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Newton’s Law of Cooling describes how a “small” system, such as a thermometer, comes 

to thermal equilibrium with a “large” system, such as its environment, as a function of time. 

It is typically applied when the environment is in thermal equilibrium and the conditions are 

such that the thermal decay time for the thermometer is a constant. Neither of these 

conditions are met when measuring environmental (i.e. atmospheric) temperature using a 

thermometer mounted in a payload lofted into the stratosphere under weather balloons. In 

this situation the thermometer is in motion so it encounters layer after layer of atmosphere 

which differ in temperature, and the changing environmental conditions can influence the 

thermal decay time “constant” for the thermometer as well. We have used Newton’s Law of 

Cooling in spreadsheet-based computer simulations to explore how thermometer readings 

react under these conditions and to better-understand how logger temperature records from 

stratospheric balloon flights, during both ascent (relatively slow) and descent (much faster, 

especially at altitude,) are related to actual environmental temperatures at various altitudes. 

I. Nomenclature 

 
dQ/dt  =  rate of heat flow 

k = constant of proportionality in Newton’s Law of Cooling 

T = object’s temperature 

Tenv = environmental temperature 

τ = characteristic decay time constant 

t = time 

R = drift rate of thermometer 

II. Introduction 

ewton’s Law of Cooling [1], for use in situations where heat is transferred by convection, states that the rate of 

heat flow dQ/dt is proportional to the difference an object’s temperature T and the environmental temperature 

Tenv. 

dQ/dt = k * (T - Tenv)              (1) 
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Here the proportionality value k depends on heat transfer area and heat transfer efficiency and is usually assumed to 

be a constant. 

 

    If an object that starts at temperature T0 in an environment of constant temperature Tenv, this law suggests that the 

object’s temperature T[t] will decay exponentially in time toward Tenv as 

 

T[t] = Tenv + (T0 – Tenv) * exp[- t / τ]         (2) 

 

Here the characteristic decay time constant τ is how long it takes for the temperature it get within 1/e = 0.368 of the 

final value Tenv. 

III. Excel Simulation Results 

    An Excel spreadsheet was written to simulate Newton’s Law of Cooling using small time steps (much smaller 

than τ) [2]. Figure 1a shows T[t] for two objects which start at different temperatures but tend toward the same 

environmental temperature with the same decay time constant. The temperature difference between each object and 

the environment is also plotted. Figure 1b, on the other hand, shows T[t] for two objects with the same initial and 

final temperatures, but which have different decay time constants. An object has come to thermal equilibrium with 

its environment when its temperature is indistinguishable from that of the environment, within the resolution of the 

measuring device. For the same decay time constant, an object that starts with a temperature farther from the 

environmental temperature takes longer to reach equilibrium with the environment. On the other hand, the longer the 

decay time constant, the longer it takes for an object to transfer heat and hence the longer it takes to reach thermal 

equilibrium with its environment. 

 

 
Fig. 1a  Comparison of two objects with different initial temperatures but the same 

thermal decay time constant coming into equilibrium with their environment. 
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Fig. 1b  Comparison of two objects with the same initial temperature but with different 

thermal decay time constants coming into equilibrium with their environment. 

 

    If the object in question is a thermometer and it is being used to measure the environmental temperature, a fair 

question might be “How long must one wait before the thermometer is actually reporting the environmental 

temperature?” The answer, as illustrated by the figures above, is “Eventually.” The farther apart the initial 

thermometer temperature is from the environmental temperature and the longer the decay time constant, the longer 

this will take. But after a few τ’s have elapsed the thermometer temperature will be indistinguishable from the 

environmental temperature. 

 

    However if the environmental temperature is constantly changing, such as is the case during stratospheric balloon 

flights, the answer becomes “Never!” Now the thermometer will “chase” the environmental temperature but will 

never come into equilibrium with it. The same Excel simulation was used to explore the changing-environmental-

temperature situation. The simplest possible situation to consider is one where the environmental temperature 

changes linearly in time. Figure 2(a) shows how a specific thermometer (with a specific decay time constant) will 

eventually parallel the environmental temperature with the same offset temperature when the thermometer starts out 

warmer than or colder than (or even the same temperature as – not shown) the environment. Figure 2(b) shows how 

two thermometers with different decay time constants behave similarly, though the “faster” thermometer will reach 

the parallel-temperature condition more quickly and with a smaller temperature offset. Figure 2(c) illustrates how 

the temperature offset for a given thermometer is directly proportional to the rate at which the environmental 

temperature is changing. Simply put, Newton’s Law of Cooling suggests that a thermometer needs a specific 

temperature offset from the environmental temperature to drive it to change at a specific rate. Once that temperature 

offset is reached, the thermometer temperature will maintain that offset rather than continuing to get closer and 

closer to the environmental temperature. 
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Fig. 2a  When the environmental temperature is changing linearly in time, the thermometer reading 

will ultimately parallel the environmental temperature. The end result is exactly the same 

whether the thermometer starts out initially warmer than or colder than the environment. 

 

 
Fig. 2b  A thermometer with a shorter decay time constant is “more responsive” and ends up 

paralleling the environmental temperature more quickly and with a smaller temperature offset. 
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Fig. 2c  For a thermometer with a specific decay time constant, the size of the temperature offset between 

the environment and the thermometer reading depends linearly on environmental temperature change rate. 

 

    Even though the thermometer never reports the true environmental temperature when the environmental 

temperature changes linearly with time, except if the two temperature curves happen to cross, the thermometer can 

still be used to determine the environmental temperature. To do this one must first document the decay time constant 

τ for the thermometer by doing exponential time decay fits of T[t] as the thermometer comes into equilibrium with a 

fixed-temperature environment. Then, when the thermometer is in contact with an environment whose temperature 

is changing linearly in time, the drift rate R that the thermometer ultimately reaches will be the same rate that the 

environmental temperature is changing with time. The time derivative of T[t] above, in the limit where t approaches 

zero, is dT/dt = ΔT * (- 1 / τ). If this is to equal R, then the temperature offset must be ΔT = - R τ, a particularly 

simple result. Note: slight discrepancies from this result arise from the finite step size of the simulation. As 

anticipated above, the temperature offset grows linearly with the environmental temperature drift rate R. The minus 

sign indicates that the thermometer temperature always lags the environmental temperature. If R is positive (i.e. the 

environment is warming), then ΔT will be negative (i.e. the thermometer will always be behind (i.e. cooler than) the 

environment). Conversely, if the environmental temperature is going down then R will be negative so ΔT will be 

positive (i.e. the thermometer will again be behind (i.e. now warmer than) the environment). 

 

    An extension of the Excel spreadsheet allows us to simulate the response of a thermometer to the 5 phases of a 

typical stratospheric balloon flight: (1) temperature decreasing relatively slowly during ascent through the 

troposphere, (2) temperature increasing relatively slowing during ascent into the stratosphere, (3) temperature 

decreasing relatively quickly during (post-burst) descent back down to the tropopause, (4) temperature increasing 

relatively quickly during descent to the ground, and (5) temperature not changing once the payloads are back on the 

ground. Figure 3 shows how two thermometers with different decay time values, assumed to be constant throughout 

the flight, would respond to this actual temperature profile if all the environmental variations were linear in time 

(which is actually not the case). Simply put, the thermometers report a “distorted/delayed” version of the true 

environmental temperature profile. As before, the “faster” thermometer (i.e. the one with the shorter decay time 

constant) is more responsive and follows the environmental temperature changes more exactly, with smaller 

temperature offsets. 
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Fig. 3  Simulations of how thermometers with two different decay time constants would react to 

the 5 phases of temperature change (assumed to be linear) during a stratospheric balloon flight. 

 

    The ultimate goal of this exploration is basically do this backwards – to determine the actual environmental 

temperature from stratospheric balloon flights using actual thermometer-reported temperature profiles such as those 

shown in the next section. “Correcting” the temperatures will require experimentally-determined knowledge of the 

decay time constants for thermometers which might not end up being constant under all the conditions encountered 

during a stratospheric balloon flight where the atmospheric pressure falls dramatically even as the temperature 

fluctuates, depending on the layer of the atmosphere the thermometer is passing through. 

IV. Preliminary Experimental Results 

The high-altitude ballooning teams at the University of Minnesota – Twin Cities and at St. Catherine University 

have made environmental temperature measurements during many stratospheric balloon flights using (a) Onset 

Computer’s Air/Water/Soil 1-foot temperature sensors for HOBO data loggers [3], (b) Neulog’s wide-range 

temperature (thermocouple) sensors [4], and (c) Maxim’s (Arduino-logged) DS18B20 Dallas 1-Wire digital 

temperature sensors [5]. 

 

To characterize the time decay constants for all 3 types of thermometers at the same time, a “triple-temperature” 

device was built which included a HOBO, a Neulog module chain, and an Arduino Uno, with the three sensors listed 

above mounted within 1.5 centimeters of each other (see Fig. 4a and close-up in Fig. 4b). 
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Fig. 4a  Triple-temperature logger. HOBO and Arduino loggers visible; Neulog modules on underside. 

 

 
Fig. 4b  Close-up view of the triple-temperature tip with DS18B20 Dallas 1-Wire (left), HOBO 

temperature sensor (center), and Neulog thermocouple (right), all within 1.5 cm of each other. 
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This device was moved between a deep freeze and home-temperature air multiple times to characterize the decay 

time constant for each type of sensor. The time decay constant results under standard atmospheric pressure 

conditions were as follows: 

 

τHOBO = 223 seconds;  τNeulog = 23 seconds;  τDallas = 190 seconds 

 

To determine if τ values change with environmental pressure – we hypothesized that the sensors might react 

more slowly (i.e. have larger τ values) at reduced pressure – the device was “slim-mounted” on a sled that could fit 

into a 3-inch diameter pvc tube which was then evacuated using a vacuum pump. The two ends of the tube were 

held at different temperatures by covering one end in ice cubes. The sled started at the cold end but then was slid to 

the warm end without breaking the vacuum seal by tipping the tube – one could hear it slide through the tube easily. 

Figure 5a shows the slim-mounted version and Fig. 5b shows the pvc experimental set-up for the reduced-pressure 

test. 

 

 
Fig. 5a  “Slim mount” of triple-temperature logger for reduced-pressure testing. 

 

 
Fig. 5b  The 3-inch diameter PCV pipe used for the reduced-pressure test. The pipe was evacuated through 

the vacuum hose attached to the central coupler. The far end of the pipe was kept at ice temperature. 
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Plots of the reduced-pressure test results (all versus time) are shown in Fig. 6a – Pressure, Fig. 6b – Arduino 

(Dallas) temperature, and Fig. 6c – HOBO temperature. The Neulog thermocouple sensor failed mid-test , so no 

useful data was forthcoming. The time decay constant results in reduced pressure are listed below. Both time 

constants were longer than the values at full atmospheric pressure: 66% longer for the HOBO temperature sensor 

and 24% longer for the Dallas temperature sensor. The pressure was reduced to 1.2 psi by the vacuum pump. The 

time decay constants were determined during the warming period which all occurred at low pressure. 

 

τHOBO = 370 sec;  τNeulog = TBA (sensor failed);  τDallas = 236 sec 

 

 
Fig. 6a (upper left)  Pressure vs Time during the reduced-pressure test. 

 Fig. 6b (upper right)  HOBO sensor cooling then re-warming, the latter under reduced pressure. 

Fig. 6c (lower left)  Arduino-logged Dallas sensor cooling then re-warming under low pressure. 

 

The triple-temperature device has been flown on two stratospheric balloon missions to date. Figure 7a-d shows 

temperature versus time graphs for the 3 types of temperature sensors (plus one pressure versus time graph) from 

one flight. Future work includes trying to apply simulation capabilities and experimental knowledge of decay time 

constants for the various sensors at atmospheric pressure and at the one reduced pressure tested to determine what 

single/actual atmospheric temperature profile is simultaneously consistent with all the plots below. Additional 

ground tests at other reduced-pressure values and/or at even lower temperatures are also being considered. 
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Fig. 7a (upper left)  Pressure versus time from a stratospheric balloon mission. 

Fig. 7b, 7c, 7d (upper right, lower left, lower right)  Temperature versus time from a 

stratospheric balloon mission. These are actual temperature records from 3 different 

temperature sensors on one flight. No decay time adjustments have been made to the data. 

V. Conclusion 

Implementing Newton’s Law of Cooling using an Excel spreadsheet has allowed us to apply it to situations where 

the environmental temperature is not constant. This has given us insight into differences between thermometer 

readings and various time-dependent profiles of actual environmental conditions, with an eye toward ultimately 

reaching conclusions about atmospheric temperatures during high-altitude balloon flights using “distorted/delayed” 

temperature records due to thermometer decay time constants. Comparison of thermometer decay times at 

atmospheric pressure and at a reduced pressure near 1 psi suggest that these decay times are not in fact constant over 

the wide range of pressures encountered during stratospheric ballooning missions, further complicating analysis of 

(and correction of) logged temperature data. 
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