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This paper discusses the validity of pressure independent first-order thermal models for 

high-altitude  balloon  gondolas  subjected  to  short  duration  flights.   Thermal  system 

identification  results  performed  on  a  test  gondola  in  a  vacuum  chamber  at  varying 

pressures  are presented.   These  results  indicate  that  the lumped  parameter  of  thermal 

resistance changes significantly with pressure.  Though this dependence on pressure may 

make a difference on long-duration flights, the validation results that are presented in this 

paper indicate that pressure independent models are capable of responding to within a few 

degrees of the actual temperature on short duration flights.       

I.  Introduction
he thermal properties of high-altitude balloon gondolas have been an area of study since the 1960's [1-4].  Much 

of the earlier work focused on long duration flights in the high-atmosphere in which gondolas cycle through 

significant periods of radiative heating during the day and radiative cooling at night.  More recently, short duration 

flights have become very common for educational purposes.  Gondolas on these flights are not subjected to long 

periods of intense radiative heating or cooling.  Instead, these short, several-hour-long flights are characterized by a 

quick ascent followed by a quick descent with relatively little time spent floating in the upper atmosphere.  Thus, the 

heat  transfer  dynamics  on these  flights  are  largely  governed  by the  combined  effects  of  forced-air  convective 

cooling during the ascent and descent, solar radiative heating, and conduction within the gondola structure.  Since it 

is typically the case that a small volume of the gondola is the only section where the temperature may be of any 

major significance, a particular volume is selected and treated as an isothermal node characterized by a constant 

thermal capacitance with the combined effects of the various heat transfers into and out of the node lumped into a 

constant thermal resistance [5].  This effectively reduces the complex heat transfer process into a single dimensional 

process that is described by a linear first-order ordinary differential equation for which the thermal resistance and 

thermal capacitance of the isothermal node can be easily found via simple experimental methods [6].  This paper 

provides evidence to support the validity of this system modeling and identification procedure carried out at ground-

level atmospheric pressure.    

T

This paper is organized in the following manner.  First, the modeling and identification process is reviewed.  The 

heat  transfer  equation  is  developed  and  the  experimental  procedure  and  subsequent  numerical  technique  for 

identifying the process constants are discussed.  Next, laboratory results from carrying out the procedure on a hollow 

sphere inside of a vacuum chamber are presented.  Interestingly,  these results  indicate  that the lumped thermal 

capacitance is relatively constant with pressure while the thermal resistance does change significantly with pressure. 

Since  the  effectiveness  of  any  modeling  and  parameter  identification  procedure  is  evaluated  by  how well  the 

resulting  model  replicates  the  phenomenon  that  is  being  modeled,  the  models  for  three  different  gondolas  are 

validated with actual flight data.  The paper then concludes with a few observations and recommendations for future 

work.                         

II.  Thermal Modeling and Identification
The  modeling  and  identification  procedure  for  high  altitude  gondolas  that  is  summarized  below was  first 

described in [6].  The only instrumentation required to carry out the experimental portion of the procedure are two 

temperature sensors making it an attractive option for academic laboratories.  The system identification portion of 
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the process can be performed on paper utilizing the time-constant identification 

method for first-order systems, however, better results can be obtained by using 

numerical optimization algorithms on a personal computer.  

In  order  to  develop  the  analytical  heat  transfer  model,  first  consider  the 

diagram in Figure 1.  The simplified model consists of a single isothermal node, 

which will be denoted as the payload, with a temperature,  T , and a thermal 

capacitance, C .  In practice, this isothermal node has typically been selected as 

the data-logging circuit.  A heat source inside the gondola applies heat,  Q H , 

directly to the payload.  This heat source is due to power dissipated by any 

resistive circuits inside the gondola which includes the power dissipated by the 

payload itself as well as any additional heating elements that may be intentionally placed inside the gondola.  The 

gondola is a structure with insulating properties that shields the payload from the outside atmosphere of temperature, 

T out , and solar radiation, Qsun .

Heat is lost from the payload to the atmosphere inside the gondola and to the inside surface of the gondola 

structure itself via convection and radiation, respectively.  Furthermore, heat is transferred from the inner gondola 

surface to the outer gondola surface via conduction.  In addition, heat is lost from the outer surface of the gondola to 

the atmosphere via convection, and to space via radiation.  Heat is stored in the payload, the atmosphere inside the 

gondola, and the gondola structure.  The ability of the payload and gondola to store heat is invariant to pressure, but 

the ability of the atmosphere inside the gondola to store heat will  obviously be dependent upon the atmospheric 

pressure.  The effects of pressure are discussed in the next section.

Each of the heat transfer processes taking place in the system is lumped into a single thermal resistance, R , with 

units (K /W ) , and the combined ability to store heat in the payload is lumped into a single thermal capacitance, C , 

with units  (J / K) .  Knowing that the heat stored must be equal to the heat entering minus the heat leaving the 

system, the heat transfer dynamical equation is formulated as

C Ṫ ( t)=�
1

R
(T (t)�T out(t ))+Q H (t )+Q sun(t ) . (1)

Equation (1) is a reduced-order model that is intended to capture the significant features of the dynamic response. 

By adjusting the values of  C ,  R , and  Q sun , we seek to find the best fit in the least-squares sense of the step-

response  of  (1)  with  an  experimentally  measured  step-response  of  actual  system.   In  order  to  do  this,  the 

identification process is decomposed into two separate experiments.   The first experiment is carried out with no 

direct sunlight so that, Q sun=0 (W ) .  A known internal heat source is applied to the inside of the gondola so that 

Q H  is constant.  This is easily accomplished with a fixed resistance and a fixed voltage source.  For academic 

laboratory experiments, Q H  is typically set to approximately 5 (W ) .  The heat source is instantaneously applied 

and  measurements  of  the  payload  temperature, T meas (t) ,  and  outside  temperature,  T out (t) ,  are  periodically 

recorded.  Since T out (t)  should ideally be constant in a laboratory setting but may fluctuate slightly due to various 

uncontrolled factors, it is advisable to find and utilized its time-averaged value, T̂ out=mean(T out (t )) , as a constant. 

Since T out , Q H , and Q sun  are assumed constant, then the solution to (1) has the form,

T (t)=(T (0 )�a 2)e

�t

a 1 +a 2
, (2)

where  a1=RC  and  a 2=T (∞)  are unknown but will  be determined via numerical  optimization.   Assume that 

n+1  samples are taken including the initial value,  T meas (0 ) .  Then, define the error between the approximated 

model in (2) and actual system response as the n×1  vector:

e=[T meas(t 1)�((T meas(0)�a 2)e

�t 1

a 1 +a 2
)

T meas(t 2)�((T meas(0)�a 2)e

�t 2

a 1 +a2
)

⋮

T meas (t n)�((T meas(0)�a 2)e

�t n

a 1 +a2
)] . (3)

The objective is to find the values of a1  and a 2  that minimize ∣∣e∣∣
2

.  This can be accomplished via a variety of 

minimization algorithms.   The authors  have  found  that  the MATLAB function,  lsqnonlin,  provides  satisfactory 

results.  It is interesting to notice that it is not required to carryout the measurement portion of the experiment until 

Fig. 1:  Gondola heat transfer.
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steady-state is reached.  Since a 2=T (∞) , it is only necessary to collect enough data to sufficiently characterize the 

shape of the best-fit exponential.

With  both  a1=RC  and  a 2=T (∞)  obtained,  it  is  possible  to solve for  the  thermal  resistance and thermal 

capacitance.  At steady-state, with Q sun=0 (K ) , equation (1) becomes

0=�
1

R
(T (∞)�T̂ out)+QH . (4)

So, the thermal resistance is

R=
T (∞)�T̂ out

Q H

. (5)

Thus, the thermal capacitance is found as

C=
a1

R
. (6)

Having found values for the thermal capacitance and the thermal resistance, it is then possible to solve for Q sun . 

For this procedure, it is helpful to zero Q H  by removing electrical power to the electronics and heating elements. 

Then, by placing the gondola in direct sunlight and allowing a new steady-state temperature to be reached, Q sun  is 

obtained as

Q sun=
T meas(∞)�T̂ out

R
. (7)

   

III.  Laboratory Results
The modeling and identification procedure described in the previous section is carried out with a ground level 

atmospheric  pressure.   As  previously  described,  several  of  the  heat-transfer  processes  involved  in  the  thermal 

dynamics are convective and radiative in nature.  An ascending gondola experiences a drop in atmospheric pressure 

whereby convection becomes less significant while radiation becomes the primary method of heat transfer through 

non-solid space.  Thus, it is evident that atmospheric pressure will have an effect on the dynamical model.  In order 

to investigate the effects that atmospheric pressure has on the thermal capacitance and thermal resistance, the first 

part of the procedure described above was carried out inside a vacuum chamber nine times for nine different, but 

constant, pressures.  The gondola that underwent the tests is a hollow fiberglass and epoxy sphere comprised of two 

hemispheres with an outside surface coating comprised of aluminum tape.  The gondola was suspended inside the 

chamber to avoid conduction between the gondola's outside surface and the chamber's wall.  Figure 2 depicts the 

nine step-responses for each of the different pressures while Table 1 tabulates the applied heat source, the identified 

thermal capacitance, and the identified thermal resistance for each pressure.

A useful index for quantifying the effects of pressure on the thermal resistance and thermal capacitance is the 

standard deviation of the data with respect to the pressure divided by the mean of the data with respect to the 

pressure.  Carrying out these calculations, one finds:
std (Rp)

mean(Rp)
=0.4406 and

std (C p)

mean(C p)
=0.0890 .

This index is considerably larger for the thermal resistance than it is for the thermal capacitance, indicating that the 

pressure has significantly more effect  on the lumped parameter  value of thermal resistance than it  does for the 

lumped  parameter  value  of  the  thermal  capacitance.   The  somewhat  constant  thermal  capacitance  is  a  good 

indication that the volume of gaseous atmosphere inside the gondola  is not capable of holding a relatively large 

amount  of  heat.   Likewise,  the  changing  thermal  resistance  tends  to  indicate  that  the  presence  of  a  gaseous 

atmosphere inside and outside of the gondola substantially contributes to the heat-transfer processes of the system. 

Figure 3 depicts the identified thermal resistance and thermal capacitance plotted against pressure.  The thermal 

resistance data has a close fit to a natural logarithmic curve, which is also plotted.  

Using  the  best-fit  logarithmic  curve  for  thermal  resistance  as a  function of pressure,  the  thermal  resistance 

behavior during a high-altitude flight is explored in Figure 4.  The top two plots depict recorded altitude versus time  

and pressure versus time, which are quite typical profiles for short duration flights.   Using this information, the 

thermal resistance versus time is plotted in the third graph, and the thermal resistance versus altitude is plotted in the 

fourth graph.  

Two very interesting and potentially useful  trends regarding pressure dependency emerge  from the plots  in 

Figure 4.  On the ascent phase of the flight, the thermal resistance is nearly affine with time.  This trend is likely due 



to  the  nearly  constant  ascent  velocity 

along  with  the  trend  in  the  fourth  graph 

which shows that the thermal resistance is 

nearly  affine  with  altitude  as well.   This 

information  could  prove  valuable  in 

developing  either  a  time-dependent  first-

order  thermal  model  or  a  pressure 

dependent first-order thermal model.

The  data  from  this  controlled 

laboratory  experiment  indicates  that 

lumped  parameter  first-order  thermal 

models  for  high  altitude  gondolas  are 

pressure  dependent.   However,  the 

experiment did not incorporate forced-air 

convection on the outside of the gondola 

as would be experienced on the ascent and 

descent of a flight.  The effect of forced-

air  convection  would  be  to  decrease  the 

thermal resistance from its experimentally 

measured free-air convection value in the 

denser portion of the atmosphere.      

 

IV.  Validation
Although  the  experimental  results 

described in the previous section indicate 

that a gondola thermal model  is pressure 

dependent, the sufficiency of the pressure independent models can be assessed by applying real data to the models 

and comparing the modeled outputs with the actual outputs.  This process is accomplished by utilizing the T out  that 

was measured during a flight and the identified Qsun  as inputs to the system described in (1) and then integrating 

the differential equation numerically ( Q H  is typically very small but should also be included as an input if its value 

is within a magnitude of Qsun ).  Data is logged on the author's flights at a rate of 10 (Hz) which is much faster than 

the single  pole of the identified thermal systems.   Thus, it has been found from experience that a simple Euler 

integration  is  entirely  sufficient  for  validation  and  very  little  improvement  is  gained  by  using  higher-order 

integration methods.     

The validation process is carried out for the three different gondolas depicted in Figure 5 by using the identified 

thermal parameters presented in Table 2.    These gondolas 

flew  one  flight  each  on  three  different  flights  with  the 

flights  reaching approximately  30 (km),  15 (km),  and 20 

(km),  respectively.   Plots  of  the  modeled  payload 

temperature,  actual  payload  temperature,  and  outside 

temperature for the three gondolas are depicted in Figure 6. 

The top plot in Figure 6 depicts the temperature profile 

for the payload that was discussed in [5], which is referred 

to as “gondola 1” in this paper.  This payload incorporated 

a bang-off feedback controller that would apply a heat of 

8.1 (W) whenever the temperature dropped below 294 (K) 

and 0 (W) when the temperature was above 294 (K).  The 

payload  was  constructed  of  carbon-fiber  honeycomb 

panels,  and  interestingly,  though  it  is  the  smallest  of the 

three in size, it has the largest identified value for Qsun .  

The  second  plot  in  Figure  6  depicts  the  temperature 

profile for gondola 2.  Gondola 2 is the largest in size and 

was constructed entirely of foam panels.  It has the largest 

thermal capacitance and smallest thermal resistance of the 

three gondolas.  

Fig.  2:  Measured  and  best-fit  first-order  step  responses  due  to 

internal heat source for different pressures.

Table 1:  Internal heat source experiment data.

Pressure 

(Pa)

Heat Source 

(W)

Thermal 

Resistance 

(K/W)

Thermal 

Capacitance 

(J/K)

50 4.556 14.988 140.796

1750 4.674 11.164 127.799

3700 4.662 9.833 125.439

9000 4.668 8.303 119.248

20000 4.645 6.977 114.467

40000 4.678 5.887 112.379

60000 4.712 5.284 106.069

82500 4.693 4.718 111.531

100000 4.728 4.474 114.718



`The third plot in Figure 6 depicts the 

temperature  profile  for  gondola  3. 

Gondola 3 was constructed of foam board 

with  an  outside  layer  of  fiberglass  and 

epoxy.   In addition,  a  layer  of aluminum 

tape  was  placed  on  top  of  the  fiberglass 

layer.   This  gondola  had  the  highest 

thermal  resistance,  the  lowest  thermal 

capacitance, and the lowest value Qsun  of 

the  three  gondolas.   The  data-logging 

stopped abruptly about eight minutes after 

the  balloon  burst,  so  the  entire  flight 

temperature profile for this gondola is not 

available.

The  plots  in  Figure  6  show  that  the 

modeled temperature follows  the trend in 

the actual temperature.   There is no clear 

indication  from  these  results  that  the 

modeled  temperature  consistently  leads 

ahead  or  lags  behind  the  actual 

temperature.   In  [6],  it  was  report  that 

forced-air  convective  cooling  during 

descent  was  suspected  of  being  responsible  for  the  large  error  in  the  top  plot  that  occurs  around  9000  (s). 

Concurring evidence is seen in the bottom two plots during the ascent phase where the modeled temperature is not 

as cold  as  the  actual  temperature.   It  can also  be seen in the  descent  phase  in  the  middle  plot  that  the  actual 

temperature  is  a  few  degrees  colder  than  the  modeled  temperature,  which  also  supports  the  notion  that  the 

discrepancy  is  caused  by  the  unmodeled 

effects of forced-air convection.

The percent error between the modeled 

temperature  and  the  actual  temperature 

provides  an  index  for  quantifying  the 

effectiveness of the thermal models.  The 

percent error for each of the plots depicted 

in Figure 6 is  plotted in Figure 7 against 

the  atmospheric  pressure  which  was  also 

measured  during  each  flight.   It  can  be 

seen that the percent error in the modeled 

temperature  is  never  more  than  three 

percent.  Futhermore, no clear trend arises 

with  respect  to  error  versus  altitude.   Of 

course,  since  the  dynamic  system  is 

moving spatially,  any error that is due to 

pressure  dependence  will  not  be  seen  at 

those pressures that are contributing to the 

error, but at pressures that are further along 

Fig. 3: Thermal resistance and thermal capacitance vs. pressure.

Fig.  4:  Thermal  resistance  and  altitude  relation  using  best-fit 

logarithmic trend. 

Table 2:  Identified gondola thermal 

parameters.

Gondola Qsun  

(W)

R  
(K/W)

C  
(J/K)

1 3.189 4.803 610.17

2 2.161 2.560 980.38

3 0.733 5.724 399.42



in  the  ascent  and  descent.   Still,  the 

relatively small percent error indicates that 

the  first-order  pressure  independent 

thermal  model  provides  sufficient 

accuracy for a cursory analysis of payload 

temperature in gondolas on short-duration 

flights.      

V.  Conclusion
Ideally, a system model should exactly 

replicate  measured  variables  when 

subjected to the same inputs as the actual 

system.   This  rarely  occurs  in  practice. 

Most often, the dynamics that contribute to 

a  system's  response  are  approximate, 

unmodeled, or in the worst case, unknown. 

So, one is left with the task of making the 

subjective  decision  of  whether  or  not  a 

model  is  sufficient  for its  intended purpose.  In this  paper,  a pressure independent  first-order thermal model  is 

examined.  It is known from the basic physics of the problem being examined that a first-order model in the form of 

an ordinary differential equation is only a rough approximation.  Furthermore, even laboratory evidence shows that 

thermal resistance and thermal capacitance (to a lesser degree) are functions of atmospheric pressure.  Still, for the 

three cases examined in this paper, an identified first-order thermal model accurately predicts the temperature trends 

to within a few degrees Kelvin.  If the intended purpose of the model is simply to determine whether or not the 

payload temperature on a short duration flight will  stay above (or below) an acceptable value, then this type of 

model seems entirely adequate.  Such a model should also prove to be adequate in evaluating the need (or lack 

thereof) for additional thermal control consideration.  

The  thermal  identification  process  described  in  this  paper  seems  promising,  but  there  are  still  several 

improvements  that  can  be  made  to  the 

procedure.  One such improvement would 

be to take into account the time and date 

of the the solar input testing.  Even on a 

clear day,  the  solar input  is  not  constant 

with respect to time, though there is a span 

of a few hours when the solar input is at a 

maximum  and  nearly  constant.   Solar 

input  tests,  which  typically  take  several 

hours  to  conduct,  should  be  carried-out 

during  that  time  of  day.   The  value  for 
Qsun  that  is  identified  should  then  be 

appropriately  scaled  by  the  ratio  of  the 

predicted solar input at the date and time 

of the launch and the solar input that was 

observed during testing.  Values for solar 

Fig. 6:  First-order heat transfer model validation results.

Fig. 7:  Percent error in modeled temperature error vs. pressure. 

Fig. 5:  Tested gondolas.  



flux at different dates and times are available from the National Renewable Energy Laboratory*.  Another possible 

improvement would be to incorporate the effects of pressure on the thermal resistance into the model.  If the thermal 

resistance  versus  pressure  curve  in  Figure  3  holds  moderately  true  in  all  cases,  then  a  two-point  calibration 

procedure could be utilized to find the coefficients of R=α+β⋅ln( P) .  This would require that one of the step-

response experiments be carried-out at a preferably lower pressure than the ground-level atmospheric pressure.  If 

multiple  step-response experiments  are carried-out at different  pressures,  then a least-squares curve fit  could be 

utilized.  Similarly,  an investigation into the effects of forced-air convection and how it varies with pressure and 

ascent/descent velocity would also prove useful.  Of course, increasing the order of the thermal model is another 

option that may be worth exploring.  However, the drawback to utilizing a higher-order model is the need for inputs 

that  sufficiently  excite  the  modes  of  the  system,  which  possibly  makes  the  identification  experiments  more 

complicated and less attractive for an instructional academic laboratory.       
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