 

  -2XX: open float valve for XX seconds, then close automatically. 

  -302: close float valve indefinitely. 

  -382: open float valve indefinitely. 

  -4XX: reserved for competition payload. 

  -555: LED flash on Float payload. 

  -627: add one hour to fail-safe counters (both on DTMF payload and Float payload, assuming XBee link is up). 

  -678: hibernate (DTMF payload fail-safes inactive). Any new code received leaves hibernation. 

  -767: turn siren off. 

  -787: turn siren on. 

  -822: fire cut-down with pull-pin check. 

  -888: fire cut-down with no pull-pin check. 

  -940: subtract 5,000 feet from autopilot cut-down altitude. 

  -949: add 5,000 feet to autopilot cut-down altitude. 

  -990: reengage autopilot. 

  -999: disengage autopilot. 

   

Autopilot configuration commands for Version 7a:  

  -900: subtract 5,000 feet from altitude at which autopilot opens float valve. 

  -909: add 5,000 feet to altitude at which autopilot opens float valve. 

  -920: subtract 100 ft/min from autopilot target ascent rate. 

  -929: add 100 ft/min to autopilot target ascent rate. 

  -960: subtract 5 minutes from autopilot float time. 

  -969: add 5 minutes to autopilot float time. 

   

Autopilot configuration commands for Version 7b: 

  -900: set float valve open time for float tests to 30 seconds. 

  -909: set float valve open time for float tests to 1 minute. 
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  -920: set float valve open time for float tests to 2 minutes. 

  -929: set float valve open time for float tests to 5 minutes. 

  -960: subtract 2,000 feet from altitude interval for float tests. 

  -969: add 2,000 feet to altitude interval for float tests. 

*/ 

 

----Float Payload Downlink Info---- 

 Channel 1: cumulative time open for float mechanism. Output is 10 * minutes open, i.e. 350 = 3.5 minutes 

open. 

 Channel 2: cut-down success (based on pull-pin status). Hundreds place is first burner, tens place is second 

burner, ones place is unused. Each burner digit will be 0-4, with 0 being no success, and 1-4 indicating 

success (and which "try" was successful), i.e. 200 = first burner caused pull-pin to be pulled on second try; 

30 = first burner unsuccessful, second burner worked on third try. 

 Channel 3: float push button status. 130 = "open" switch pressed, "closed" switch not pressed; 350 = 

"closed" switch pressed, "open" switch not pressed; 330 = neither switch pressed (float partially open); 150 

= both switches pressed (indicating some error). NOTE: discrete time open commands (2xx) do not seem to 

produce correct downlink on this channel. Channels 1 and 4 can still be used for these commands. Channel 

3 is useful for redundancy for indefinite open/close commands (382/302). 

 Channel 4: servo position given directly from servo potentiometer wiper (bypasses microcontroller 

entirely). Large value (~500-700) indicates float valve is open; small value (~20-50) indicates float valve is 

closed. 
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