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Internal gravity waves are oscillations of a fluid parcel about an equilibrium level 

generated by a buoyancy force when the stability of the fluid medium is disrupted. Such a 

disturbance occurs from the obstruction of solar irradiance during a solar eclipse and may 

generate a gravity wave that can be detected using radiosondes. In this study, surface and 

upper air measurements made from a series of radiosondes launched throughout the duration 

of the August 21, 2017 total solar eclipse over the US as part of the National Eclipse Ballooning 

Project are examined for eclipse-induced gravity-wave activity. Preliminary results of 

radiosonde wind data collected throughout the eclipse from multiple sites within the path of 

totality in Wyoming reveal wave-like structures with intrinsic angular frequencies ranging 3.3 

– 4.2 x 10-2 s-1 at altitudes within 18-20 km.  The results of the wind data analysis presented 

here can be compared to results produced by wavelet analysis to either confirm or deny the 

generation of an eclipse-induced gravity-wave. Identifying the wave’s structure would aid in 

wave prediction software to improve weather forecast models.   

 

Nomenclature 

u  = Zonal wind ms-1 (from west is negative, from east is positive) 

v = Meridional wind ms-1 (from north is positive, from south is negative) 

w = Vertical ascent rate ms-1 (increasing is positive, decreasing is negative) 

f = Coriolis frequency s-1 

N = Brunt-Väisälä frequency s-1 

 =  Intrinsic angular frequency x 10-2 s-1 

 = Propagation angle of wave radians 
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x’ = Zonal wind perturbation m  

_______________________________ 

* Post-baccalaureate, Physics & Astronomy Dept.  
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y’ = Meridional wind perturbation m 

z’ = Vertical perturbation m 

 

I.     Introduction 

A total solar eclipse occurs when the Moon passes between the Earth and the Sun and casts a shadow onto the 

surface of the Earth. The first total solar eclipse to span the United States from coast to coast in nearly 100 years 

occurred on August 21, 2017 and presented a path of totality from Oregon to South Carolina. A nationwide campaign 

was organized by the Montana Space Grant Consortium (MSGC) to capture live images of the eclipse from the edge 

of space using large high altitude balloons. Fifty-five student lead teams from across the US launched a common 

camera payload developed by the Montana State University (MSU) Balloon Outreach, Research, Exploration, and 

Landscape Imaging System (BOREALIS) team from multiple locations within the path of totality. “The National 

Eclipse Ballooning Project” included atmospheric measurements by radiosondes from more than 10 teams. The 

campaign aimed to monitor the planetary boundary layer and detect effects generated within the Troposphere and 

Stratosphere at different times throughout the eclipse.  The University of Montana (UM) BOREALIS team structured 

high altitude radiosonde soundings to span the duration of the eclipse in an effort to detect a gravity wave within the 

atmosphere directly attributable to the cooling region of the moon’s shadow.  

Chimonas theorized the generation of internal gravity waves about the shadow region of the eclipse from a distinct 

heating region 45 km into Earth’s continuously stratified atmosphere. The 3-dimentional perturbations are analogous 

to a ‘bow wave’ structured around the source [1]. During a total solar eclipse, gravity waves generated by the 

supersonic motion of the umbra through the atmosphere by analogy would propagate away from the shadow with 

largest perturbations centered around 45 km. The UM radiosonde team operated from three launch sites along the 

width of the path of totality near Fort Laramie, Wyoming with students from UM, MSU, and Miles City Community 

College (MCC). This study works to identify and analyze the gravity-wave structure in the upper air radiosonde 

observations collected from each of these three launch sites. 



3 
 

II.     Methodology 

The three UM radiosonde launch sites are designated as “North” edge (42.752 N, 104.456 W), “Central” (42.277 

N, 104.454 W), and “South” edge (41.915 N, 104.382 W). The shadow of totality spanned approximately 110 km (70 

miles), making the separation between neighboring sites no more than 55 km. A total of 19 radiosondes were launched 

over the course of 48 hours between the 3 launch sites. On the day of the eclipse, each site launched four radiosondes 

in conjunction with each other at the times listed in Table 1. A complete list of radiosonde flight information is 

displayed in Table 2. To avoid erroneous data transmission between multiple radiosondes aloft at one time, each 

radiosonde was assigned its own transmitting frequency during initialization, with a 200.0 kHz spacing between each.  

 

 

 

 
 

 

 

A. Surface Measurements 

Conditions were measured at the surface of each radiosonde launch site. Center site near Fort Laramie recorded 

surface conditions using a Lufft WS502-UMB smart weather sensor and pyranometer beginning ~50 hours  

 

 5 min Before 1st 

Contact 

40 min Before 

Totality 

5 min Before 

Totality 

30 min After 

Totality 

South S1_30 min S1_20 min S1_Burst S1_Burst 

North S2_30 min S2_20 min S2_Burst S2_Burst 

Central S3_30 min S3_20 min S3_Burst S3_Burst 

Table 1 Launch times for site 1-3 on August 21, 2017 

Fig. 1: Map of UM launch sites within the path of totality. 
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prior to eclipse totality and ending approximately 24 hours after eclipse 4th contact. Figure 2 shows a 14 hour period 

of raw surface wind speed and temperature measurements compared to solar radiation between 06:00 and 20:00 MST 

on August 21, 2017. North and south edge sites in Lusk and near Veteran, respectively, recorded surface conditions 

using Kestrel 4500 and 5000 Pocket Weather Trackers. Error between Lufft and kestrel is small. Kestrels were 

calibrated and mounted on a tripod that allowed them to rotate freely with wind direction by attaching a wind vane to 

the mount. Kestrel data was continuously logged beginning ~ 3 hours prior to eclipse totality and ending ~ 2 hours 

after eclipse totality.  Lufft and Kestrel measurements were used for surface values required by radiosonde software 

during initialization as well as to verify that a radiosonde’s output was within desired specifications before each 

launch: < ±5 mb for pressure, < ±2 C for temperature, and < ±10 % for relative humidity. 

 

B. Atmospheric Measurements 

Upper air measurements were taken using GrawMet DFM -09 radiosondes suspended by 350 g or 1,000 g Kaymont 

latex high altitude weather balloons. The radiosonde is equipped with a temperature sensor designed to perform with 

resolution 0.1˚C and accuracy of ±< 0.2 ˚C up to 40 km, a humidity sensor and code-correlated global positioning 

system (GPS) receiver. The GrawMet software uses the corresponding temperature and GPS readings to calculate 

pressure, wind speed, wind direction, altitude, and vertical rise rate. Each sounding gives high temporal resolution (t 

= 2 second) vertical profiles of the parameters listed above. The balloons were filled with helium to achieve an average 

rise rate of 5 m/s for adequate air flow over the sensors.  The fill value was dependent on balloon mass, payload mass, 

surface temperature, and surface pressure.  After initialization, a radiosonde was allowed to hang approximately 3 feet 

off the ground and within 5 feet of the Kestrel or Lufft surface weather station at least 15 minutes to fully acclimate 

Fig. 2: Center site surface measurements of solar radiation vs a) wind speed and b) temperature. 

b a

) 
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to the surrounding conditions. The radiosonde is then attached to the weather balloon using 50 lb test string along with 

a parachute and a de-reeler containing ~29 meters of additional string. The top of the parachute is attached to the neck 

of the balloon with ~0.75 m of string. The de-reeler is attached to the bottom of the parachute with ~ 0.16 m of string 

and, lastly, the radiosonde is secured to the end of the string within the de-reeler. When the balloon is released and 

ascends into the atmosphere, the de-reeler slowly unwinds to create more than 30 meters of space between balloon 

and radiosonde to avoid wake affects from the balloon. GrawMet software corrects for pendulum effects experienced  

by the radiosonde shortly after release.  

 

Aug. 20, 2017    

 
Launch time w.r.t 

eclipse 
ID Launch Terminate 

Max Altitude 

ASL, m 

350 g T/C2 N1 11:47 am Burst 24,166  

  S1 11:45:51 am  24,755  

  C1 11:45:08 am  26,681  

 18 hours before T C2 05:49:08 pm  26,181 

 12 hours before T C3 11:46:04 pm  27,560 

Aug. 21, 2017     

350 g 6 hours before T C4 05:46:04 am Burst 25,106 

 5 min before C1 N2 10:18:57 am ~ 30 min 11,395 

  S2 10:18:12 am  9,684 

  C5 10:19:04 am  9,111 

 40 min before T/C2 N3 11:06:01 am ~ 20 min 7,561 

  S3 11:05:44 am ~ 50 min 16,570 

  C6 11:06:05 am ~ 20 min 7,083 

1000 g 5 min before T/C2 N4 11:40:56 am Burst 31,682 

  S4 11:40:56 am  32,435 

  C7 11:41:08 am ~ 25 min 9,490 

 30 min after T/C2 N5 12:16:55 pm Burst 34,528 

  S5 12:18:28 pm  32,241 

  C8 12:16:04 pm  32,378 

Aug. 22, 2017 

350 g T/C2 C9 11:47:30 am Burst 26,616 

Table 2 Flight information from all radiosondes launched by UM. 
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Radiosonde profiles N2, N3, S2, C5, and C6 were terminated before totality and before reaching the stratosphere. For 

these reasons, analysis of these profiles will be left for planetary boundary layer studies and will not be presented here.   

C. Analysis 

Analysis of each radiosonde sounding was applied in two steps. To first extract wave signal from the soundings, a 

filtering method presented by Scavuzzo [3] is applied to the horizontal and vertical raw wind profiles to isolate waves 

with intrinsic frequencies between the Coriolis frequency f and the Brunt-Väisälä frequency N. The moving parcel 

method described by Marlton [2] is then applied to the filtered data to quantify wave frequency, amplitude and 

wavelength of the dominant wave signal. The angle of the winds with altitude are examined to reveal energy 

dissipation and propagation direction. To begin the analysis, a linear spline is applied to transform the irregularly 

spaced vertical profiles of temperature, pressure and wind into regular ones with resolution z  10 m. The filtering 

process works by first applying a low-pass filter that suppresses frequencies smaller than f. A second low pass filter 

that suppresses frequencies smaller than the approximate upper bound of N is applied to the resulting signal from the 

first filter. The complete filtered wave signal is obtained as the difference between the two filtered signals. Typical 

values of N below 50 km are on the order of 10-2 s-1.  N was calculated for each sounding from the thermodynamic 

variables measured by the radiosonde over a 250 m height window, Marlton [2]. The value of f varies slightly between 

each launch site due to their different latitudes. Due to drift experienced by the radiosonde during flight, the value of 

f experienced at the north edge site, south edge site, and center is averaged to be 9.87 x 10-5 s-1, 9.74 x 10-5 s-1 and 9.81 

x 10-5 s-1, respectively.  

In a stably stratified fluid, the restoring buoyancy force for fluid parcel oscillation is always transverse to the 

propagation of the wave. The phase of the wave is a function of height, and the exact intrinsic angular frequency ω of 

the gravity wave can be calculated using: 

𝜔2 = 𝑓2(sin 𝛼)2 + 𝑁2 (cos 𝛼)2                        (1) 

where 𝛼 is the propagation angle of the wave, also known as the angle that the wave number vector makes with the 

horizontal plane. This equation is commonly referred to as the wave dispersion relation.  In terms of the three-

dimensional displacements of an air parcel,  is defined as: 

𝛼 =  tan−1(√𝑥′2 +  𝑦′2/|𝑧′|).              

(2) 
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To calculate the displacements, a second-order polynomial was fitted to the filtered u, v, and w wind components from 

each profile to calculate background velocities. The background and filtered velocities are then integrated to generate 

mean and filtered displacements. The mean displacements are then subtracted from the filtered displacements to 

calculate the perturbations x’, y’, and z’.  These displacements yield frequency and wavelength of the wave signal.  

III.     Observations 

Maximum eclipse at occurred at 11:46:18 MST at center site with only seconds difference between maximum 

eclipse experienced at north and south edge sites.  The first set of radiosondes were launched 24 hours prior to totality 

at each site and allowed to enter the stratosphere. Figure 3 displays unfiltered u, v and temperature within the 

troposphere from these soundings. A shift in wind direction seen at roughly 2 km at each site corresponds to a 

temperature inversion at this altitude, marking a PBL. A predominantly south-westerly wind is present in each 

sounding with peak amplitude centered around 14 km. Its magnitude is nearly 10 m\s greater than the wind speeds 

recorded 4 km above and below and nearly 20 m\s greater than wind speeds recorded near the surface and above 18 

km. These observations are common for mid-latitude soundings due to the presence of the ferrel westerly cell. The 

vertical profiles collected every 6 hours from the center site also display these characteristics.  Above 18 km, the 

oscillations observed in u and v reveal 180˚ counter-clockwise wind rotation occurring over a vertical distance of 6 

km in the daytime while rotations diminish to less than 45˚ counter-clockwise at night. 

Fig. 3: Unfiltered u (solid), v (dashed), and temperature [C] (dotted) data from a) S1, b) C1, and c) N1 

a b

  a 

c 
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Each profile of horizontal wind and vertical ascent speed collected within 24 hours of eclipse totality were filtered 

to isolate a pre-eclipse wave signal. Figure 4 displays the filtered wind profiles of u and v from each site 24 hours 

prior to eclipse totality. A spike in winds from the west with phase opposition between the wind components u and v 

around 2 km provides a qualitative indication of high intrinsic frequency. Consistent phase opposition between u and 

v is found every 6 hours in the filtered center wind profiles C1– C4 within 5 to 7 km. Above the ferrel westerly cell 

and into the stratosphere, larger amplitude peaks of u and v are seen to be roughly half cycle out of phase at 18 km, 

shifting to one quarter out of phase with increasing altitude and eventually in phase around 20 km. These signatures 

correspond to the peaks seen in the raw profiles and indicate decreasing intrinsic frequency with altitude.  

The frequency of the wave signal from the filtered profiles 24 hours prior to eclipse totality are shown in figure 5. 

The lowest intrinsic angular frequencies are centered on altitudes of 2, 6, and 17 km. The higher frequencies 

concentrated around 10 km arise from the large perturbations calculated within the ferrel cell. Between 18 and 25 km, 

the intrinsic angular frequency approximately averages to 1 x 10-2 s-1.  Filtered profiles C2, C3, and C4 leading up to 

the eclipse display similar frequency patterns with additional local minimums in frequency centered around 19 and 21 

km appearing at night. The profiles of radiosondes from the north and south edge sites that were allowed to ascend  

Fig. 4: Filtered u (solid) and v (dashed) from a) S1, b) C1 and c) N1. 

a b c 
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into the stratosphere post-totality (N4, N5, S4 and S5) are presented in figure 6. These radiosondes were launched 

with a 1,000 g latex balloon and reached heights not spanned prior to the eclipse. Therefore, comparisons for eclipse-

generated wave-structures at altitudes greater than 27 km cannot be made.  

a c 
b 

Fig. 5: Intrinsic angular frequency from a) S1, b) C1, and c) N1. 

Fig. 6: Filtered u (solid) and v (dashed) from a) S4, b) N4 and c) S5, d) N5. 

a b d c 
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Figures 6 and 7 display post-totality results of horizontal wind components and intrinsic angular frequency. 

The amplitudes of the oscillations in u and v above 18 km have diminished by half. The large frequencies centered 

around 10 km 24 hours prior have reduced by nearly 60%. A wave signal is first detected at 19.5 km approximately 

50 minutes after totality in N5. The large frequency spike indicates a dominant intrinsic angular frequency of ~4.2 x 

10-2 s-1.  Due to erroneous data transmission that occurred while S5 was spanning this altitude, a similar spike was not 

detected in this sounding. However, a similar signal is detected again 30 minutes later at both edge sites at altitude ~ 

19 km with slightly lower frequency ~3.6 x 10-2 s-1 in S5 and ~ 3.3 x 10-2 s-1 in N5. These frequencies correspond to 

vertical wavelengths of ~ 20 m. Twenty-four hours following totality in C9, a frequency spike with comparable 

amplitude is absent at this altitude. Wind direction measurements reveal clockwise rotation below 19 km and 

anticlockwise above, indicating upward and downward wave energy propagation.  

 Analysis of UM’s sequential radiosonde profiles during the August 21, 2017 total solar eclipse reveal a 

dominate gravity-wave structure located around 19 km with initial intrinsic angular frequency approximately 4.2 x 

10-2 s-1 and vertical wavelength ~ 20 m.  Wind rotation above and below indicate energy propagation centered from 

this altitude. The number of frequencies excited post totality suggest complex interaction and possible superposition 

between gravity waves.  The absence of such a significant wave structure in the soundings leading up to totality and 

Fig. 7: Filtered intrinsic angular frequency x 10-2 s-1 from a) S4, b) N4, c) S5, and d) N5. 

d 

a b c 
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the sounding taken 24 hours after suggest that the wave structure is likely eclipse-induced with finite period. The 

results of the wind data analysis presented here can be compared to results produced by wavelet analysis to further 

investigate these preliminary findings. 
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