

Developing High Altitude Balloon Curriculum for Undergraduate Courses

NSF Grant Impact and Example in General Education Chemistry

Don Takehara, Steve Snyder, Travis Booth, Elise Romines, Bethany Smith, Rachel Tomasik

Academic High-Altitude Conference (AHC) June 22-24, 2011

Contents of Presentation

- Importance of Curriculum Development
- Curriculum Development for NSF CCLI/TUES Grant
- General Education Chemistry Curriculum
 Example
 - Taylor University CHE 100 Chemistry for Living
 - Assessment of Student Learning

Importance of Curriculum Development

- Survey of 59 faculty at 51 universities training in using Taylor's HARP (High Altitude Research Platform) system
 - 92% of those responding "interested" or "very interested" in the development of curriculum using HARP
 - Several faculty interested in developing curriculum for colleagues to use

Importance of Curriculum Development

HARP Assessment Tool

Learning outcomes increase as number of times implementing in a given course increases

Event Group – Schools that used as an event only Novice Group – Schools that did 1 launch in the curriculum Experience Group – Schools that did 2-3 launches in curriculum Expert Group – Schools did 4 or more launches in curriculum

			Levels
			Red: p < .05
			Green : p < .01
			•
			Blue : p < .001
			Black: p > .05
1: EVENT GROUP	2: NOVICE GROUP	3: EXPERIENCED GROUP	4: EXPERT GROUP
I. EVENT GROUP	2. NOVICE GROUP	GROUP	4. EAFERT GROOP
1. Intrinsic Motivation	1. Intrinsic Motivation	1. Intrinsic Motivation	1. Intrinsic Motivation
a. Contextualization	a. Contextualization	a. Contextualization	a. Contextualization
b. Curiosity	b. Curiosity	b. Curiosity	b. Curiosity
c. Challenge	c. Challenge	c. Challenge	c. Challenge
d. Control	d. Control	d. Control	d. Control
e. Cooperation	e. Cooperation	e. Cooperation	e. Cooperation
		e. Cooperation	
2. Valuing Science	2. Valuing Science	2. Valuing Science	2. Valuing Science
3. Application	3. Application	3. Application	3. Application
Knowledge	Knowledge	Knowledge	Knowledge
a. Apply Problem	a. Apply Problem	a. Apply Problem	a. Apply Problem
Solving	Solving (decrease)	Solving	Solving
0	S X Y	U U U U U U U U U U U U U U U U U U U	0
b. Process of	b. Process of	b. Process of	b. Process of
Prototyping	Prototyping	Prototyping	Prototyping
c. Process of	c. Process of	c. Process of	c. Process of
Evaluation	Evaluation	Evaluation	Evaluation
d. Documentation and	d. Documen tation and	d. Documentation and	d. Documentation and
Reports	Reports	Reports	Reports
4. Metacognitive	4. Metacognitive	4. Metacognitive	4. Metacognitive
Processes	Processes	Processes	Processes
a. Metacognitive	a. Metacognitive	a. Metacognitive	a. Metacognitive
Planning	Planning	Planning	Planning
b. Metacognitive	b. Metacognitive	b. Metacognitive	b. Metacognitive
Assessing	Assessing	Assessing	Assessing
c. Metacognitive	c. Metacognitive	c. Metacognitive	c. Metacognitive
Monitoring	Monitoring	Monitoring	Monitoring
Monitoring		wontoning	wormoning
5. Cognitive Skills	5. Cognitive Skills	5. Cognitive Skills	5. Cognitive Skills
6. Content Knowledge	6. Content Knowledge	6. Content Knowledge	6. Content Knowledge
a. Primary Technical	a. Primary Technical	a. Primary Technical	a. Primary Technical
Knowledge	Knowledge	Knowledge	Knowledge
b. Learning Cycle	b. Learning Cycle	b. Learning Cycle	b. Learning Cycle
Knowledge	Knowledge	Knowledge	Knowledge
c. Operations	c. Operations	c. Operations	c. Operations
Knowledge	Knowledge	Knowledge	Knowledge
Kilowieuge	i tiowiedge	l	Kilowieuge

HARP Assessment Tool

Pre and Post Test (Self Evaluation)

- Developed by Prof. Steve Snyder, Professor of Psychology & students at Taylor University with Science faculty
- Learning areas assessed:
 - Intrinsic Motivation
 - Contextualization
 - Curiosity
 - Challenge
 - Control
 - Cooperation
 - Valuing Science
 - Application Knowledge
 - Problem solving
 - Prototyping
 - Evaluation
 - Documentation
 - Metacognitive Processes
 - Planning
 - Assessing
 - Monitoring
 - Cognitive Skills
 - Content Knowledge

HARP Assessment Tool

Pre and Post Test (Self Evaluation)

- Excellent Reliability
 - Pre-test Cronbach's Alpha = 0.976
 - Pos-ttest Cronbach's Alpha = 0.965
- Excellent Validity
 - Developed by experts in educational assessment and science education
 - Consistent increase from pre- to post-test
 - Consistently higher score for those with more science education
- 15 Universities in 29 Courses assessed
- Reports summarizing results with recommendations by Dr. Snyder & students
 - Improve courses
 - Obtain grant funding

Bethany Smith and Rachel Tomasik (Taylor Students) available during the conference for consultation

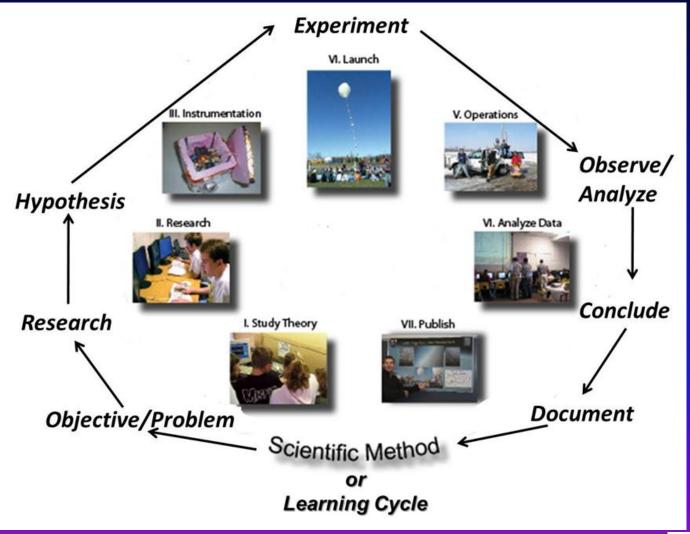
NSF CCLI/TUES Grant

- Awarded to Taylor University (2010-2013)
- Several Curricula to be Developed
 - Funds for stipends and supplies
 - Open to faculty from all higher education institutions
- Curricula should:
 - Be used by many universities across the U.S. and/or
 - Be used in multiple courses (modules that teach specific content)

NSF CCLI/TUES Grant

Requirements for Developing Curriculum

- Clear and specific learning objectives
- Detailed information on experiments including specific procedures, list and description of equipment, etc.
- Detailed description of data analysis procedures
- Detailed description of what students need to have mastered before performing the HARP experiment
- Assessment of achievement of learning objectives after testing curriculum in a classroom.


General Education Chemistry Example

- Taylor University CHE 100 Chemistry for Living
- Learning Objectives
 - Scientific Method hands on, real world experience
 - Challenges, disappointment, excitement, achievement
 - Critical Thinking Skills
 - Prediction
 - Problem Solving
 - Analysis
 - Hypothesis Testing (Scientific Method)
 - Metacognitive Processes
 - Planning
 - Monitoring
 - Assessing

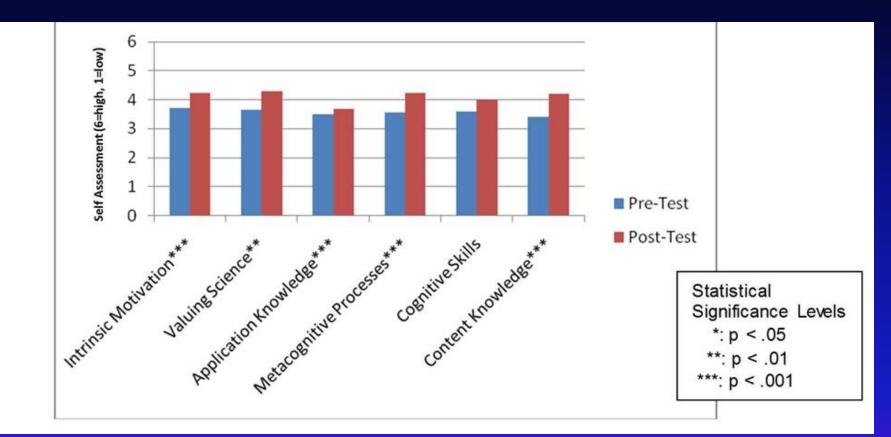
Application of Chemistry Topic taught in Class

Scientific Method

- Students given topic related to course (Greenhouse gases, UV, Freezing Point Depression, Solar Cells)
- Students responsible for
 - Selecting objective/problem
 - Literature research on topic
 - Coming up with Hypothesis
 - Developing experiment to test Hypothesis using HARP
 - Performing experiment through HARP launch
 - Analyzing data
 - Obtaining Conclusion wrt Hypothesis
 - Documenting Scientific Method Process
- Students work in groups of 4-5
- 6 week period
 - Three Labs (2 hours each)
 - Launch between Labs 1 & 2
- Presentation or Poster and final report required

- Students need to know:
 - Changes in variables during ascent/descent of balloon
 - Content from course on topics assigned
- Sensors available with real time data streaming to earth
 - Altitude
 - Temperature
 - Pressure
 - Humidity
 - Visible Light
 - UV
 - IR
 - Radiation (Geiger Counter)
 - Acceleration (Accelerometer)
 - Video cameras (not streamed)

- Critical Thinking
 - Prediction
 - Formulation of hypothesis
 - Experiment Development
 - Evaluation of effectiveness of experiment
 - Improvement of experiment
 - Problem Solving
 - Brainstorm potential flaws and/or problems with experiment
 - Determine and implement solutions to problems
 - Analysis
 - Thorough and detailed analysis of data
 - Looking at data many times


Metacognitive Processes

- Planning
 - Formulation of hypothesis
 - Development of experiment
- Monitoring
 - Performing experiment optimally
 - Preventing major problems/failures
- Assessment
 - How well did we do in meeting objective?
 - How can process and experiment be improved?

Assessment Results

Results after 4th implementation of HARP into course

Practical Significance Intrinsic Motivation ($cta^2 = 0.28$) Application Knowledge ($cta^2 = 0.46$) Metacognitive Processes ($cta^2 = 0.35$) Content Knowledge ($cta^2 = 0.35$)

Assessment Results

Variable	Table 1. Significance Levels
1. Intrinsic Motivation	Red: p < .05
a. Contextualization	Green: p < .01
b. Curiosity	Blue: p < .001
c. Challenge	Black: p > .05
d. Control	
e. Cooperation	
2. Valuing Science	
3. Application Knowledge	
a. Apply Problem Solving	
b. Process of Evaluation	
c. Documentation and Reports	
4. Metacognitive Processes	
a. Metacognitive Planning	
b. Metacognitive Assessing	
c. Metacognitive Monitoring	
5. Cognitive Skills	
6. Content Knowledge	
a.a. Primary Technical Knowledge	
b. Scientific Method Knowledge	

Take Aways

- Curriculum development is critical for the success of high altitude ballooning as a tool to significantly impact STEM learning
- Faculty can develop curricula through Taylor University's NSF CCLI/TUES Grant
- HARP Assessment Tool is reliable, valid and proven to quantitatively assess student learning, improve curricula, and obtain grant funding

See Bethany Smith or Rachel Tomasik

 Taylor's Gen Ed Chemistry has shown success in obtaining practically significant increases in learning outcomes