Searching for Our Cosmic Origins from the Edge of Space

We live in a Galaxy comprised of stars, planets, and people.

Where did it all come from?

Interstellar Medium (ISM)

Presented by Jenna Kloosterman University of Arizona

Overview

- I. Introduction
 - A. Science Drivers
 - B. Heterodyne receivers
- II. Ground-based instrumentation
 - A. SuperCam (345 GHz receiver for CO)
 - B. ASTRO (492 GHz receiver for [C I])
 - C. HEAT (810 GHz receiver for CO and [C I])
- III. Balloon-borne missions
 - A. STO
 - B. [O I] receiver
 - C. STO II
 - D. GUSSTO

- How and where are interstellar clouds made, and how long do they live?
- Under what conditions and at what rate do clouds form stars?
- How do stars return enriched material back to the Galaxy?
- How do these processes sculpt the evolution of galaxies?

Life Cycle of Interstellar Medium (ISM)

Heterodyne Receivers

- Coherent detection
- High resolution $(v/\Delta v \ge 10^7)$
- Sensitivity

- Stability
- IF bandwidth
- Far field optical coupling

How do we go about studying the ISM?

The Ground
 A. North America

SuperCam

SuperCam's First Light Map of DR21 in ¹²CO 3-2 from the SMT

Anatomy of a SuperCam Subarray

How do we go about studying the ISM?

The Ground
 A. North America
 B. South America

How do we go about studying the ISM?

- 1. The Ground
 - A. North America
 - B. South America
 - C. South Pole

AST/RO:

Antarctic Submillimeter Telescope and Remote Observatory

Mixer assembly

Cryogenic Low Noise Amplifiers (4)

LHe Cold Plate (4K)

12K Radiation shield 77K Radiation shield

Vacuum housing (290K)

How do we go about studying the ISM?

- 1. The Ground
 - A. North America
 - B. South America
 - C. South Pole
 - D. Ridge A

THz Atmospheric Transmission (Ridge A)

CO

High Elevation Antarctic Telescope (HEAT) in 2012 A new Terahertz Observatory on Ridge A

Cryocooled Schottky receivers at 492 and 810 GHz (2012)

A complete spectroscopic THz facility for 150 watts!

PI: Craig Kulesa

HEAT cryostat assembly At South Pole

Continuing Science Drivers:

<u>Goal 1</u>: Determine the constituents and life cycle of interstellar gas in the Milky Way.

Goal 2: Witness the formation and destruction of star forming clouds.

Goal 3: Understand the dynamics and gas flow into and within the Galactic Center.

<u>Goal 4</u>: Understand the interplay between star formation, stellar winds and radiation, and the structure of the ISM in the Large Magellanic Cloud (LMC).

<u>Goal 5</u>: Construct Milky Way and LMC templates for comparison to distant galaxies.

Balloon flights will serve as a Rosetta Stone for understanding the inner workings of other galaxies

How do we go about studying the ISM?

- 1. The Ground
 - A. North America
 - B. South America
 - C. South Pole

- 2. Near-Space/Space
 - A. Airplanes
 - B. High Altitude Balloons
 - C. Space Missions

Life Cycle of Interstellar Medium (ISM)

Stratospheric THz Observatory (STO)

Modest Apertures Vastly Improve Available Angular Resolution

Galactic Plane Region Near I = 340 IRAS 60 µm Smoothed to 3°

Modest Apertures Vastly Improve Available Angular Resolution

Galactic Plane Region Near I = 340 IRAS 60 µm 2' Resolution

STO Science Flight Configuration

- 2 - 4 Pixel HEB Mixer arrays

- HEB mixers down-convert high frequency sky signals to microwave frequencies
- Cryogenic System keeps FPA @
 4K with 100 I liquid He cryostat
- Schottky Receiver for warm mission when cryogens exhausted
- Survey of [CI] @ 492 GHz

Telescope Specifications:

- 1^{ary} aperture: 80 cm
- Length: $\sim 1.2 \text{ m}$
- F-ratio: F/17.5
- ½ angle FOV: 3.5 arcmin
- 1^{ary} material: ULE glass honeycombed
- Weight: 420 lbs

FPU Insert >>>> What's Under the Hood

STO Movie Bill Rodman November – January: 2011/12

Looking Down....

Looking Out....

STO's ~14 Day Flight Track

Landing Site

Launch Site

NGC 3576 STO [CI]

Distance ~ 3000 ly Diameter ~50 ly

0.012 ir:3 gi: rc:

Coming Down....Payload on the Parachute

STO Recovery Operations

-Payload in good shape!
-Expect a 2nd Flight in 2015

Kenn Borch Air Ltd.

25.81

IR/THz Missions

IR/THz Missions

Life Cycle of Interstellar Medium (ISM)

SuperCam, ASTRO, and HEAT

STO

STO II / GUSSTO

Selected Spectral Lines: CO: $\lambda = 0.8$ mm, v = 345 GHz [NII]: $\lambda = 205 \mu$ m, v = 1.46 THz [CII]: $\lambda = 158 \mu$ m, v = 1.9 THz [OI]: $\lambda = 63 \mu$ m, v = 4.745 THz

4.7 THz Receiver Development For GUSSTO/STO-II

- Mixer: Hot Electron Bolomenter (HEB)
- Local Oscillator: 4.7 THz Quantum Cascade Laser (QCL)

21 QCLs packaged together

Receiver Noise Temperature

- 3 methods used to measure y-factor at 4.7-THz the bias voltage sweep method, the bias current sweep method, and the hot/cold chop (not shown) - average T^{DSB} = 815 K!!!
- HEB is most sensitive when biased to 0.65 mV and 29 $\mu A-we$ corrected our measurements for direct detection effects
- At 4.25 THz, measured 750 K
- At 5.25 THz, measured 950 K

$$T_{N,rec} = \frac{T_{eff,hot} - YT_{eff,cold}}{Y-1}$$

Methanol Gas Spectroscopy at 4.7 THz

Methanol gas spectroscopy used to verify performance

Good agreement with model demonstrates:

- HEB sensitivity
- IF linearity
- Receiver stability
- LO frequency
 QCL: 4.7404 THz
 [O I]: 4.7448 THz
 -> ~4.3 GHz IF

GUSSTO+: 100+ Day Flight on SPB

- Astrophysics small complete mission MO
- Completed Concept study (Phase A) on Sept 29, 2012
- Propose again in 2014
- Participating Institutions:
 - UofA, APL, JPL, CIT, Ball Aerospace, ASU, MIT, SRON(NL), TUDeflt (NL)

GUSSTO	Instruments
Telescope	1 meter off-axis Gregorian
Target Frequencies	[OI]: 4.7448 THz, [CII]: 1.9013 THz, [NII]: 1.4588 THz
Angular Resolution	50 arc seconds
Receiver Type	3x 16-Pixel HEB Mixer Array
System Noise Temp	~1500K (DSB)
Spectrometer	Digital Correlators
Spectrometer Bandwidths	2 , 4, and 5.5 GHz - Corresponds to 414, 632, 319 km/s for [NII], [CII], [OI]
Spectrometer Resolution	2.15, 5.37, and 6.45 MHz – Corresponds to 0.44, 0.85, 0.41 km/s for [NII], [CII], [OI]
Cryogenic System	Helium (~4K) Hybrid Cryostat
Instrument Mass	340 kg (includes 25% contingency mass)
Instrument Power	977 W (in science mode), 500 W (in sleep mode)
Platform	LDB or ULDB Gondola
Launch Vehicle	Zero or Super Pressure Balloon

Observational Objectives: [CII], [OI], & [NII] Surveys of MW and LMC

Galactic Plane Visibility from Antarctica:

Above: Single line of sight (LOS) spectrum of [CII] (*Herschel HIFI*) towards a Galactic source. *GUSSTO* 's surveys will observe >100,000 LOS, more than 100x what was done with Herschel HIFI.

The Large Magellanic Cloud (LMC) in HI (blue), CO (green), *Spitzer* 160µm emission (Red). The <u>solid box</u> represent<u>s</u> the area for the large– scale mapping with GUSSTO. The <u>dashed</u> box is the proposed 30 Dor deep integration map.

GUSSTO Payload Architecture

Heritage from STO, AST/RO, Herschel, HEAT, SuperCam

GUSSTO Beam Propogation

GUSSTO Directly Benefits JWST and ALMA

Provides "the missing puzzle piece"...

GUSSTO:

Tethers far-IR
extragalactic observations to the Milky Way & LMC.
Calibrates [CII] as tracer of star formation.
Observes the fraction of "CO-dark H₂ gas" in the Galaxy.
Determines the life cycle

& structure of the ISM as a component of galaxy evolution.

JWST will observe epoch of "first light"

ALMA observes [CII] near epoch of "first light"

Summary and Conclusions

- The study of the lifecycle of the ISM helps to answer questions about our cosmic origins by exploring the dust and gas from which we formed.
- Heterodyne receivers provide sensitivity and high spectral resolution in order to study the kinematics of giant molecular clouds from which stars form.
- Atomic and molecular spectral lines resonate in the THz/sub-millimeter region of the electromagnetic spectrum.
- Ground-based instrumentation can probe atmospheric windows, but for all other observations, space-based platforms are needed.
- Balloon-borne missions for THz astronomy provide us with enough power for our instruments and the possibility of several flights.
- STO flew in January 2012 in Antarctica with receivers tuned to detect [C II] and [N II] at 1.9 THz and 1.46 THz respectively.
- Future flights such as STO II or GUSSTO will hopefully include an [O I] receiver at 4.7 THz.

A Unique Opportunity for Ground-Breaking Science

